Skip to main content
Human Brain Mapping logoLink to Human Brain Mapping
. 1999 Jun 15;7(4):225–233. doi: 10.1002/(SICI)1097-0193(1999)7:4<225::AID-HBM1>3.0.CO;2-P

Neural pathways involved in the processing of concrete and abstract words

Kent A Kiehl 1,2,, Peter F Liddle 1,2, Andra M Smith 1,2, Adrianna Mendrek 2, Bruce B Forster and 3, Robert D Hare 1
PMCID: PMC6873335  PMID: 10408766

Abstract

The purpose of this study was to delineate the neural pathways involved in processing concrete and abstract words using functional magnetic resonance imaging (fMRI). Word and pseudoword stimuli were presented visually, one at a time, and the participant was required to make a lexical decision. Lexical decision epochs alternated with a resting baseline. In each lexical decision epoch, the stimuli were either concrete words and pseudowords, or abstract words and pseudowords. Behavioral data indicated that, as with previous research, concrete word stimuli were processed more efficiently than abstract word stimuli. Analysis of the fMRI data indicated that processing of word stimuli, compared to the baseline condition, was associated with neural activation in the bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. A direct comparison between the abstract and concrete stimuli epochs yielded a significant area of activation in the right anterior temporal cortex. The results are consistent with recent positron emission tomography work showing right hemisphere activation during processing of abstract representations of language. The results are interpreted as support for a right hemisphere neural pathway in the processing of abstract word representations. Hum. Brain Mapping 7:225–233, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: lexical decision, abstract words, concrete words, fMRI

Full Text

The Full Text of this article is available as a PDF (122.4 KB).

REFERENCES

  1. Ashburner J, Friston K. 1997. Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6:209–217. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98008829&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  2. Beauregard M, Chertkow H, Bub D, Murtha S. 1997. The neural substrate for concrete, abstract, and emotional word lexica: a positron emission tomography study. J Cogn Neurosci 9:441–461. [DOI] [PubMed] [Google Scholar]
  3. Beeman M, Friedman RB, Grafman J, Perez E. 1994. Summation priming and coarse semantic coding in the right hemisphere. J Cogn Neurosci 6:26–45. [DOI] [PubMed] [Google Scholar]
  4. Bookheimer SY, Zeffiro IA, Blaxton T, Gaillard W, Theodore W. 1995. Regional cerebral blood flow during object naming and word reading. Hum Brain Mapp 3:93–106. [Google Scholar]
  5. Bottini G, Corcoran R, Sterzi R, Paulesu E, Schenone P, Scarpa P, Frackowiak RS, Frith CD. 1994. The role of the right hemisphere in the interpretation of figurative aspects of language: a positron emission tomography activation study. Brain 117:1241–1253. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95120486&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  6. Brownell HH, Michel D, Powelson J, Gardner H. 1983. Surprise but not coherence: sensitivity to verbal humor in right‐hemisphere patients. Brain Lang 18:20–27. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=83179767&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  7. Caramazza A, Gordon J, Zurif EB, DeLuca D. 1976. Right‐hemispheric damage and verbal problem solving behavior. Brain Lang 3:41–46. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=76185696&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  8. Chiarello C, Senehi J, Nuding S. 1987. Semantic priming with abstract and concrete words: differential asymmetry may be postlexical. Brain Lang 31:302–314. [DOI] [PubMed] [Google Scholar]
  9. Coltheart M. 1987. Deep dyslexia: a right‐hemisphere hypothesis In: Coltheart M, Patterson K, Marshall JC, editors. Deep dyslexia. London: Routledge and Kegan Paul Inc; p 326–380. [Google Scholar]
  10. Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. 1996. A neural basis for lexical retrieval [see comments]. Nature 380:499–505. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96195054&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  11. Day J. 1977. Right‐hemisphere language processing in normal right‐handers. J Exp Psychol [Hum Percept] 3:518–528. [DOI] [PubMed] [Google Scholar]
  12. D'Esposito M, Detre JA, Aguirre GK, Stallcup M, Alsop DC, Tippet LJ, Farah MJ. 1997. A functional MRI study of mental image generation. Neuropsychologia 35:725–730. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97297566&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  13. Francis WN, Kucera H. 1982. Frequency analysis of English usage. Boston: Houghton Mifflin. [Google Scholar]
  14. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R. 1995. Analysis of fMRI time‐series revisited. Neuroimage 2:45–53. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98003473&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  15. Gardner H, Denes G. 1973. Connotative judgments by aphasic patients on a pictorial adaptation of the semantic differential. Cortex 9:183–196. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=74008886&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  16. James CT. 1975. The role of semantic information in lexical decisions. J Exp Psychol [Hum Percept] 104:130–136. [Google Scholar]
  17. Kiehl KA, Hare RD, McDonald JJ, Brink J. 1999. Semantic and affective processing in psychopaths: an event‐related potential (ERP) study. Psychophysiology (in press). [PubMed] [Google Scholar]
  18. Kounios J, Holcomb PJ. 1994. Concreteness effects in semantic processing: ERP evidence supporting dual‐coding theory. J Exp Psychol [Learn Mem Cogn] 20:804–823. [DOI] [PubMed] [Google Scholar]
  19. Kroll JF, Merves JS. 1986. Lexical access for concrete and abstract words. J Exp Psychol [Learn Mem Cogn] 12:92–107. [Google Scholar]
  20. Kutas M, Hillyard SA. 1980. Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–205. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=80081544&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  21. Lancaster JL, Summerlin JL, Rainey L, Freitas CS, Fox PT. 1998. The Talairach Daemon, a database server for Talairach atlas labels. Neuroimage 5:5634. [Google Scholar]
  22. Paivio A. 1971. Imagery and verbal processes. New York: Holt, Rinehart and Winston. [Google Scholar]
  23. Paivio A. 1978. Imagery, language, and semantic memory. Int J Psycholinguistics 5:31–47. [Google Scholar]
  24. Paivio A. 1991. Dual coding theory: retrospect and current status. Can J Psychol 45:255–287. [Google Scholar]
  25. Petersen SE, Fox PT, Posner MI, Mintun M. 1988. Positron emission tomographic studies of the cortical anatomy of single‐word processing. Nature 331:585–589. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=88122662&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  26. Petersen SE, Fox PT, Posner ML, Mintun M. 1989. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1:153–170. [DOI] [PubMed] [Google Scholar]
  27. Petersen SE, Fox PT, Snyder AZ, Raichle ME. 1990. Activation of extrastriate and frontal cortical areas by visual words and word‐like stimuli. Science 249:1041–1044. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=90371300&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  28. Price CJ, Wise RJS, Watson JDG, Patterson K, Howar D, Frackowiak RSJ. 1994. Brain activity during reading: the effects of exposure duration and task. Brain 117:1255–1269. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95120487&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  29. Pugh KR, Shaywitz BA, Shaywitz SE, Constable RT, Skudlarski P, Fulbright RK, Bronen RA, Shankweiller DP, Katz L, Fletcher JM, Gore JC. 1996. Cerebral organization of component processes in reading. Brain 119:1221–1238. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96408240&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  30. Ross ED. 1981. The aprosodias: functional‐anatomic organization of the affective components of language in the right hemisphere. Arch Neurol 38:561–569. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=81281137&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  31. Rumsey JM, Horwitz B, Donohue BC, Nace K, Maisog JM, Andreason P. 1997. Phonological and orthographic components of word recognition: a PET‐rCBF study. Brain 120:739–759. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97326426&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  32. Schwanenflugel PJ, Stowe RW. 1989. Context availability and the processing of abstract and concrete words in sentences. Reading Res Quarterly 24:114–126. [Google Scholar]
  33. Talairach J, Tournoux P. 1988. Co‐planar stereotaxic atlas of the human brain. Stuttgart: Thieme. [Google Scholar]
  34. Toglia MP, Battig WF. 1978. Handbook of semantic word norms. Hillsdale, NJ: Lawrence Erlbaum. [Google Scholar]
  35. Warrington EK. 1981. Concrete word dyslexia. Br J Psychol 72:175–196. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=81233585&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  36. Winner E, Gardner H. 1977. The comprehension of metaphor in brain‐damaged patients. Brain 100:717–729. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=78125023&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  37. Worsley KJ, Friston KJ. 1995. Analysis of fMRI time‐series revisited—again. Neuroimage 2:173–181. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98003485&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]

Articles from Human Brain Mapping are provided here courtesy of Wiley

RESOURCES