Abstract
The 2018 Nobel Prize in Physiology or Medicine was awarded to Tasuku Honjo and James Allison for their discoveries in cancer immunology. Professor Honjo was awarded due to his discovery of the programmed death molecule-1 (PD-1) on T cells. Professor Allison discovered another important immunosuppressive molecule: cytotoxic T-lymphocyte antigen-4 (CTLA-4). Suppression of T cell activation by PD-1 and/or CTLA-4 is considered one of the major escape mechanisms of cancer cells. Inhibition of these molecules by immune checkpoint inhibitors can successfully activate the immune system to fight cancer. Checkpoint inhibitors have brought about a major breakthrough in cancer immunotherapy, reviving the hope of curing patients with end-stage cancer, including a wide variety of cancer types. In metastatic malignant melanoma, the previous long-term survival of only 5% can now be extended to 50% with anti-PD-1 plus anti-CTLA-4 combined treatment in the latest report. More checkpoint molecules such as lymphocyte-activation gene 3 and T cell immunoglobulin and mucin domain 3 are under investigation. The achievement of Drs. Honjo and Allison in cancer immunotherapy has encouraged research into other immune-pathological diseases.
Keywords: Cancer immunotherapy, Immune checkpoint inhibitors, Nobel Prize
Like all Nobel Prize winners, Professor Tasuku Honjo and Professor James Allison have been working for a long time to achieve today's results. Professor Honjo's team started by studying apoptosis and found programmed death molecule-1 (PD-1) in apoptotic T cells. After long research, they confirmed that mice lacking PD-1 will develop various autoimmune diseases (including lupus-like autoimmune disease, myocarditis, glomerulonephritis, and type 1 diabetes). The coinhibitory signal provided by the PD-1 pathway regulates the T cell activity to avoid an excessive immune response [[1], [2], [3]]. In contrast, the tumor cell can escape immune surveillance through activating the PD-1 pathway to suppress the effector T cells. Further research has found that the use of antibodies against these molecules can activate the immune system to destroy cancer cells [4]. In the beginning, the major pharmaceutical companies did not have much interest, but Professor Honjo persisted so that finally the PD-1 inhibitor became the main drug for immunotherapy. Professor Allison found cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on T cells in 1995 and established studies focused on B7/cluster of differentiation 28 (CD28)/CTLA-4 [5,6]. When CTLA-4 bound to the “B7 family” on the surface of the antigen presenting cell, the T cell was suppressed. This mechanism to regulate the immune response to maintaining self-tolerance can also be misused by cancer cells. Therefore, Professor Allison and his team developed CTLA-4 blockade for cancer treatment and got success in melanoma after 13 years of research [7]. Professors Honjo and Allison both won the first Tang Award for Biotechnology and Medicine in 2014 [8]. The two Tang Award winners rely on their enthusiasm for scientific research, their persistence in the research effort, the search for a variety of possible opportunities, and the realization of their theories and achievements. The spirit of perseverance is truly admirable.
Professor Allison's research results are mainly used in melanoma, and with anti-PD-1 drugs for the treatment of lung cancer and kidney cancer. Professor Honjo's research results have now been widely applied in almost all cancers, including head and neck cancer, lung cancer, liver cancer, stomach cancer, urinary tract cancer, lymphoma, and skin cancer. Clinical trials are also actively undergoing in other cancer types. The combination of two immuno-drugs is more effective, but the side effects are relatively greater. Immunotherapy provides optimistic long-term efficacy compared to traditional chemotherapy or targeted therapy in some patient groups. For example, melanoma is the most widely studied and best-performing disease, with the CTLA-4 immunologic drug (ipilimumab, marketed as Yervoy) successfully allowing 21% of patients to survive for more than 10 years [9]. Because of the recent development of PD-1 drugs, current official reports have only tracked results for about five years. As of now, though, PD-1 drugs can help 30% of patients with terminal disease survive for more than five years [10]. The combination of the two drugs has succeeded in allowing more than 50% of patients to survive for more than three years [11].
After the astonishing improvement reported in melanoma, very many clinical trials have begun in different cancer types, especially in solid cancers with poor prognosis. We list the pivotal trials in [Table 1], and these data shape the landscape of cancer treatment in the early 21st century. Besides malignant melanoma [13,[15], [16], [17], [18]], there have been major advances in renal cell carcinoma [24], lung cancer [[26], [27], [28], [29], [30],32,33,38], urothelial carcinoma [[44], [45], [46]], head and neck squamous cell carcinoma [49], and triple negative breast cancer [59]; in these, immune checkpoint inhibitors have become part of the first-line standard treatment. In other cancer types such as hepatocellular carcinoma [[52], [53], [54]], gastric/gastroesophageal junctional cancer [51], colorectal cancer with microsatellite instability–high (MSI-H) or mismatch repair deficient (dMMR) feature [55,56], and cervical cancer [57], immune checkpoint inhibitors play important an role beyond that of first-line therapy. In some rare cancer types with limited effective regimens, such as cutaneous squamous cell carcinoma [21] and Merkel cell carcinoma [22], immune checkpoint inhibitors can yield an amazing response rate and median overall survival. Furthermore, the US Food and Drug Administration (FDA) granted accelerated approval to anti-PD-1 (pembrolizumab, marketed as Keytruda) for first tissue-agnostic indication in adult and pediatric patients with advanced MSI-H or dMMR solid tumors beyond first-line [58,59]. Furthermore, immunotherapy is moving beyond advanced disease, with studies in consolidation therapy in lung cancer [65] and adjuvant therapy in melanoma [[61], [62], [63], [64]] [Table 2]. We look forward to more positive results in early stage disease that will benefit millions of cancer patients. In conclusion, immune checkpoint inhibitors are writing a whole new chapter in the history of fighting cancer, changing treatment guidelines in many different types of cancer, providing long-term survival, and creating the possibility of a cure for cancer patients who previously had little hope.
Table 1.
Pivotal trials of immune checkpoint inhibitors in different cancer types.
Cancer type | Trial (Phase) | Published date | Stage | Line | Arms | RR (%) | mPFS (months) | mOS (months) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Cutaneous melanoma | CA184-002 (III) | 2010 | Advanced | ≧2nd line | Ipilimumab + gp100 Ipilimumab Gp100 |
6%x 11%x 2% |
2.8x 2.9x 2.8 |
10.0x 10.1x 6.4 |
[12] |
CA184-024 (III) | 2011 | Metastatic | 1st line | Ipilimumab + DTIC DTIC |
15% 10% |
NDx ND |
11.2x 9.1 |
[13] | |
KEYNOTE-006 (III) | 2015 | Advanced | ≧2nd line | Pembrolizumab Q2w Pembrolizumab Q3w Ipilimumab |
34%x 33%x 12% |
5.5x 4.1x 2.8 |
NRx NRx 16.0 |
[14,15] | |
CheckMate066 (III) | 2014 | Advanced | 1st line | Nivolumab DTIC |
40%x 14% |
5.1x 2.2 |
37.5x 11.2 |
[15,16] | |
CheckMate-067 (III) | 2015 2017 |
Advanced | 1st line | Nivolumab + Ipilimumab Nivolumab Ipilimumab |
57%x 44%x 19% |
11.5x 6.9x 2.9 |
NRx 37.6x 19.9 |
[17,18] | |
CheckMate-037 (III) | 2015 2018 |
Advanced | ≧2nd line | Nivolumab Chemotherapya |
27%x 10% |
3.1 3.7 |
16 14 |
[19,20] | |
Cutaneous Squamous cell carcinoma | NCT02760498(I/II) | 2018 | Metastatic | ≧1st line | Cemiplimab | 47% | NR | NR | [21] |
Merkel cell carcinoma | NCT02267603 (II) | 2016 | Advanced | 1st line | Pembrolizumab | 56% | 67%b | NR | [22] |
Renal cell carcinoma | CheckMate-025 (III) | 2015 | Advanced | ≧2nd line | Nivolumab Everolimus |
25% 5% |
4.6 4.4 |
25x 19.6 |
[23] |
CheckMate-214 (III) | 2018 | Advanced | 1st line | Nivolumab + ipilimumab Sunitinib |
42%x,c 27% |
11.6c 8.4 |
NRx,c 26 |
[24] | |
Non-small cell lung cancer -Nonsquamous | CheckMate-057 (III) | 2015 | Advanced | ≧2nd line | Nivolumab Docetaxel |
19%x 12% |
2.3 4.2 |
12.2x 9.4 |
[25] |
KEYNOTE-024 (III) | 2016 2018 |
Advanced | 1st line | Pembrolizumab Platinum-based |
44.8%x 27.8% |
10.3x 6.0 |
30x 14.2 |
[26,27] | |
KEYNOTE-189 (III) | 2018 | Metastatic | 1st line | Pembrolizumab + chemotherapyd Chemotherapy + placebo |
47.6%x 18.9% |
8.8x 4.9 |
NRx 11.3 |
[28] | |
IMpower-150 (III) | 2018 | Metastatic | 1st line | Atezolizumab + bevacizumab + Chemotherapye Bevacizumab + chemotherapy |
63.5%x 48% |
8.3x 6.8 |
19.2x 14.7 |
[29] | |
IMpower130(III) | 2018 | Metastatic | 1st line | Atezolizumab + chemotherapyf Chemotherapyf |
49.2% 31.9% |
7.0x 5.5 |
18.6x 13.9 |
[30] | |
Non-small cell lung cancer -Squamous | CheckMate-017 (III) | 2015 | Advanced | ≧2nd line | Nivolumab Docetaxel |
20%x 9% |
3.5x 2.8 |
9.2x 6.0 |
[31] |
IMpower 131 (III) | 2017 | 1st line | Atezolizumab + chemotherapyg Atezolizumab + chemotherapyf Chemotherapyf |
NR 49% 41% |
NR 6.5x 5.6 |
NR 14.6 14.3 |
[32] | ||
KEYNOTE-407(III) | 2018 | Advanced | 1st line | Pembrolizumab + chemotherapyh Chemotherapy + placebo |
57.6%x 38.4% |
6.4x 4.8 |
15.9x 11.3 |
[33] | |
Non-small cell lung cancer | KEYNOTE-010 (II/III) | 2016 | Advanced | ≧1st line | Pembrolizumab 2 mg/kg Pembrolizumab 10 mg/kg Docetaxel |
30%x,i 19%x 8% |
5.0x,i 5.2x 4.1 |
10.4x,i 12.7x 8.5 |
[34] |
OAK (III) | 2016 | Advanced | ≧2nd line | Atezolizumab Docetaxel |
14% 13% |
2.8 4.0 |
13.8x 9.6 |
[35] | |
CheckMate-026 (III) | 2017 | Advanced | ≧1st line | Nivolumab Platinum-based |
26%j 33% |
4.2j 5.9 |
14.4j 13.2 |
[36] | |
Small cell lung cancer | CheckMate-032 (I/II) | 2018 | Limited or extensive stage | ≧3rd line | Nivolumab | 11.9% | 1.4 | 5.6 | [37] |
IMpower133 (III) | 2018 | Extensive stage | 1st line | Atezolimumab + Chemotherapyk Chemotherapy |
60.2% 64.4% |
5.2x 4.3 |
12.3x 10.3 |
[38] | |
Urothelial carcinoma | KEYNOTE-045 (III) | 2017 | Advanced | ≧2nd line | Pembrolizumab Chemotherapyl |
21.1%x 11.4% |
2.1 3.3 |
10.3x 7.4 |
[39] |
IMvigor211 (III) | 2018 | Advanced | ≧2nd line | Atezolizumab Chemotherapyl |
23%m 22% |
2.4m 4.2 |
11.1m 10.6 |
[40] | |
CheckMate-275 (II) | 2017 | Advanced | ≧2nd line | Nivolumab | 19.6% | 2 | 8.74 | [41] | |
NCT01693562 (I/II) | 2017 | Advanced | ≧2nd line | Durvalumab | 27.6% | 1.5 | 18.2 | [42] | |
JAVELIN Solid Tumor (I) | 2017 | Advanced | ≧2nd line | Avelumab | 17% | 1.6 | 6.5 | [43] | |
IMvigor210 (II) | 2017 | Advancedn | 1st line | Atezolizumab | 23% | 2.7 | 15.9 | [44] | |
KEYNOTE-052 (II) | 2017 | Advancedn | 1st line | Pembrolizumab | 28.9% | 2 | 11.5 | [45,46] | |
Head and neck squamous cell carcinoma | CheckMate-141 (III) | 2016 | Advanced | ≧2nd line | Nivolumab Systemic therapyo |
13.3% 5.8% |
2.0x 2.3 |
7.5x 5.1 |
[47] |
KEYNOTE-040 (III) | 2018 | Advanced | ≧2nd line | Pembrolizumab Systemic therapyo |
14.6% 10.1% |
2.1 2.3 |
8.4x 6.9 |
[48] | |
KEYNOTE-048 (III) | 2018 | Advanced | 1st line | Pembrolizumab Systemic therapyp Pembrolizumab + platinum+ 5FU |
23.3%q 36.1% ND |
3.4q 5.0 ND |
14.9x,q 10.7 ND |
[49] | |
Gastric cancer /Gastroesophageal junction cancer | ATTRACTION-2 (III) | 2017 | Advanced | ≧3rd line | Nivolumab Placebo |
11% 0% |
1.61x 1.45 |
5.26x 4.14 |
[50] |
KEYNOTE-059 (II) | 2018 | Advanced | ≧3rd line | Pembrolizumab | 11.6% | 2.0 | 5.6 | [51] | |
Hepatocellular carcinoma | CheckMate-040 (I/II) | 2017 | Advanced | ≧1st line | Nivolumab | 20%r | 4 | 74%s | [52] |
KEYNOTE-224 (II) | 2018 | Advanced | ≧2nd line | Pembrolizumab | 17% | 28%t | 54%u | [53] | |
NCT02715531 (Ib) | 2018 | Advanced | 1st line | Atezolizumab + bevacizumab | 34% | 14.9 | NR | [54] | |
Colorectal cancer-d-MMR or MSI-H | CheckMate-142 (II) | 2017 | Advanced | ≧2nd line | Nivolumab | 32% | 14.3 | 73%u | [55] |
CheckMate-142 (II) | 2018 | Advanced | ≧2nd line | Nivolumab + Ipilimumab | 55% | 71%s | 85%v | [56] | |
Cervical cancer | KEYNOTE-158 (II) | 2018 | Advanced | ≧1st line | Pembrolizumab | 13.3% | 2.1 | 9.4 | [57] |
Tissue agnostic-dMMR or MSI-H | KEYNOTE-016 (II) | 2017 | Metastatic | ≧2nd line | Pembrolizumab | 54% | 53%w | 64%w | [58] |
KEYNOTE-016, -164, −012, −028, and −158 | 2018 | Metastatic | ≧2nd line | Pembrolizumab | 39.6% | ND | ND | [59] | |
Breast cancer | IMpassion-130 (III) | 2018 | Metastatic | 1st line | Atezolizumab + Nab-paclitaxel Nab-paclitaxel |
56%x 46% |
7.2x 5.5 |
21.3 17.6 |
[60] |
Abbreviations: RR: Response Rate; mPFS: median Progression-Free Survival; mOS: median Overall Survival; Ref: Reference; ND: not documented; NR: not reported; DTIC: Dacarbazine.
Chemotherapy: DTIC or carboplatin/paclitaxel.
Progression-free survival rate at 6 months.
In intermediate- and poor-risk patients.
Chemotherapy: pemetrexed + platinum.
Chemotherapy: paclitaxel + carboplatin.
Chemotherapy: carboplatin + nab-paclitaxel.
Chemotherapy: carboplatin + paclitaxel.
Chemotherapy: paclitaxel or nab-Paclitaxel + carboplatin.
Among population with a tumor proportion score of ≥50%.
Among population with a PD-L1 expression level of ≥5%.
Chemotherapy: carboplatin + etoposide.
Chemotherapy: paclitaxel or docetaxel or vinflunine.
In the IC2/3 population.
Cisplatin ineligible.
Chemotherapy: Methotrexate, docetaxel, cetuximab.
Systemic therapy: platinum+ 5-FU + cetuximab.
Combined positive score (CPS) ≧20 population.
In the dose-expansion phase.
9-month OS rate.
12-month PFS rate.
6-month OS rate.
12-month OS rate.
24-month PFS and OS rate.
Statistically significant compared to control arm.
Table 2.
Clinical application of immune checkpoint inhibitors in the adjuvant or consolidation setting.
Cancer type | Trial (Phase) | Published date | Stage | Treatment Goal | Arms | mRFS | mPFS | mDMFS | mOS | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Melanoma | EORTC 18071 (III) | 2015 2016 |
Stage III | Adjuvant | Ipilimumab placebo |
26.1 17.1 |
NA | 48.3%a 38.9% |
65.4%a 54.4% |
[61] [62] |
CheckMate-238 (III) | 2017 2018 |
Resected stage III or IV | Adjuvant | Nivolumab ipilimumab |
62.6%b 50.2% |
NA | 70.5%b 63.7% |
ND | [63] [64] |
|
Non-small cell lung cancer | PACIFIC (III) | 2017 | Stage III | Consolidation after CRT | Durvalumab placebo |
28.4%c 16.0% |
16.8 5.6 |
23.2d 14.6 |
ND | [65] |
Abbreviations: NA: not applicable; NR: not reached; HR: Hazard Ratio; mRFS: median Recurrence-Free Survival; mPFS: median Progression-Free Survival; mDMFS: median Distant-Metastasis Free Survival; mOS: median Overall Survival; Ref.: Reference; CRT: Chemoradiotherapy.
5-year rate of distant metastasis and overall survival.
24-month rate of recurrence-free survival and DMFS.
Response rate.
Time to death or distant metastasis.
Although more and more immune drugs are used in various cancer research studies and clinical trials, these drugs also have side effects, including immune-related adverse reactions which differ completely from those of chemotherapy. We should be alert to the early signs of the complications of immunotherapy and treat patients accordingly so to continue to improve the odds of survival.
We should all follow the enthusiastic, dedicated, and persevering spirit of these two pioneers. The inventions of these Nobel Prize winners truly benefit our patients.
Congratulations again to Professor James Allison and Professor Tasuku Honjo for winning the Nobel Prize in Physiology or Medicine.
Conflicts of interest
The authors declare no conflicts of interest.
Acknowledgements
The authors declare that they have no conflicts of interest and acknowledge the financial support of grants from Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan (CORPG3F0711, CORPG0721, CORPG0731, CORPG0741). The authors thank Professor Alex Yuang-Chi Chang for providing helpful comments and constructive criticisms of the work.
Footnotes
Peer review under responsibility of Chang Gung University.
References
- 1.Nishimura H., Minato N., Nakano T., Honjo T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol. 1998;10:1563–1572. doi: 10.1093/intimm/10.10.1563. [DOI] [PubMed] [Google Scholar]
- 2.Nishimura H., Nose M., Hiai H., Minato N., Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–151. doi: 10.1016/s1074-7613(00)80089-8. [DOI] [PubMed] [Google Scholar]
- 3.Ansari M.J., Salama A.D., Chitnis T., Smith R.N., Yagita H., Akiba H. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med. 2003;198:63–69. doi: 10.1084/jem.20022125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454. doi: 10.1056/NEJMoa1200690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Linsley P.S., Ledbetter J.A. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993;11:191–212. doi: 10.1146/annurev.iy.11.040193.001203. [DOI] [PubMed] [Google Scholar]
- 6.Linsley P.S., Clark E.A., Ledbetter J.A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A. 1990;87:5031–5035. doi: 10.1073/pnas.87.13.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Weber J.S., O'Day S., Urba W., Powderly J., Nichol G., Yellin M. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol. 2008;26:5950–5956. doi: 10.1200/JCO.2008.16.1927. [DOI] [PubMed] [Google Scholar]
- 8.Chen Y.S., Shen C.R. Immune checkpoint blockade therapy: the 2014 Tang prize in biopharmaceutical science. Biomed J. 2015;38:5–8. doi: 10.4103/2319-4170.151150. [DOI] [PubMed] [Google Scholar]
- 9.Schadendorf D., Hodi F.S., Robert C., Weber J.S., Margolin K., Hamid O. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–1894. doi: 10.1200/JCO.2014.56.2736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Hamid O., Robert C., Daud A., Hodi F.S., Hwu W.J., Kefford R. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 2019;30:582–588. doi: 10.1093/annonc/mdz011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Hodi F.S., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Cowey C.L. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19:1480–1492. doi: 10.1016/S1470-2045(18)30700-9. [DOI] [PubMed] [Google Scholar]
- 12.Hodi F.S., O'Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Robert C., Thomas L., Bondarenko I., O'Day S., Weber J., Garbe C. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–2526. doi: 10.1056/NEJMoa1104621. [DOI] [PubMed] [Google Scholar]
- 14.Robert C., Schachter J., Long G.V., Arance A., Grob J.J., Mortier L. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–2532. doi: 10.1056/NEJMoa1503093. [DOI] [PubMed] [Google Scholar]
- 15.Ascierto P.A., Long G.V., Robert C., Brady B., Dutriaux C., Di Giacomo A.M. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy. JAMA Oncol. 2019;5:187–194. doi: 10.1001/jamaoncol.2018.4514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Robert C., Long G.V., Brady B., Dutriaux C., Maio M., Mortier L. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–330. doi: 10.1056/NEJMoa1412082. [DOI] [PubMed] [Google Scholar]
- 17.Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34. doi: 10.1056/NEJMoa1504030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Wolchok J.D., Chiarion-Sileni V., Gonzalez R., Rutkowski P., Grob J.J., Cowey C.L. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377:1345–1356. doi: 10.1056/NEJMoa1709684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Weber J.S., D'Angelo S.P., Minor D., Hodi F.S., Gutzmer R., Neyns B. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–384. doi: 10.1016/S1470-2045(15)70076-8. [DOI] [PubMed] [Google Scholar]
- 20.Larkin J., Minor D., D'Angelo S., Neyns B., Smylie M., Miller W.H., Jr. Overall survival in patients with advanced melanoma who received nivolumab versus investigator's choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J Clin Oncol. 2018;36:383–390. doi: 10.1200/JCO.2016.71.8023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Migden M.R., Rischin D., Schmults C.D., Guminski A., Hauschild A., Lewis K.D. PD-1 Blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379:341–351. doi: 10.1056/NEJMoa1805131. [DOI] [PubMed] [Google Scholar]
- 22.Nghiem P.T., Bhatia S., Lipson E.J., Kudchadkar R.R., Miller N.J., Annamalai L. PD-1 blockade with pembrolizumab in advanced merkel-cell ccrcinoma. N Engl J Med. 2016;374:2542–2552. doi: 10.1056/NEJMoa1603702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Motzer R.J., Escudier B., McDermott D.F., George S., Hammers H.J., Srinivas S. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–1813. doi: 10.1056/NEJMoa1510665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Motzer R.J., Tannir N.M., McDermott D.F., Arén Frontera O., Melichar B., Choueiri T.K. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378:1277–1290. doi: 10.1056/NEJMoa1712126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–1639. doi: 10.1056/NEJMoa1507643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Reck M., Rodríguez-Abreu D., Robinson A.G., Hui R., Csőszi T., Fülöp A. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non–small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37:537–546. doi: 10.1200/JCO.18.00149. [DOI] [PubMed] [Google Scholar]
- 27.Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csőszi T., Fülöp A. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774. [DOI] [PubMed] [Google Scholar]
- 28.Gandhi L., Rodriguez-Abreu D., Gadgeel S., Esteban E., Felip E., De Angelis F. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–2092. doi: 10.1056/NEJMoa1801005. [DOI] [PubMed] [Google Scholar]
- 29.Socinski M.A., Jotte R.M., Cappuzzo F., Orlandi F., Stroyakovskiy D., Nogami N. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288–2301. doi: 10.1056/NEJMoa1716948. [DOI] [PubMed] [Google Scholar]
- 30.Cappuzzo F., McCleod M., Hussein M., Morabito A., Rittmeyer A., Conter H.J. IMpower130: Progression-free survival (PFS) and safety analysis from a randomised phase 3 study of carboplatin + nab-paclitaxel (CnP) with or without atezolizumab (atezo) as first-line (1L) therapy in advanced non-squamous NSCLC. Ann Oncol. 2018;29(Suppl. 8):mdy424-065. [Google Scholar]
- 31.Brahmer J., Reckamp K.L., Baas P., Crinò L., Eberhardt W.E., Poddubskaya E. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–135. doi: 10.1056/NEJMoa1504627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Socinski M.A., Rittmeyer A., Shapovalov D., Orlandi F., McCleod M., Soo R.A. IMpower131: Progression-free survival (PFS) and overall survival (OS) analysis of a randomised Phase III study of atezolizumab + carboplatin +paclitaxel or nab-paclitaxel vs carboplatin + nab-paclitaxel as 1L therapy in advanced squamous NSCLC. Ann Oncol. 2018;29(Suppl. 8):mdy424-077. [Google Scholar]
- 33.Paz-Ares L., Luft A., Vicente D., Tafreshi A., Gümüş M., Mazières J. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N Engl J Med. 2018;379:2040–2051. doi: 10.1056/NEJMoa1810865. [DOI] [PubMed] [Google Scholar]
- 34.Herbst R.S., Baas P., Kim D.W., Felip E., Pérez-Gracia J.L., Han J.Y. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–1550. doi: 10.1016/S0140-6736(15)01281-7. [DOI] [PubMed] [Google Scholar]
- 35.Rittmeyer A., Barlesi F., Waterkamp D., Park K., Ciardiello F., von Pawel J. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–265. doi: 10.1016/S0140-6736(16)32517-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Carbone D.P., Reck M., Paz-Ares L., Creelan B., Horn L., Steins M. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–2426. doi: 10.1056/NEJMoa1613493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Ready N., Farago A.F., de Braud F., Atmaca A., Hellmann M.D., Schneider J.G. Third-line nivolumab monotherapy in recurrent SCLC: CheckMate 032. J Thorac Oncol. 2019;14:237–244. doi: 10.1016/j.jtho.2018.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Horn L., Mansfield A.S., Szczęsna A., Havel L., Krzakowski M., Hochmair M.J. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379:2220–2229. doi: 10.1056/NEJMoa1809064. [DOI] [PubMed] [Google Scholar]
- 39.Bellmunt J., de Wit R., Vaughn D.J., Fradet Y., Lee J.L., Fong L. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376:1015–1026. doi: 10.1056/NEJMoa1613683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Powles T., Duran I., van der Heijden M.S., Loriot Y., Vogelzang N.J., De Giorgi U. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391:748–757. doi: 10.1016/S0140-6736(17)33297-X. [DOI] [PubMed] [Google Scholar]
- 41.Sharma P., Retz M., Siefker-Radtke A., Baron A., Necchi A., Bedke J. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18:312–322. doi: 10.1016/S1470-2045(17)30065-7. [DOI] [PubMed] [Google Scholar]
- 42.Powles T., O'Donnell P.H., Massard C., Arkenau H.T., Friedlander T.W., Hoimes C.J. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3 doi: 10.1001/jamaoncol.2017.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Patel M.R., Ellerton J., Infante J.R., Agrawal M., Gordon M., Aljumaily R. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018;19:51–64. doi: 10.1016/S1470-2045(17)30900-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Balar A.V., Galsky M.D., Rosenberg J.E., Powles T., Petrylak D.P., Bellmunt J. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389:67–76. doi: 10.1016/S0140-6736(16)32455-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Balar A.V., Castellano D., O'Donnell P.H., Grivas P., Vuky J., Powles T. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18:1483–1492. doi: 10.1016/S1470-2045(17)30616-2. [DOI] [PubMed] [Google Scholar]
- 46.Vuky J., Balar A.V., Castellano D.E., O'Donnell P.H., Grivas P., Bellmunt J. Updated efficacy and safety of KEYNOTE-052: a single-arm phase 2 study investigating first-line pembrolizumab (pembro) in cisplatin-ineligible advanced urothelial cancer (UC) J Clin Oncol. 2018;36(Suppl. 15):4524. [Google Scholar]
- 47.Ferris R.L., Blumenschein G., Jr., Fayette J., Guigay J., Colevas A.D., Licitra L. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–1867. doi: 10.1056/NEJMoa1602252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Cohen E.E.W., Soulieres D., Le Tourneau C., Dinis J., Licitra L., Ahn M.J. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet. 2019;393:156–167. doi: 10.1016/S0140-6736(18)31999-8. [DOI] [PubMed] [Google Scholar]
- 49.Burtness B., Harrington K.J., Greil R., Soulières D., Tahara M., De Castro G., Jr. KEYNOTE-048: phase III study of first-line pembrolizumab (P) for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) Ann Oncol. 2018;29(Suppl. 8):mdy424.045. [Google Scholar]
- 50.Kang Y.K., Boku N., Satoh T., Ryu M.H., Chao Y., Kato K. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–2471. doi: 10.1016/S0140-6736(17)31827-5. [DOI] [PubMed] [Google Scholar]
- 51.Fuchs C.S., Doi T., Jang R.W., Muro K., Satoh T., Machado M. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018;4 doi: 10.1001/jamaoncol.2018.0013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–2502. doi: 10.1016/S0140-6736(17)31046-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Zhu A.X., Finn R.S., Edeline J., Cattan S., Ogasawara S., Palmer D. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–952. doi: 10.1016/S1470-2045(18)30351-6. [DOI] [PubMed] [Google Scholar]
- 54.Pishvaian M.J., Lee M.S., Ryoo B.Y., Stein S., Lee K.H., Verret W. Updated safety and clinical activity results from a Phase Ib study of atezolizumab + bevacizumab in hepatocellular carcinoma (HCC) Ann Oncol. 2018;29(Suppl. 8):mdy424-028. [Google Scholar]
- 55.Sidaway P. Colorectal cancer: nivolumab effective against MSI tumours. Nat Rev Clin Oncol. 2017;14:586. doi: 10.1038/nrclinonc.2017.132. [DOI] [PubMed] [Google Scholar]
- 56.Overman M.J., Lonardi S., Wong K.Y.M., Lenz H.J., Gelsomino F., Aglietta M. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–779. doi: 10.1200/JCO.2017.76.9901. [DOI] [PubMed] [Google Scholar]
- 57.Chung H.C., Schellens J.H.M., Delord J.P., Perets R., Italiano A., Shapira-Frommer R. Pembrolizumab treatment of advanced cervical cancer: updated results from the phase 2 KEYNOTE-158 study. J Clin Oncol. 2018;36(Suppl. 15):5522. [Google Scholar]
- 58.Le D.T., Durham J.N., Smith K.N., Wang H., Bartlett B.R., Aulakh L.K. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.U.S. Food and Drug Administration FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. 2017. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication/
- 60.Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–2121. doi: 10.1056/NEJMoa1809615. [DOI] [PubMed] [Google Scholar]
- 61.Eggermont A.M., Chiarion-Sileni V., Grob J.J., Dummer R., Wolchok J.D., Schmidt H. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16:522–530. doi: 10.1016/S1470-2045(15)70122-1. [DOI] [PubMed] [Google Scholar]
- 62.Eggermont A.M., Chiarion-Sileni V., Grob J.J., Dummer R., Wolchok J.D., Schmidt H. Prolonged survival in stage III melanoma with ipilimumab adjuvant Therapy. N Engl J Med. 2016;375:1845–1855. doi: 10.1056/NEJMoa1611299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Weber J., Mandala M., Del Vecchio M., Gogas H.J., Arance A.M., Cowey C.L. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377:1824–1835. doi: 10.1056/NEJMoa1709030. [DOI] [PubMed] [Google Scholar]
- 64.Weber J., Mandalà M., Del Vecchio M., Gogas H., Arance A.M., Cowey C.L. Adjuvant therapy with nivolumab (NIVO) versus ipilimumab (IPI) after complete resection of stage III/IV melanoma: updated results from a phase III trial (CheckMate 238) J Clin Oncol. 2018;36(Suppl. 15):9502. [Google Scholar]
- 65.Antonia S.J., Villegas A., Daniel D., Vicente D.1, Murakami S.1, Hui R. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377:1919–1929. doi: 10.1056/NEJMoa1709937. [DOI] [PubMed] [Google Scholar]