Skip to main content
International Journal of Methods in Psychiatric Research logoLink to International Journal of Methods in Psychiatric Research
. 2010 Aug 19;19(3):142–155. doi: 10.1002/mpr.308

Revising the Cannabis Use Disorders Identification Test (CUDIT) by means of Item Response Theory

Beatrice Annaheim 1,, Thomas J Scotto 2, Gerhard Gmel 1,3
PMCID: PMC6878503  PMID: 20812291

Abstract

Cannabis use among adolescents and young adults has become a major public health challenge. Several European countries are currently developing short screening instruments to identify ‘problematic’ forms of cannabis use in general population surveys. One such instrument is the Cannabis Use Disorders Identification Test (CUDIT), a 10‐item questionnaire based on the Alcohol Use Disorders Identification Test. Previous research found that some CUDIT items did not perform well psychometrically. In the interests of improving the psychometric properties of the CUDIT, this study replaces the poorly performing items with new items that specifically address cannabis use.

Analyses are based on a sub‐sample of 558 recent cannabis users from a representative population sample of 5722 individuals (aged 13–32) who were surveyed in the 2007 Swiss Cannabis Monitoring Study. Four new items were added to the original CUDIT. Psychometric properties of all 14 items, as well as the dimensionality of the supplemented CUDIT were then examined using Item Response Theory.

Results indicate the unidimensionality of CUDIT and an improvement in its psychometric performance when three original items (usual hours being stoned; injuries; guilt) are replaced by new ones (motives for using cannabis; missing out leisure time activities; difficulties at work/school). However, improvements were limited to cannabis users with a high problem score. For epidemiological purposes, any further revision of CUDIT should therefore include a greater number of ‘easier’ items. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: cannabis, CUDIT, screening, cannabis abuse, Item Response Theory

Full Text

The Full Text of this article is available as a PDF (499.2 KB).

Acknowledgements

The Swiss Cannabis Monitoring Study is commissioned and financed by the Swiss Federal Office of Public Health (SFOPH; contract number 01.001316). The following institutions and researchers contribute to the study: Swiss Institute for the Prevention of Alcohol and Drug Problems (SIPA), Lausanne (G. Gmel, B. Annaheim); Research Institute for Public Health and Addiction (ISGF/RIPHA), Zurich (A. Uchtenhagen, M. Schaub); Institute of Social and Preventive Medicine (IUMSP), Lausanne (F. Dubois‐Arber, S. Arnaud, J. P. Gervasoni); Institute of Criminology and Criminal Law (ICDP) (M. Killias, J. Vuille); Lausanne; Institut fuer Begleit‐ und Sozialforschung (IBSF), Zurich (M. Mueller). The SFOPH approved the publication of the current investigation conducted as part of the Swiss Cannabis Monitoring Study.

Table A1.

Residual correlation and residual variance (diagonal); CUDIT, supplemented

Supplemented CUDIT, 14 items
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10 Item 11 Item 12 Item 13 Item 14
 1 frequency of use 0.316
 2 usual hours being stoned −0.086 0.836
 3 stoned for six or more hours 0.044 0.291 0.535
 4 not able to stop 0.015 −0.140 −0.080 0.402
 5 failed to do what expected −0.174 −0.061 −0.057 −0.046 0.548
 6 morning use 0.151 −0.095 0.017 0.086 −0.155 0.503
 7 guilt/remorse −0.093 −0.073 −0.098 0.136 −0.017 −0.154 0.703
 8 memory problems −0.046 −0.031 −0.012 −0.008 0.115 −0.109 0.014 0.419
 9 injuries −0.003 −0.091 −0.059 −0.166 −0.006 −0.129 0.045 0.090 0.895
10 concerned others 0.005 0.128 0.065 0.062 −0.135 −0.003 0.052 −0.094 0.042 0.652
11 neglected social environment −0.089 −0.150 0.055 −0.013 0.149 −0.070 0.094 −0.013 0.154 −0.040 0.721
12 missed activities −0.119 −0.033 0.016 −0.116 0.142 −0.147 0.045 0.062 0.083 −0.079 −0.039 0.613
13 difficulties at school/work −0.127 −0.025 −0.135 −0.119 0.161 −0.160 0.002 0.097 0.038 0.011 0.086 0.098 0.494
14 motives using cannabis 0.144 −0.135 −0.133 0.064 −0.185 0.041 0.069 −0.065 −0.115 0.011 −0.028 −0.039 −0.079 0.416

Note: n = 558; estimator = weighted least square, mean‐ and variance‐adjusted (WLSMV; Mplus); bold typeface: residual correlation > 0.20, considered as local dependence (Reeve et al., 2007).

Table A2.

Model fit and internal consistency of CUDIT; unidimensional, bidimensional and tridimensional models according to exploratory factor analyses

Unidimensional Bidimensional Tridimensional
CUDIT, original: 10 items
Goodness of fit
 Comparative Fit Index (CFI) 0.927 0.957 0.988
 Root Mean Square Error of Approximation (RMSEA) 0.090 0.077 0.047
 Chi‐square 137.714, df = 25, p < 00.000 86.235, df = 20, p < 00.000 33.739, df = 15, p = 00.0037
Internal consistency (Cronbach's α)
 First factor 0.759 0.719 0.639
 Second factor 0.579 0.579
 Third factor 0.535
CUDIT, supplemented: 14 items
Goodness of fit
 Comparative Fit Index (CFI) 0.913 0.955 0.991
 Root Mean Square Error of Approximation (RMSEA) 0.079 0.060 0.028
 Chi‐square 204.389, df = 46, p < 0.000 123.790, df = 41, p < 0.000 51.736, df = 36, p = 0.0433
Internal consistency (Cronbach's α)
 First factor 0.805 0.739 0.579
 Second factor 0.685 0.701
 Third factor 0.685
CUDIT, revised: 10 items
Goodness of fit
 Comparative Fit Index (CFI) 0.935 0.992
 Root Mean Square Error of Approximation (RMSEA) 0.091 0.034
 Chi‐square 140.876, df = 25, p < 0.000 34.641, df = 21, p < 0.0309
Internal consistency (Cronbach's α)
 First factor 0.800 0.703
 Second factor 0.662

Note: n = 558; estimator = weighted least square, mean‐ and variance‐adjusted (WLSMV; Mplus); CUDIT, original: bidimensional model: Items 1, 4, 5, 6, 7, 8, 9, 10 (factor one), Items 2, 3 (factor two); tridimensional model: Items 1, 4, 6, 10 (factor one), Items 2, 3 (factor two), Items 5, 7, 8, 9 (factor three); CUDIT, supplemented: bidimensional model: Items 1, 2, 3, 4, 6, 10, 14 (factor one), Items 5, 7, 8, 9, 11, 12, 13 (factor two); tridimensional model: Items 2, 3 (factor one), Items 1, 4, 6, 10, 14 (factor two), Items 5, 7, 8, 9, 11, 12, 13 (factor three); CUDIT, revised: unidimensional model: Items 1, 3, 4, 5, 6, 8, 10, 12, 13, 14; bidimensional model: Items 1, 5, 8, 12 (factor one), Items 3, 4, 6, 10, 13, 14 (factor two); tridimensional model: impossible to estimate the model, no convergence achieved (iterations = 200 000).

REFERENCES

  1. Adamson S.J., Sellman J.D. (2003) A prototype screening instrument for cannabis use disorder: The Cannabis Use Disorders Identification Test (CUDIT) in an alcohol‐dependent clinical sample. Drug and Alcohol Review, 22, 309–315. [DOI] [PubMed] [Google Scholar]
  2. Adamson S.J., Sellman J.D., Kay‐Lambkin F., Baker A., Lewin T., Thornton L., Kelly B. (2008) A revised screening measure for cannabis misuse: The Cannabis Use Disorders Identification Test (CUDIT), XXIX International Congress of Psychology, Berlin.
  3. Aldington S., Williams M., Nowitz M., Weatherall M., Pritchard A., McNaughton A., Robinson G., Beasley R. (2007) Effects of cannabis on pulmonary structure, function and symptoms. Thorax, 62, 1058–1063, DOI: 10.1136/thx.2006.077081 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. American Psychiatric Association (APA) (1995) Diagnostic and Statistical Manual of Mental Disorders: DSM‐IV, APA. [Google Scholar]
  5. Annaheim B., Rehm J., Gmel G. (2008) How to screen for problematic cannabis use in population surveys. An evaluation of the Cannabis Use Disorders Identification Test (CUDIT) in a Swiss sample of adolescents and young adults. European Addiction Research, 14, 190–197, DOI: 10.1159/000141643 [DOI] [PubMed] [Google Scholar]
  6. Arbeitsgruppe Cannabismonitoring (2008) Veränderungen im Cannabiskonsum 2004 bis 2007 – Ergebnisse des Schweizerischen Cannabismonitorings. http://www.bag.admin.ch/themen/drogen/00042/00643/00646/02287/index.html?lang=de [15 October 2008].
  7. Baker F. (2001) The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and Evaluation, University of Maryland. [Google Scholar]
  8. Beck F., Legleye S. (2008) Measuring cannabis related problems and dependence at the population level In: A Cannabis Reader: Global Issues and Local Experiences (eds European Monitoring Center for Drugs and Drug Addiction (EMCDDA) ), EMCDDA. [Google Scholar]
  9. Bergman H., Källmén H. (2002) Alcohol use among Swedes and a psychometric evaluation of the alcohol use disorders identification test. Alcohol and Alcoholism, 37, 245–251. [DOI] [PubMed] [Google Scholar]
  10. Brodbeck J., Matter M., Page J., Moggi F. (2007) Motives for cannabis use as a moderator variable of distress among young adults. Addictive Behaviors, 32, 1537–1545, DOI: 10.1016/j.addbeh.2006.11.012 [DOI] [PubMed] [Google Scholar]
  11. Browne M.W., Cudeck R. (1992) Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258, DOI: 10.1177/0049124192021002005 [Google Scholar]
  12. Carey K.B., Carey M.P., Chandra P.S. (2003) Psychometric evaluation of the alcohol use disorders identification test and short drug abuse screening test with psychiatric patients in India. Journal of Clinical Psychiatry, 64, 767–774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen K., Kandel D.B., Davies M. (1997) Relationships between frequency and quantity of marijuana use and last year proxy dependence among adolescents and adults in the United States. Drug and Alcohol Dependence, 46, 53–67. [DOI] [PubMed] [Google Scholar]
  14. Cohen M., Solowij N., Carr V. (2008) Cannabis, cannabinoids and schizophrenia: Integration of the evidence. Australian and New Zealand Journal of Psychiatry, 42, 357–368, DOI: 10.1080/00048670801961156 [DOI] [PubMed] [Google Scholar]
  15. Congdon P. (2003) Applied Bayesian Modelling, John Wiley & Sons. [Google Scholar]
  16. Cortina J.M. (1993) What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78, 98–104. [Google Scholar]
  17. Embretson S., Reise S. (2000) Item Response Theory for Psychologists, Erlbaum. [Google Scholar]
  18. European Monitoring Center for Drugs and Drug Addiction (EMCDDA) (2007) Annual Report 2007: The State of the Drugs Problem in Europe, EMCDDA. [Google Scholar]
  19. Fleming J.M. (1996) The epidemiology of alcohol use in Australian women: Findings from a national survey of women's drinking. Addiction, 91, 1325–1334. [DOI] [PubMed] [Google Scholar]
  20. Gillet C., Polard E., Mauduit N., Allain H. (2001) Passage a l'acte et substances psychoactives: Alcool, medicaments, drogues. L'Encéphale, 27, 351–359. [PubMed] [Google Scholar]
  21. Gmel G., Heeb J.‐L., Rehm J. (2001) Is frequency of drinking an indicator of problem drinking? A psychometric analysis of a modified version of the alcohol use disorders identification test in Switzerland. Drug and Alcohol Dependence, 64, 151–163. [DOI] [PubMed] [Google Scholar]
  22. Hall W.D., Degenhardt L.J., Lynskey M.T. (2001) The Health and Psychological Effects of Cannabis Use, Commonwealth of Australia. [Google Scholar]
  23. Hall W., Lynskey M. (2009) The challenges in developing a rational cannabis policy. Current Opinion in Psychiatry, 22, 258–262, DOI: 10.1097/YCO.0b013e3283298f36 [DOI] [PubMed] [Google Scholar]
  24. Hartman C.A., Gelhorn H., Crowley T.J., Sakai J.T., Stallings M., Young S.E., Rhee S.H., Corley R., Hewitt J.K., Hopfer C.J. (2008) Item response theory analysis of DSM‐IV cannabis abuse and dependence criteria in adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 47, 165–73, DOI: 10.1097/chi.0b013e31815cd9f2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hays R.D., Morales L.S., Reise S.P. (2000) Item response theory and health outcomes measurement in the 21st century. Medical Care, 38, II28–II42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hoaken P.N.S., Stewart S.H. (2003) Drugs of abuse and the elicitation of human aggressive behavior. Addictive Behaviors, 28, 1533–1554. [DOI] [PubMed] [Google Scholar]
  27. Hu L., Bentler P.M. (1999) Cut‐off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. [Google Scholar]
  28. Ivis F.J., Adlaf E.M., Rehm J. (2000) Incorporating the AUDIT into a general telephone survey: A methodological experiment. Drug and Alcohol Dependence, 60, 97–104. [DOI] [PubMed] [Google Scholar]
  29. Jöreskog K.G., Sörbom D. (2002) PRELIS 2: User's Reference Guide, SSI. [Google Scholar]
  30. Kim S.S., Gulick E.E., Nam K.A., Kim S.H. (2008) Psychometric properties of the alcohol use disorders identification test: A Korean version. Archives of Psychiatric Nursing, 22, 190–199, DOI: 10.1016/j.apnu.2007.07.005 [DOI] [PubMed] [Google Scholar]
  31. Langenbucher J.W., Labouvie E., Martin C.S., Sanjuan P.M., Bavly L., Kirisci L., Chung T. (2004) An application of item response theory analysis to alcohol, cannabis, and cocaine criteria in DSM‐IV. Journal of Abnormal Psychology, 113, 72–80, DOI: 10.1037/0021‐843X.113.1.72 [DOI] [PubMed] [Google Scholar]
  32. Martin C.S., Chung T., Kirisci L., Langenbucher J.W. (2006) Item response theory analysis of diagnostic criteria for alcohol and cannabis use disorders in adolescents: Implications for DSM‐V. Journal of Abnormal Psychology, 115, 807–814, DOI: 10.1037/0021‐843X.115.4.807 [DOI] [PubMed] [Google Scholar]
  33. McDonald R.P. (1981) The dimensionality of test and items. British Journal of Mathematical and Statistical Psychology, 34, 100–117. [Google Scholar]
  34. Montanari L., Taylor C., Griffiths P. (2008) Cannabis users in drug treatment in Europe: An analysis from treatment demand data In: A Cannabis Reader: Global Issues and Local Experiences (eds EMCDDA ), pp. 261–278, EMCDDA. [Google Scholar]
  35. Montanelli R., Humphreys L. (1976) Latent roots of random data correlation matrices with squared multiple correlations on the diagonal: A Monte Carlo study. Psychometrika, 41, 341–348. [Google Scholar]
  36. Muthén B.O., du Toit S.H.C., Spisic D. (1997) Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. http://www.gseis.ucla.edu/faculty/muthen/articles/Article_075.pdf [27 November 2008].
  37. Muthén L.K., Muthén B.O. (2008) Mplus: User's Guide 5.1. http://www.statmodel.com/ugexcerpts.shtml [14 October 2008].
  38. Piontek D., Kraus L., Klempova D. (2008) Short scales to assess cannabis‐related problems: A review of psychometric properties. Substance Abuse Treatment, Prevention, and Policy, 3, 25, DOI: 10.1186/1747‐597X‐3‐25 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reeve B.B., Hays R.D., Bjorner J.B., Cook K.F., Crane P.K., Teresi J.A., Thissen D., Revicki D.A., Weiss D.J., Hambleton R.K., Liu H., Gershon R., Reise S.P., Lai J.‐S., Cella D. (2007) Psychometric evaluation and calibration of health‐related quality of life item banks: Plans for the Patient‐Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45, S22–S31, DOI: 10.1097/01.mlr.0000250483.85507.04 [DOI] [PubMed] [Google Scholar]
  40. Reinert D., Allen J.P. (2002) The Alcohol Use Disorders Identification Test (AUDIT): A review of recent research. Alcoholism: Clinical and Experimental Research, 26, 272–279. [PubMed] [Google Scholar]
  41. Reinert D.F., Allen J.P. (2007) The alcohol use disorders identification test: An update of research findings. Alcoholism: Clinical and Experimental Research, 31, 185–199, DOI: 10.1111/j.1530‐0277.2006.00295.x [DOI] [PubMed] [Google Scholar]
  42. Rost J. (1988) Quantitave und qualitative probabilistische Testtheorie, Hans Huber. [Google Scholar]
  43. Saha T.D., Stinson F.S., Grant B.F. (2007) The role of alcohol consumption in future classifications of alcohol use disorders. Drug and Alcohol Dependence, 89, 82–92, DOI: 10.1016/j.drugalcdep.2006.12.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Samejima F. (1996) The graded response model In: Handbook of Modern Item Response Theory (eds van der Linden W, Hambleton RK.), pp. 85–100, Springer. [Google Scholar]
  45. Saunders J.B., Aasland O.G., Babor T.F., De La Fuente J.R., Grant M. (1993) Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption – II. Addiction, 88, 791–804. [DOI] [PubMed] [Google Scholar]
  46. Schmid H., Delgrande Jordan M., Kuntsche E., Kuendig H., Annaheim B. (2008) Der Konsum psychoaktiver Substanzen von Schülerinnen und Schülern in der Schweiz – Ausgewählte Ergebnisse einer Studie, durchgeführt unter der Schirmherrschaft der Weltgesundheitsorganisation (WHO), Schweizerische Fachstelle für Alkohol‐ und andere Drogenprobleme (SFA). [Google Scholar]
  47. Shields A.L., Guttmannova K., Caruso J.C. (2004) An examination of the factor structure of the Alcohol Use Disorders Identification Test in two high‐risk samples. Substance Use and Misuse, 39, 1161–1182. [DOI] [PubMed] [Google Scholar]
  48. Teesson M., Lynskey M., Manor B., Baillie A. (2002) The structure of cannabis dependence in the community. Drug and Alcohol Dependence, 68, 255–262. [DOI] [PubMed] [Google Scholar]
  49. Thissen D., Chen W.‐H., Bock D. (2008) Multilog 7, Scientific Software International.
  50. Thomas G., Flight J., Richard K., Racine S. (2006) Toward a Policy‐Relevant Typology of Cannabis Use for Canada, Health Canada, Canadian Executive Council on Addictions & Canadian Centre on Substance Abuse. [Google Scholar]
  51. Vicente J., Olszewski D., Matias J. (2008) Prevalence, patterns and trends of cannabis use among adults in Europe In: A Cannabis Reader: Global Issues and Local Experiences (eds EMCDDA ), pp. 3–28, EMCDDA. [Google Scholar]

Articles from International Journal of Methods in Psychiatric Research are provided here courtesy of Wiley

RESOURCES