Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 5;75(Pt 12):1820–1823. doi: 10.1107/S205698901901449X

Crystal structure of 4,6-dimethyl-2-[(2,3,4,6-tetra-O-acetyl-β-d-galacto­pyranos­yl)sulfan­yl]pyrimidine

Mamdouh A Abu-Zaied a, Galal H Elgemeie b, Peter G Jones c,*
PMCID: PMC6895939  PMID: 31871737

In the title com­pound, the S atom is attached equatorially to the sugar ring. The C—S bond lengths are unequal. In the crystal, a system of three weak hydrogen bonds, sharing an oxygen acceptor, links the mol­ecules to form chains propagating parallel to the b-axis direction.

Keywords: crystal structure, galactose, pyrimidine, weak hydrogen bond

Abstract

In the title com­pound, C20H26N2O9S, the S atom is attached equatorially to the sugar ring. The C—S bond lengths are unequal, with S—Cs = 1.8018 (13) Å and S—Cp = 1.7662 (13) Å (s = sugar and p = pyrimid­yl). In the crystal, a system of three weak hydrogen bonds, sharing an oxygen acceptor, links the mol­ecules to form chains propagating parallel to the b-axis direction.

Chemical context  

Nucleosides are building blocks of biological systems and display a wide range of biological activities (Ding et al., 2003). Pyrimidine nucleoside analogues provide diverse and novel moieties for pharmacological targets, and they play basic and com­prehensive roles in the field of medicinal chemistry (Xu et al., 2017). Different strategies for the synthesis of many pyrimidine nucleoside analogues have been developed to access new and potent pharmacological agents (Cao et al., 2011). Many such derivatives are manufactured as potential chemotherapeutic agents and have a significant impact on current medicinal research (Ohkubo et al., 2012). Recently, thio­glycosides have proved to be important in the production of medically important carbohydrate com­pounds, because of their ease of preparation and chemical stability (Gourdain et al., 2011).

We have recently described the preparation of various pyrimidine and pyridine thio­glycosides that displayed antagonistic activity (Hammad et al., 2018; Elgemeie et al., 2010). We have also reported the use of di­hydro­pyridine thio­glycosides as substrates or inhibitors of protein glycosyl­ation (Scale et al., 1997; Elgemeie et al., 2015, 2016, 2017) and the use of pyrimidine thio­glycosides as anti­hepatocellular carcinoma agents (Elgemeie & Farag, 2017). Continuing our efforts to develop simple and cost-effective methodologies for the synthesis of pyrimidine thio­glycosides, we report here the one-step synthesis of a pyrimidine-2-thio­galactoside derivative by the reaction of 4,6-di­methyl­pyrimidine-2(1H)-thione (1) with 2,3,4,6-tetra-O-acetyl-α-d-galactopyranosyl bromide (2). This reaction in NaH/DMF at room temperature gave a product for which two isomeric structures seemed possible, corresponding to two possible modes of glysosylation to give the pyrimidine-N-galactoside (3) or its regioisomer pyrimidine-2-thio­galac­to­side 4 (see Scheme). Spectroscopic data cannot differentiate between these structures. It has been suggested that 1 reacts with 2 via a simple SN2 reaction to give the β-glycoside product 4 (Davis, 2000).

Structural commentary  

The crystal structure determination indicated unambiguously the formation of the pyrimidine-2-thio­galactoside, 4, as the only product in the solid state.graphic file with name e-75-01820-scheme1.jpg

The mol­ecular structure of 4 is shown in Fig. 1 (for selected torsion angles, see Table 1) and the S atom is attached equatorially to the sugar ring. Similar to the structure of a related glucose derivative (Masoud et al., 2017), the C—S bond lengths are unequal, with S—Cs = 1.8018 (13) Å and S—Cp = 1.7662 (13) Å (s = sugar and p = pyrimid­yl). The relative orientation of the pyridyl ring and the sugar moiety is defined by the torsion angles N2—C1—S1—C11 [−7.85 (12)°] and C1—S1—C11—C12 [165.01 (9)°]. All the acetyl groups show extended conformations, with absolute C—O—C—C torsion angles in the range 173–179°.

Figure 1.

Figure 1

The mol­ecular structure of the title com­pound, 4, in the crystal. Displacement ellipsoids represent 50% probability levels.

Table 1. Selected torsion angles (°).

S1—C11—C12—C13 178.21 (9) C22—C21—O4—C14 177.90 (11)
S1—C11—O1—C15 171.60 (8) C24—C23—O5—C16 178.85 (13)
C18—C17—O2—C12 176.21 (11) C15—C16—O5—C23 174.82 (12)
C20—C19—O3—C13 −173.83 (12)    

Supra­molecular features  

Some short C—H⋯O and C—H⋯S contacts are listed in Table 2, but these are at best borderline ‘weak’ hydrogen bonds, particularly in view of their narrow angles. The mol­ecular packing is thus rather featureless. However, a motif of three sugar-ring C—H groups (C13—H13, C14—H14 and C15—H15) sharing a common acceptor (O8) can be recognized (Fig. 2). Neighbouring mol­ecules are connected via the 21 operator, leading to chains of mol­ecules propagating parallel to the b-axis direction.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O9i 0.98 2.57 3.495 (2) 157
C8—H8B⋯O1ii 0.98 2.52 3.2499 (18) 131
C13—H13⋯O8iii 1.00 2.65 3.2998 (16) 123
C14—H14⋯O8iii 1.00 2.53 3.0626 (16) 113
C15—H15⋯O8iii 1.00 2.50 3.1759 (16) 124
C18—H18B⋯S1iv 0.98 2.95 3.7876 (19) 144
C22—H22C⋯O6v 0.98 2.51 3.1911 (19) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Packing diagram of 4 projected parallel to the ab plane in the region z ≃ 1. Dashed lines indicate weak C—H⋯O hydrogen bonds. H atoms not involved in this hydrogen bonding system have been omitted.

Database survey  

A search of the Cambridge Structural Database (Vwersion 2.0.0; Groom et al., 2016) for tetra­acetyl thio­glycosides with an S-bonded heterocycle [linkage S—C(—N)2, restricted to hexoses] gave one hit, a 1,2,4-triazole derivative of tetra­acetyl­glucose (refcode HEKPUL; El Ashry et al., 2018).

Synthesis and crystallization  

To a solution of pyrimidine-2(1H)-thione (1; 1.40 g, 0.01 mol) in dry DMF (20 ml), NaH (15 mmol) was added gradually over a period of 15 min and the solution was stirred at room temperature for another 30 min. A solution of 2,3,4,6-tetra-O-acetyl-α-d-galacto­pyranosyl bromide (2; 4.52 g, 0.011 mol) in DMF (20 ml) was then added dropwise over a period of 30 min and the reaction mixture was stirred at room temperature until the reaction was judged com­plete by thin-layer chromatography (3–6 h). The mixture was evaporated under reduced pressure at 333 K and the residue was washed with distilled water to remove potassium bromide. The crude solid was collected by filtration and purified using column chromatography (the solvent system was petroleum ether/ethyl acetate, 3:1 v/v; R F = 0.35); after evaporation of the solvent, this afforded com­pound 4 as colourless crystals in 85% yield (m.p. 441.2 K). IR (KBr, cm−1): ν 1752 (C=O); 1H NMR (500 MHz, DMSO-d 6): δ 2.11 (s, 12H, 4 × OAc), 2.45 (s, 6H, 2CH3), 4.01–4.12 (m, 2H, 2H-6′), 4.35–4.37 (m, 1H, H-5′), 5.21 (t, 1H, J 4′-3′ = 2.6, J 4′-5′ = 2.4 Hz, H-4′), 5.42–5.46 (m, 2H, H-3′, H-2′), 5.98 (d, 1H, J 1′-2′ = 10.65 Hz, H-1′), 7.01 (s, 1H, pyrimidine H-5); 13C NMR: δ 21.43 (4 × OAc), 22.4 (2CH3), 62.13 (C-6′), 68.41 (C-5′), 71.12 (C-4′), 74.43 (C-3′), 77.56 (C-2′), 82.12 (C-1′), 118.41 (C-5), 168.35 (C-4), 170.45 (C-6), 172.78 (4 × C=O). Analysis calculated (%) for C20H26N2O9S: C 51.06, H 5.57, N 5.95, S 6.82; found: C 51.16, H 5.46, N 5.82, S 6.75.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Methyl groups were refined as idealized rigid groups allowed to rotate but not tip (C—H = 0.98 Å and H—C—H = 109.5°). Other H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å, methyl­ene C—H = 0.99 Å and methine C—H = 1.00 Å).

Table 3. Experimental details.

Crystal data
Chemical formula C20H26N2O9S
M r 470.49
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 11.4868 (2), 8.6444 (2), 11.5561 (2)
β (°) 91.3762 (16)
V3) 1147.14 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.40 × 0.40 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.896, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 107162, 7825, 7530
R int 0.034
(sin θ/λ)max−1) 0.757
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.073, 1.04
No. of reflections 7825
No. of parameters 295
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.21
Absolute structure Flack x determined using 3355 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.003 (11)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901901449X/hb7861sup1.cif

e-75-01820-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901901449X/hb7861Isup2.hkl

e-75-01820-Isup2.hkl (621.3KB, hkl)

CCDC references: 1962352, 1962352

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

GHE would like to thank the Egyptian Academy of Scientific Research & Technology (ASRT), Jesor program, for awarding a grant.

supplementary crystallographic information

Crystal data

C20H26N2O9S F(000) = 496
Mr = 470.49 Dx = 1.362 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 11.4868 (2) Å Cell parameters from 34705 reflections
b = 8.6444 (2) Å θ = 2.5–31.9°
c = 11.5561 (2) Å µ = 0.19 mm1
β = 91.3762 (16)° T = 100 K
V = 1147.14 (4) Å3 Plate, colourless
Z = 2 0.40 × 0.40 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 7825 independent reflections
Radiation source: fine-focus sealed X-ray tube 7530 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1 Rint = 0.034
ω–scan θmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) h = −16→17
Tmin = 0.896, Tmax = 1.000 k = −13→12
107162 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1562P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
7825 reflections Δρmax = 0.34 e Å3
295 parameters Δρmin = −0.21 e Å3
1 restraint Absolute structure: Flack x determined using 3355 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.003 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.31717 (3) 0.37712 (4) 0.52391 (3) 0.01490 (7)
C1 0.20586 (11) 0.24276 (15) 0.55326 (12) 0.0142 (2)
N2 0.19449 (10) 0.18868 (14) 0.65991 (10) 0.0157 (2)
C3 0.10603 (12) 0.08858 (17) 0.67531 (12) 0.0172 (2)
C4 0.03201 (12) 0.04670 (18) 0.58372 (14) 0.0206 (3)
H4 −0.030920 −0.022627 0.594791 0.025*
C5 0.05295 (11) 0.10958 (19) 0.47507 (13) 0.0199 (3)
N6 0.14080 (10) 0.20913 (15) 0.45864 (10) 0.0171 (2)
C7 0.09350 (14) 0.0274 (2) 0.79576 (14) 0.0245 (3)
H7A 0.168605 −0.013057 0.824151 0.037*
H7B 0.035507 −0.055784 0.795217 0.037*
H7C 0.068210 0.110957 0.846639 0.037*
C8 −0.02150 (15) 0.0695 (3) 0.37087 (15) 0.0321 (4)
H8A −0.006740 0.143333 0.308590 0.048*
H8B −0.103788 0.074109 0.391103 0.048*
H8C −0.002582 −0.035284 0.344863 0.048*
C11 0.36873 (11) 0.41461 (15) 0.66971 (11) 0.0131 (2)
H11 0.375290 0.314664 0.712943 0.016*
C12 0.48727 (11) 0.49574 (15) 0.67193 (11) 0.0128 (2)
H12 0.483420 0.593888 0.626193 0.015*
C13 0.52391 (10) 0.52856 (15) 0.79714 (11) 0.0126 (2)
H13 0.543513 0.428968 0.837101 0.015*
C14 0.42901 (11) 0.61209 (15) 0.86310 (10) 0.0125 (2)
H14 0.450359 0.615925 0.947450 0.015*
C15 0.31396 (11) 0.52721 (16) 0.84512 (11) 0.0134 (2)
H15 0.320387 0.421966 0.880626 0.016*
C16 0.21073 (12) 0.61091 (19) 0.89541 (11) 0.0182 (2)
H16A 0.199582 0.712822 0.857662 0.022*
H16B 0.138732 0.549329 0.883778 0.022*
C17 0.60600 (13) 0.42066 (17) 0.51651 (12) 0.0189 (3)
C18 0.70211 (15) 0.3144 (2) 0.48332 (15) 0.0268 (3)
H18A 0.701248 0.301910 0.399020 0.040*
H18B 0.691163 0.213438 0.520012 0.040*
H18C 0.777016 0.358241 0.509150 0.040*
C19 0.70586 (11) 0.60977 (19) 0.88007 (12) 0.0195 (3)
C20 0.80074 (13) 0.7270 (2) 0.86755 (15) 0.0289 (3)
H20A 0.777357 0.824463 0.903511 0.043*
H20B 0.814694 0.744261 0.785231 0.043*
H20C 0.872252 0.688885 0.905729 0.043*
C21 0.47753 (11) 0.87850 (18) 0.87510 (11) 0.0161 (2)
C22 0.46064 (15) 1.03358 (18) 0.81936 (13) 0.0229 (3)
H22A 0.484169 1.114920 0.874164 0.034*
H22B 0.378397 1.047057 0.797118 0.034*
H22C 0.508294 1.040209 0.750322 0.034*
C23 0.15859 (13) 0.71433 (19) 1.07533 (13) 0.0219 (3)
C24 0.19319 (16) 0.7243 (3) 1.20142 (14) 0.0306 (4)
H24A 0.135476 0.785614 1.242427 0.046*
H24B 0.269721 0.773711 1.209540 0.046*
H24C 0.196923 0.619929 1.234481 0.046*
O1 0.28647 (8) 0.51166 (12) 0.72429 (8) 0.01402 (17)
O2 0.57416 (8) 0.39412 (12) 0.62726 (8) 0.01502 (18)
O3 0.62667 (8) 0.62251 (13) 0.79139 (8) 0.01642 (18)
O4 0.41523 (8) 0.76733 (12) 0.81822 (8) 0.01450 (18)
O5 0.23709 (9) 0.63008 (14) 1.01710 (9) 0.0198 (2)
O6 0.56194 (12) 0.51912 (15) 0.45620 (10) 0.0278 (2)
O7 0.69797 (10) 0.51640 (16) 0.95647 (10) 0.0266 (2)
O8 0.53897 (9) 0.85198 (13) 0.95903 (9) 0.0201 (2)
O9 0.07262 (10) 0.76925 (17) 1.03075 (11) 0.0295 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01701 (13) 0.01501 (14) 0.01247 (12) −0.00376 (11) −0.00397 (9) −0.00027 (11)
C1 0.0126 (5) 0.0123 (6) 0.0177 (5) 0.0001 (4) −0.0024 (4) −0.0023 (4)
N2 0.0156 (5) 0.0138 (5) 0.0176 (5) 0.0000 (4) −0.0019 (4) 0.0000 (4)
C3 0.0151 (5) 0.0148 (6) 0.0218 (6) 0.0007 (4) 0.0013 (4) 0.0003 (5)
C4 0.0143 (5) 0.0210 (7) 0.0265 (7) −0.0033 (5) −0.0001 (5) −0.0024 (5)
C5 0.0136 (5) 0.0224 (7) 0.0235 (6) −0.0022 (5) −0.0030 (5) −0.0043 (5)
N6 0.0144 (5) 0.0191 (6) 0.0177 (5) −0.0013 (4) −0.0037 (4) −0.0033 (4)
C7 0.0223 (6) 0.0257 (8) 0.0257 (7) −0.0023 (6) 0.0014 (5) 0.0072 (6)
C8 0.0232 (7) 0.0468 (11) 0.0260 (7) −0.0135 (7) −0.0066 (6) −0.0073 (7)
C11 0.0139 (5) 0.0129 (6) 0.0123 (5) −0.0003 (4) −0.0036 (4) −0.0004 (4)
C12 0.0139 (5) 0.0126 (6) 0.0120 (5) −0.0005 (4) −0.0026 (4) −0.0009 (4)
C13 0.0118 (5) 0.0136 (6) 0.0122 (5) −0.0016 (4) −0.0029 (4) −0.0008 (4)
C14 0.0142 (5) 0.0118 (5) 0.0114 (5) 0.0002 (4) −0.0031 (4) 0.0011 (4)
C15 0.0139 (5) 0.0149 (6) 0.0112 (5) 0.0009 (4) −0.0027 (4) 0.0009 (4)
C16 0.0159 (5) 0.0242 (7) 0.0142 (5) 0.0030 (5) −0.0017 (4) −0.0005 (5)
C17 0.0222 (6) 0.0199 (7) 0.0148 (5) −0.0085 (5) 0.0028 (4) −0.0051 (5)
C18 0.0255 (7) 0.0288 (8) 0.0266 (7) −0.0049 (6) 0.0080 (6) −0.0112 (6)
C19 0.0132 (5) 0.0263 (7) 0.0188 (6) 0.0007 (5) −0.0036 (4) −0.0079 (5)
C20 0.0169 (6) 0.0392 (10) 0.0303 (8) −0.0094 (6) −0.0020 (5) −0.0098 (7)
C21 0.0202 (5) 0.0137 (6) 0.0142 (5) −0.0009 (5) −0.0014 (4) −0.0028 (5)
C22 0.0356 (8) 0.0137 (6) 0.0189 (6) −0.0028 (6) −0.0062 (5) 0.0010 (5)
C23 0.0187 (6) 0.0250 (7) 0.0221 (6) −0.0031 (5) 0.0056 (5) −0.0031 (5)
C24 0.0286 (7) 0.0445 (11) 0.0189 (7) −0.0026 (7) 0.0045 (6) −0.0080 (7)
O1 0.0138 (4) 0.0156 (4) 0.0125 (4) 0.0015 (3) −0.0042 (3) −0.0007 (3)
O2 0.0156 (4) 0.0163 (5) 0.0131 (4) −0.0001 (3) 0.0001 (3) −0.0018 (3)
O3 0.0141 (4) 0.0201 (5) 0.0149 (4) −0.0046 (4) −0.0029 (3) −0.0025 (4)
O4 0.0195 (4) 0.0108 (4) 0.0129 (4) −0.0004 (3) −0.0055 (3) 0.0005 (3)
O5 0.0183 (4) 0.0270 (6) 0.0142 (4) 0.0031 (4) −0.0005 (3) −0.0020 (4)
O6 0.0396 (6) 0.0273 (6) 0.0167 (5) −0.0032 (5) 0.0034 (4) 0.0030 (4)
O7 0.0231 (5) 0.0330 (7) 0.0233 (5) 0.0017 (5) −0.0102 (4) 0.0011 (5)
O8 0.0243 (5) 0.0184 (5) 0.0173 (4) 0.0006 (4) −0.0076 (4) −0.0046 (4)
O9 0.0207 (5) 0.0371 (7) 0.0310 (6) 0.0060 (5) 0.0038 (4) −0.0013 (5)

Geometric parameters (Å, º)

S1—C1 1.7662 (13) C23—O9 1.201 (2)
S1—C11 1.8018 (13) C23—O5 1.3511 (18)
C1—N2 1.3275 (18) C23—C24 1.504 (2)
C1—N6 1.3414 (17) C4—H4 0.9500
N2—C3 1.3497 (18) C7—H7A 0.9800
C3—C4 1.390 (2) C7—H7B 0.9800
C3—C7 1.499 (2) C7—H7C 0.9800
C4—C5 1.394 (2) C8—H8A 0.9800
C5—N6 1.3432 (18) C8—H8B 0.9800
C5—C8 1.501 (2) C8—H8C 0.9800
C11—O1 1.4223 (15) C11—H11 1.0000
C11—C12 1.5314 (17) C12—H12 1.0000
C12—O2 1.4349 (16) C13—H13 1.0000
C12—C13 1.5239 (17) C14—H14 1.0000
C13—O3 1.4356 (15) C15—H15 1.0000
C13—C14 1.5267 (18) C16—H16A 0.9900
C14—O4 1.4460 (16) C16—H16B 0.9900
C14—C15 1.5214 (17) C18—H18A 0.9800
C15—O1 1.4305 (15) C18—H18B 0.9800
C15—C16 1.5168 (19) C18—H18C 0.9800
C16—O5 1.4409 (16) C20—H20A 0.9800
C17—O6 1.204 (2) C20—H20B 0.9800
C17—O2 1.3591 (16) C20—H20C 0.9800
C17—C18 1.493 (2) C22—H22A 0.9800
C19—O7 1.201 (2) C22—H22B 0.9800
C19—O3 1.3583 (16) C22—H22C 0.9800
C19—C20 1.498 (2) C24—H24A 0.9800
C21—O8 1.2077 (16) C24—H24B 0.9800
C21—O4 1.3584 (16) C24—H24C 0.9800
C21—C22 1.498 (2)
C1—S1—C11 99.32 (6) H7A—C7—H7C 109.5
N2—C1—N6 127.96 (13) H7B—C7—H7C 109.5
N2—C1—S1 119.85 (10) C5—C8—H8A 109.5
N6—C1—S1 112.19 (10) C5—C8—H8B 109.5
C1—N2—C3 116.07 (12) H8A—C8—H8B 109.5
N2—C3—C4 121.02 (13) C5—C8—H8C 109.5
N2—C3—C7 115.98 (13) H8A—C8—H8C 109.5
C4—C3—C7 123.00 (13) H8B—C8—H8C 109.5
C3—C4—C5 117.95 (13) O1—C11—H11 109.3
N6—C5—C4 121.56 (13) C12—C11—H11 109.3
N6—C5—C8 116.76 (14) S1—C11—H11 109.3
C4—C5—C8 121.68 (14) O2—C12—H12 110.6
C1—N6—C5 115.43 (12) C13—C12—H12 110.6
O1—C11—C12 108.80 (10) C11—C12—H12 110.6
O1—C11—S1 108.29 (8) O3—C13—H13 109.4
C12—C11—S1 111.73 (9) C12—C13—H13 109.4
O2—C12—C13 106.07 (10) C14—C13—H13 109.4
O2—C12—C11 109.85 (10) O4—C14—H14 109.9
C13—C12—C11 109.05 (10) C15—C14—H14 109.9
O3—C13—C12 105.66 (10) C13—C14—H14 109.9
O3—C13—C14 110.69 (10) O1—C15—H15 109.1
C12—C13—C14 112.20 (10) C16—C15—H15 109.1
O4—C14—C15 108.14 (10) C14—C15—H15 109.1
O4—C14—C13 109.47 (10) O5—C16—H16A 110.5
C15—C14—C13 109.39 (10) C15—C16—H16A 110.5
O1—C15—C16 105.22 (10) O5—C16—H16B 110.5
O1—C15—C14 110.44 (10) C15—C16—H16B 110.5
C16—C15—C14 113.71 (11) H16A—C16—H16B 108.7
O5—C16—C15 106.32 (10) C17—C18—H18A 109.5
O6—C17—O2 123.07 (14) C17—C18—H18B 109.5
O6—C17—C18 126.10 (14) H18A—C18—H18B 109.5
O2—C17—C18 110.82 (13) C17—C18—H18C 109.5
O7—C19—O3 123.23 (13) H18A—C18—H18C 109.5
O7—C19—C20 126.41 (14) H18B—C18—H18C 109.5
O3—C19—C20 110.37 (13) C19—C20—H20A 109.5
O8—C21—O4 123.04 (13) C19—C20—H20B 109.5
O8—C21—C22 125.63 (13) H20A—C20—H20B 109.5
O4—C21—C22 111.33 (11) C19—C20—H20C 109.5
O9—C23—O5 123.46 (14) H20A—C20—H20C 109.5
O9—C23—C24 126.07 (15) H20B—C20—H20C 109.5
O5—C23—C24 110.45 (14) C21—C22—H22A 109.5
C11—O1—C15 110.79 (9) C21—C22—H22B 109.5
C17—O2—C12 116.15 (11) H22A—C22—H22B 109.5
C19—O3—C13 117.11 (11) C21—C22—H22C 109.5
C21—O4—C14 115.54 (10) H22A—C22—H22C 109.5
C23—O5—C16 114.90 (11) H22B—C22—H22C 109.5
C3—C4—H4 121.0 C23—C24—H24A 109.5
C5—C4—H4 121.0 C23—C24—H24B 109.5
C3—C7—H7A 109.5 H24A—C24—H24B 109.5
C3—C7—H7B 109.5 C23—C24—H24C 109.5
H7A—C7—H7B 109.5 H24A—C24—H24C 109.5
C3—C7—H7C 109.5 H24B—C24—H24C 109.5
C11—S1—C1—N2 −7.85 (12) C12—C13—C14—C15 49.77 (14)
C11—S1—C1—N6 171.73 (10) O4—C14—C15—O1 63.93 (13)
N6—C1—N2—C3 −0.6 (2) C13—C14—C15—O1 −55.22 (14)
S1—C1—N2—C3 178.90 (10) O4—C14—C15—C16 −54.09 (13)
C1—N2—C3—C4 −0.2 (2) C13—C14—C15—C16 −173.24 (11)
C1—N2—C3—C7 179.87 (13) O1—C15—C16—O5 −179.18 (11)
N2—C3—C4—C5 0.9 (2) C14—C15—C16—O5 −58.19 (14)
C7—C3—C4—C5 −179.23 (15) C12—C11—O1—C15 −66.76 (12)
C3—C4—C5—N6 −0.8 (2) S1—C11—O1—C15 171.60 (8)
C3—C4—C5—C8 179.22 (15) C16—C15—O1—C11 −171.37 (11)
N2—C1—N6—C5 0.7 (2) C14—C15—O1—C11 65.52 (13)
S1—C1—N6—C5 −178.84 (10) O6—C17—O2—C12 −2.78 (19)
C4—C5—N6—C1 0.1 (2) C18—C17—O2—C12 176.21 (11)
C8—C5—N6—C1 −179.96 (14) C13—C12—O2—C17 −140.59 (11)
C1—S1—C11—O1 −75.17 (9) C11—C12—O2—C17 101.70 (12)
C1—S1—C11—C12 165.01 (9) O7—C19—O3—C13 6.0 (2)
O1—C11—C12—O2 174.55 (9) C20—C19—O3—C13 −173.83 (12)
S1—C11—C12—O2 −65.93 (12) C12—C13—O3—C19 −150.10 (11)
O1—C11—C12—C13 58.70 (13) C14—C13—O3—C19 88.21 (13)
S1—C11—C12—C13 178.21 (9) O8—C21—O4—C14 −1.39 (18)
O2—C12—C13—O3 69.45 (12) C22—C21—O4—C14 177.90 (11)
C11—C12—C13—O3 −172.30 (10) C15—C14—O4—C21 146.97 (11)
O2—C12—C13—C14 −169.84 (10) C13—C14—O4—C21 −93.93 (12)
C11—C12—C13—C14 −51.59 (14) O9—C23—O5—C16 0.4 (2)
O3—C13—C14—O4 49.20 (13) C24—C23—O5—C16 178.85 (13)
C12—C13—C14—O4 −68.56 (13) C15—C16—O5—C23 174.82 (12)
O3—C13—C14—C15 167.53 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7C···O9i 0.98 2.57 3.495 (2) 157
C8—H8B···O1ii 0.98 2.52 3.2499 (18) 131
C13—H13···O8iii 1.00 2.65 3.2998 (16) 123
C14—H14···O8iii 1.00 2.53 3.0626 (16) 113
C15—H15···O8iii 1.00 2.50 3.1759 (16) 124
C18—H18B···S1iv 0.98 2.95 3.7876 (19) 144
C22—H22C···O6v 0.98 2.51 3.1911 (19) 127

Symmetry codes: (i) −x, y−1/2, −z+2; (ii) −x, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+2; (iv) −x+1, y−1/2, −z+1; (v) −x+1, y+1/2, −z+1.

References

  1. Cao, S., Okamoto, I., Tsunoda, H., Ohkubo, A., Seio, K. & Sekine, M. (2011). Tetrahedron Lett. 52, 407–410.
  2. Davis, B. G. (2000). J. Chem. Soc. Perkin Trans. 1, 14, 2137–2160.
  3. Ding, Y., Hofstadler, S. A., Swayze, E. E., Risen, L. & Griffey, R. H. (2003). Angew. Chem. Int. Ed. 42, 3409–3412. [DOI] [PubMed]
  4. El Ashry El, S. H., Awad, L. F., Al Moaty, M. N. A., Ghabbour, H. A. & Barakwat, A. (2018). J. Mol. Struct. 1152, 87–95.
  5. Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides, 34, 659–673. [DOI] [PubMed]
  6. Elgemeie, G. H., Abu-Zaied, M. A. & Azzam, R. (2016). Nucleosides Nucleotides, 35, 211–222. [DOI] [PubMed]
  7. Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017). Tetrahedron, 73, 5853–5861.
  8. Elgemeie, G. H. & Farag, A. B. (2017). Nucleosides Nucleotides, 36, 328–342. [DOI] [PubMed]
  9. Elgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. Teil C, 65, 577–587. [DOI] [PubMed]
  10. Gourdain, S., Petermann, C., Martinez, A., Harakat, D. & Clivio, P. (2011). J. Org. Chem. 76, 1906–1909. [DOI] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Hammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853–856. [DOI] [PMC free article] [PubMed]
  13. Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst E73, 1751–1754. [DOI] [PMC free article] [PubMed]
  14. Ohkubo, A., Nishino, Y., Ito, Y., Tsunoda, H., Seio, K. & Sekine, M. (2012). Org. Biomol. Chem. 10, 2008–2010. [DOI] [PubMed]
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  17. Scale, S., Akhmed, N., Rao, U. S., Paul, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024–1033. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Siemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
  21. Xu, J., Tsanakopoulou, M., Magnani, C. J., Szabla, R., Šponer, J. E., Šponer, J., Góra, R. W. & Sutherland, J. D. (2017). Nat. Chem. 9, 303–309. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901901449X/hb7861sup1.cif

e-75-01820-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901901449X/hb7861Isup2.hkl

e-75-01820-Isup2.hkl (621.3KB, hkl)

CCDC references: 1962352, 1962352

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES