Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 15;75(Pt 12):1866–1870. doi: 10.1107/S2056989019015159

Crystal structure of a new polymorph of 3-acetyl-8-meth­oxy-2H-chromen-2-one

Gabino Gonzalez-Carrillo a, Roberto Muñiz-Valencia a, Efren V García-Báez b, Francisco J Martínez-Martínez a,*
PMCID: PMC6895931  PMID: 31871747

A new polymorphic form of 3-acetyl-8-meth­oxy-2H-chromen-2-one is described and compared with the previously reported polymorph. In the crystal, hydrogen bonds, π–π inter­actions and anti­parallel C=O⋯C=O inter­actions give rise to a helical supra­molecular architecture

Keywords: crystal structure, polymorph, hydrogen bond, coumarin, 3-acetyl-8-meth­oxy-coumarin

Abstract

A new polymorphic form of the title compound, C12H10O4, is described in the ortho­rhom­bic space group Pbca and Z = 8, as compared to polymorph I, which crystallizes in the monoclinic space group C2/c and Z = 8 [Li et al. (2012). Chin. J. Struct. Chem. 31, 1003–1007.]. In polymorph II, the coumarin ring system is almost planar (r.m.s. deviation = 0.00129 Å). In the crystal, mol­ecules are connected by Csp 3—H⋯O and Car—H⋯O hydrogen bonds, forming mol­ecular sheets linked into zigzag shaped layers along the b-axis direction. The three-dimensional lattice is assembled through stacking of the zigzag layers by π–π inter­actions with a centroid-to-centroid distance of 3.600 (9) Å and anti­parallel C=O⋯C=O inter­actions with a distance of 3.1986 (17) Å, which give rise to a helical supra­molecular architecture.

Chemical context  

Derivatives of 2H-chromen-2-one are some of the most important heterocycles in natural and synthetic organic chemistry. These substances are bioactive compounds and have a wide range of applications in the medical field (Gaudino et al., 2016) showing, for example, anti-HIV, anti­mutagenic, anti­cancer and anti­tumor activities among others (Vekariya & Patel, 2014). They are synthesized using classical methodologies such as the Pechmann or Knoevenagel reactions, as well as recent methodologies such as the metathesis cyclization (Salem et al., 2018) or alkynoates cyclization (Liu et al., 2018).

The disposition of the crystalline lattices of coumarin derivatives is driven by a great variety of inter­molecular inter­actions (Santos-Contreras et al., 2009). This working group has reported the participation of π–π stacking inter­actions, hydrogen-bonding and dipole–dipole inter­actions involving the carbonyl group (Gómez-Castro et al., 2014) in the determination of the 1D, 2D and 3D supra­molecular assemblies of crystalline structures for different compounds (González-Padilla et al., 2014). This report describes the structure of a second polymorph of the title compound and the importance of C—H⋯O, C=O⋯C=O and π–π stacking inter­molecular inter­actions in crystal packing.

Structural commentary  

The title polymorph II (Fig. 1) crystallizes in the ortho­rhom­bic system, space group Pbca, with eight mol­ecules in the unit cell whereas polymorph I (Li et al., 2012) crystallizes in the monoclinic system in space group C2/c, also with eight mol­ecules in the unit cell. In polymorph II, the coumarin skeleton is almost planar (r.m.s. deviation = 0.00129 Å) with dihedral angles O1—C9—C10—C5 and C8—C9—C10—C4 of 179.20 (10) and 179.87 (11)°, respectively. In contrast, in polymorph I the benzene and lactone rings deviate slightly from planarity by 2.76 (3)°. The acetyl and meth­oxy groups of polymorph II are almost coplanar with the coumarin ring, with torsion angles C2—C3—C11—C12 = −1.25 (18)° and C14—O13—C8—C7 = −2.70 (18)°.graphic file with name e-75-01866-scheme1.jpg

Figure 1.

Figure 1

ORTEP plot of polymorph II of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

The crystal network of the title compound (polymorph II) is assembled by zigzag shaped mol­ecular layers that extend approximately in the (012) and (01Inline graphic) planes, forming an angle of 116.2°. In the flat section of the zigzag layer Inline graphic(18) motifs are formed by C6—H6⋯O2ii and C12—H12B⋯O11i hydrogen bonds (Table 1). These inter­molecular inter­actions impart stability to the 2D sheet, while weak C14—H14A⋯O2iii inter­actions generate an Inline graphic(16) motif at the inter­section of the planes (Fig. 2). Adjacent layers, separated by a distance of 3.4083 (5) Å, are connected by π–π stacking inter­actions with a centroid-to-centroid distance of 3.600 (9) Å and a slippage of 1.160 Å. In addition to the π stacking, layers are stabilized by anti­parallel C=O⋯C=O inter­actions (Allen et al., 1998) involving the acetyl group separated by a distance of 3.1986 (17) Å.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O11i 0.96 2.63 3.4255 (17) 141
C6—H6⋯O2ii 0.93 2.45 3.3808 (16) 176
C14—H14A⋯O2iii 0.96 2.68 3.4535 (18) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Packing of mol­ecules in polymorph II by C—H⋯O hydrogen bonding and the packing of parallel sheets connected via C=O⋯C=O and weak π–π inter­actions. Dotted lines depict the inter­molecular inter­actions.

The supra­molecular array of polymorph II exhibits a helical conformation, like polymorph I (Li et al., 2012). However, in polymorph II the C=O⋯C=O inter­actions form the central axis of the helix whilst π–π inter­actions between the aromatic and lactone rings, aligned in a head-to-tail conformation, control the rotation of the structure. In polymorph I, the helical axis is built by hydrogen bonds and face-to-face π–π stacking inter­actions of the benzofused rings (Fig. 3). For polymorph I, a complete rotation of the helix is performed in 11.5 Å, while in polymorph II the displacement of the helix in a whole rotation is 12.4 Å.

Figure 3.

Figure 3

Helical conformation in the packing of polymorphs I and II of 3-acetyl-8-meth­oxy-2H-chromen-2-one. Dotted lines depict inter­molecular inter­actions.

Hirshfeld surface and 2D fingerprint plots  

In order to better understand the crystal packing of both polymorphs, Hirshfeld surface analyses and 2D fingerprint plots were carried out using Crystal Explorer 17.5 (Turner et al., 2017). From the analysis of the Hirshfeld surfaces (Fig. 4), it is evident that there are differences between the chemical environments of these two identical mol­ecules. In Fig. 4, the Hirshfeld surfaces for polymorph I show a series of strong short contacts (big red dots) corresponding to hydrogen bonds stabilizing the 2D sheets. The planar areas above and below the rings are where π–π inter­actions (small red dots) take place, giving rise to the 3D network. On the other hand, polymorph II is stabilized by a short directional hydrogen bond and the sum of weak inter­actions with longer contact distances than in polymorph I. This suggests that polymorph II may be the less stable between these two phases of the title compound. To qu­anti­tatively compare polymorphs I and II in terms of their crystal packing, 2D fingerprint plots were developed and analysed. The character of the fingerprints plots for both polymorphs is similar, with small differences in the relative contributions of each type of inter­action to the Hirshfeld surface. The weak inter­actions include C⋯H (C—H⋯ π), C⋯O (C=O⋯C=O, C=O⋯π) and C⋯C (π–π), as well as short directional inter­actions such as H⋯O (Fig. 5).

Figure 4.

Figure 4

Hirshfeld surfaces for polymorphs I and II showing both sides of the mol­ecules. Red areas represent contacts shorter than the sum of the van der Waals radii, blue areas represent zones where the shortest distance between atoms is larger than the sum of van der Waals radii and white areas are zones close to the sum of van der Waals radii.

Figure 5.

Figure 5

Comparison of several inter­molecular inter­actions (blue areas) involved in the crystal packing of polymorphs I and II by decomposition of two-dimensional fingerprint plots. Green areas represent a greater abundance of close contacts and the full fingerprint appears beneath each decomposed plot as a grey shadow.

Although polymorphs I and II exhibit the same type of inter­molecular inter­actions, the way these common inter­actions contribute to the packing in each polymorph differs in each case. The minor differences in which weak inter­molecular inter­actions contribute to the formation of the crystal (Fig. 6), give rise to distinct polymorphs as suggested by Hasija & Chopra (2019). As can be seen in Fig. 6, the major forces in the crystal formation of both polymorphs are H⋯H and O⋯H inter­actions, but C⋯O and C⋯H short contacts in polymorph I make slightly bigger contributions to build the lattice, while in polymorph II, hydrogen bonding and π–π stacking contribute in greater proportions.

Figure 6.

Figure 6

Relative contributions to the Hirshfeld surface for the major inter­molecular contacts in polymorphs I and II.

Database survey  

A search of the Cambridge Structural Database (version 5.39, February 2018; Groom et al., 2016) revealed only one crystal structure of the title compound (Refcode TEBFAJ; Li et al., 2012). This structure, which we call polymorph I, is assembled by parallel flat sheets that extend along the b axis. It is worth mentioning that the acetyl coumarin without any substituent also forms at least two polymorphic forms (A and B; Munshi et al., 2004) with subtle differences in inter­molecular inter­actions, which include weak C—H⋯O and C—H⋯ π inter­actions. Form A crystallizes with head-to-head stacking being favored during nucleation, while form B prefers a head-to tail-stacking. This is similar to the two polymorphs of the title compound.

Synthesis and crystallization  

The title compound was obtained via Knoevenagel condensation. 3-Meth­oxy­salicyl­aldehyde and ethyl aceto­acetate in a 1:1 molar ratio were loaded in a flask with ethyl alcohol as solvent and piperidine as catalyst and left under stirring and reflux for 5 h. The product was filtered and washed with cold ethanol followed by recrystallization from ethanol to yield the title compound as colourless crystals, 88% yield, mp 444–447 K; IR νKBr (cm−1): 1727 (OC=O), 1682 (C=O), 1278, 1197 (C—O). NMR 1H (δ ppm, CDCl3): 8.42 (s, 1H, H-4); 7.25 (d, 1H, H-7, 3 J = 1.1, 4 J = 5.7 Hz), 7.18 (t, 1H, H-6, 3 J = 5.5, 2.0 Hz) 7.14 (d, 1H, H-5, 3 J = 2.0, 4 J = 5.7 Hz), 3.94 (s, 3H, OCH3), 2.68 (s, 3H, H-12). NMR 13C (δ ppm, CDCl3): 195.8 (C-11), 158.9 (C-2), 147.9 (C-4), 147.2 (C-8), 145.1 (C-9), 125.0 (C-5), 124.8 (C-3), 121.5 (C-6), 118.9 (C-10), 116.0 (C-7), 56.5 (OCH3), 30.8 (C-12). EA (%) calculated for C12H10O4: 66.05 C, 4.62 H; found: 66.15 C, 4.60 H.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geom­etrically and treated as riding atoms, with C—H = 0.93–0.98 Å and U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C12H10O4
M r 218.20
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 293
a, b, c (Å) 9.4973 (13), 7.9733 (11), 26.682 (4)
V3) 2020.5 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.35 × 0.30 × 0.15 (radius)
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction For a sphere [the interpolation procedure of Dwiggins (1975) was used with some modification]
T min, T max 0.861, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 15317, 2453, 1798
R int 0.045
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.116, 1.10
No. of reflections 2453
No. of parameters 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 and SHELXL97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), Mercury (Macrae et al., 2008), WinGX2003 (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019015159/dx2020sup1.cif

e-75-01866-sup1.cif (495.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989019015159/dx2020Isup3.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015159/dx2020Isup3.hkl

e-75-01866-Isup3.hkl (196.9KB, hkl)

CCDC references: 1964910, 1964913, 1964913

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Juan Pablo Mojica Sánchez for his contribution to the Hirshfeld surfaces calculation.

supplementary crystallographic information

Crystal data

C12H10O4 Dx = 1.435 Mg m3
Mr = 218.20 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 600 reflections
a = 9.4973 (13) Å θ = 20–25°
b = 7.9733 (11) Å µ = 0.11 mm1
c = 26.682 (4) Å T = 293 K
V = 2020.5 (5) Å3 Prism, colorless
Z = 8 0.40 × 0.35 × 0.30 × 0.15 (radius) mm
F(000) = 912

Data collection

Bruker APEXII area detector diffractometer 2453 independent reflections
Radiation source: fine-focus sealed tube 1798 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
φ and ω scans θmax = 28.3°, θmin = 1.5°
Absorption correction: for a sphere [the interpolation procedure of Dwiggins (1975) was used with some modification] h = −12→12
Tmin = 0.861, Tmax = 0.862 k = −10→10
15317 measured reflections l = −34→35

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.0858P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.20 e Å3
2453 reflections Δρmin = −0.19 e Å3
148 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0117 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.50500 (12) 0.47624 (16) 0.37371 (4) 0.0424 (3)
C3 0.44835 (12) 0.56358 (15) 0.41705 (4) 0.0382 (3)
C4 0.30805 (13) 0.57565 (15) 0.42255 (4) 0.0410 (3)
H4 0.272844 0.632762 0.450238 0.049*
C5 0.06405 (13) 0.51543 (17) 0.39234 (5) 0.0503 (3)
H5 0.023660 0.571130 0.419379 0.060*
C6 −0.01876 (14) 0.44331 (19) 0.35668 (6) 0.0561 (4)
H6 −0.116156 0.450497 0.359563 0.067*
C7 0.03947 (14) 0.35925 (18) 0.31610 (5) 0.0512 (4)
H7 −0.019498 0.311173 0.292263 0.061*
C8 0.18326 (13) 0.34597 (15) 0.31060 (4) 0.0410 (3)
C9 0.26746 (12) 0.42080 (14) 0.34702 (4) 0.0364 (3)
C10 0.21098 (12) 0.50478 (14) 0.38783 (4) 0.0389 (3)
C11 0.54296 (14) 0.64209 (16) 0.45541 (4) 0.0457 (3)
C12 0.69794 (15) 0.6292 (2) 0.45047 (6) 0.0645 (4)
H12A 0.724728 0.513243 0.449103 0.097*
H12B 0.742035 0.681599 0.478819 0.097*
H12C 0.727490 0.684582 0.420301 0.097*
C14 0.17018 (17) 0.1828 (2) 0.23613 (5) 0.0637 (4)
H14A 0.111460 0.262506 0.219101 0.096*
H14B 0.112261 0.099779 0.252075 0.096*
H14C 0.231370 0.129280 0.212366 0.096*
O1 0.40976 (8) 0.40859 (11) 0.34056 (3) 0.0415 (2)
O2 0.62587 (9) 0.45659 (16) 0.36291 (4) 0.0728 (4)
O11 0.49013 (11) 0.71394 (14) 0.49062 (4) 0.0688 (3)
O13 0.25265 (9) 0.26717 (11) 0.27307 (3) 0.0524 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0323 (6) 0.0528 (8) 0.0422 (6) −0.0022 (5) −0.0010 (5) −0.0078 (5)
C3 0.0384 (6) 0.0398 (7) 0.0366 (6) −0.0002 (5) 0.0004 (5) −0.0005 (5)
C4 0.0432 (7) 0.0407 (7) 0.0391 (6) 0.0040 (5) 0.0075 (5) 0.0005 (5)
C5 0.0355 (7) 0.0548 (8) 0.0608 (8) 0.0073 (6) 0.0079 (6) 0.0094 (6)
C6 0.0287 (6) 0.0638 (9) 0.0756 (9) 0.0034 (6) −0.0017 (6) 0.0203 (8)
C7 0.0383 (7) 0.0542 (8) 0.0612 (8) −0.0070 (6) −0.0140 (6) 0.0146 (7)
C8 0.0377 (7) 0.0424 (7) 0.0428 (6) −0.0039 (5) −0.0060 (5) 0.0087 (5)
C9 0.0290 (6) 0.0389 (6) 0.0413 (6) −0.0007 (5) −0.0014 (4) 0.0072 (5)
C10 0.0341 (6) 0.0387 (7) 0.0439 (6) 0.0031 (5) 0.0041 (5) 0.0075 (5)
C11 0.0530 (8) 0.0441 (7) 0.0400 (6) −0.0015 (6) −0.0030 (5) −0.0030 (5)
C12 0.0495 (8) 0.0822 (11) 0.0619 (8) −0.0103 (7) −0.0129 (7) −0.0193 (8)
C14 0.0738 (10) 0.0702 (10) 0.0472 (8) −0.0148 (8) −0.0223 (7) −0.0020 (7)
O1 0.0292 (4) 0.0548 (5) 0.0406 (4) −0.0015 (4) −0.0003 (3) −0.0094 (4)
O2 0.0288 (5) 0.1185 (10) 0.0710 (7) −0.0005 (5) 0.0019 (4) −0.0424 (7)
O11 0.0716 (7) 0.0821 (8) 0.0527 (6) 0.0059 (6) −0.0036 (5) −0.0262 (5)
O13 0.0503 (6) 0.0613 (6) 0.0455 (5) −0.0085 (4) −0.0092 (4) −0.0084 (4)

Geometric parameters (Å, º)

C2—O2 1.1940 (14) C8—O13 1.3535 (15)
C2—O1 1.3753 (14) C8—C9 1.3929 (16)
C2—C3 1.4530 (16) C9—O1 1.3659 (14)
C3—C4 1.3440 (16) C9—C10 1.3863 (16)
C3—C11 1.4991 (17) C11—O11 1.2094 (15)
C4—C10 1.4238 (17) C11—C12 1.481 (2)
C4—H4 0.9300 C12—H12A 0.9600
C5—C6 1.362 (2) C12—H12B 0.9600
C5—C10 1.4032 (17) C12—H12C 0.9600
C5—H5 0.9300 C14—O13 1.4275 (15)
C6—C7 1.388 (2) C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C8 1.3776 (17) C14—H14C 0.9600
C7—H7 0.9300
O2—C2—O1 115.19 (11) O1—C9—C8 116.70 (10)
O2—C2—C3 127.66 (11) C10—C9—C8 122.20 (11)
O1—C2—C3 117.15 (10) C9—C10—C5 118.77 (11)
C4—C3—C2 119.23 (10) C9—C10—C4 116.89 (11)
C4—C3—C11 119.32 (11) C5—C10—C4 124.34 (11)
C2—C3—C11 121.44 (10) O11—C11—C12 120.94 (12)
C3—C4—C10 122.85 (11) O11—C11—C3 118.66 (12)
C3—C4—H4 118.6 C12—C11—C3 120.40 (11)
C10—C4—H4 118.6 C11—C12—H12A 109.5
C6—C5—C10 119.27 (13) C11—C12—H12B 109.5
C6—C5—H5 120.4 H12A—C12—H12B 109.5
C10—C5—H5 120.4 C11—C12—H12C 109.5
C5—C6—C7 121.25 (12) H12A—C12—H12C 109.5
C5—C6—H6 119.4 H12B—C12—H12C 109.5
C7—C6—H6 119.4 O13—C14—H14A 109.5
C8—C7—C6 121.00 (12) O13—C14—H14B 109.5
C8—C7—H7 119.5 H14A—C14—H14B 109.5
C6—C7—H7 119.5 O13—C14—H14C 109.5
O13—C8—C7 126.67 (11) H14A—C14—H14C 109.5
O13—C8—C9 115.82 (11) H14B—C14—H14C 109.5
C7—C8—C9 117.51 (12) C9—O1—C2 122.79 (9)
O1—C9—C10 121.09 (10) C8—O13—C14 117.55 (11)
O2—C2—C3—C4 178.80 (14) O1—C9—C10—C4 −0.53 (16)
O1—C2—C3—C4 −0.59 (17) C8—C9—C10—C4 179.87 (11)
O2—C2—C3—C11 −0.5 (2) C6—C5—C10—C9 0.02 (18)
O1—C2—C3—C11 −179.90 (10) C6—C5—C10—C4 179.73 (12)
C2—C3—C4—C10 0.63 (18) C3—C4—C10—C9 −0.08 (17)
C11—C3—C4—C10 179.96 (11) C3—C4—C10—C5 −179.79 (11)
C10—C5—C6—C7 0.2 (2) C4—C3—C11—O11 0.34 (18)
C5—C6—C7—C8 0.0 (2) C2—C3—C11—O11 179.66 (12)
C6—C7—C8—O13 179.70 (11) C4—C3—C11—C12 179.43 (12)
C6—C7—C8—C9 −0.40 (18) C2—C3—C11—C12 −1.25 (18)
O13—C8—C9—O1 0.88 (15) C10—C9—O1—C2 0.57 (16)
C7—C8—C9—O1 −179.03 (10) C8—C9—O1—C2 −179.80 (11)
O13—C8—C9—C10 −179.50 (10) O2—C2—O1—C9 −179.47 (12)
C7—C8—C9—C10 0.58 (17) C3—C2—O1—C9 0.00 (16)
O1—C9—C10—C5 179.20 (10) C7—C8—O13—C14 −2.70 (18)
C8—C9—C10—C5 −0.40 (17) C9—C8—O13—C14 177.40 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12B···O11i 0.96 2.63 3.4255 (17) 141
C6—H6···O2ii 0.93 2.45 3.3808 (16) 176
C14—H14A···O2iii 0.96 2.68 3.4535 (18) 138
C4—H4···O11 0.93 2.42 2.7395 (16) 100
C12—H12A···O2 0.96 2.52 2.797 (2) 97

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1, y, z; (iii) x−1/2, y, −z+1/2.

Funding Statement

This work was funded by Consejo Nacional de Ciencia y Tecnología grant No. 364826 to G.Gonzalez-Carrillo.

References

  1. Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  2. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Gaudino, E. C., Tagliapietra, S., Martina, K., Palmisano, G. & Cravotto, G. (2016). RSC Adv. 6, 46394–46405.
  6. Gómez-Castro, C. Z., Padilla-Martínez, I. I., García-Báez, E. V., Castrejón-Flores, J. L., Peraza-Campos, A. L. & Martínez-Martínez, F. J. (2014). Molecules, 19, 14446–14460. [DOI] [PMC free article] [PubMed]
  7. González-Padilla, J. E., Rosales-Hernández, M. C., Padilla-Martínez, I. I., García-Báez, E. V., Rojas-Lima, S. & Salazar-Pereda, V. (2014). Acta Cryst. C70, 55–59. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hasija, A. & Chopra, D. (2019). Acta Cryst. C75, 451–461. [DOI] [PubMed]
  10. Li, J., Li, X. & Wang, S. (2012). Chin. J. Struct. Chem. 31, 1003–1007.
  11. Liu, Y., Wang, Q. L., Zhou, C. S., Xiong, B. Q., Zhang, P. L., Kang, S. J., Yang, C. A. & Tang, K. W. (2018). Tetrahedron Lett. 59, 2038–2041.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Munshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105–1107.
  14. Salem, M. A., Helal, M. H., Gouda, M. A., Ammar, Y. A., El-Gaby, M. S. A. & Abbas, S. Y. (2018). Synth. Commun. 48, 1534–1550.
  15. Santos-Contreras, R. J., Martínez-Martínez, F. J., Mancilla-Margalli, N. A., Peraza-Campos, A. L., Morín-Sánchez, L. M., García-Báez, E. V. & Padilla-Martínez, I. I. (2009). CrystEngComm, 11, 1451–1461.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  20. Vekariya, R. H. & Patel, H. D. (2014). Synth. Commun. 44, 2756–2788.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019015159/dx2020sup1.cif

e-75-01866-sup1.cif (495.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989019015159/dx2020Isup3.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015159/dx2020Isup3.hkl

e-75-01866-Isup3.hkl (196.9KB, hkl)

CCDC references: 1964910, 1964913, 1964913

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES