Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 19;75(Pt 12):1888–1891. doi: 10.1107/S205698901901538X

The varied structures of cobalt(II)–pyridine (py)–sulfate: [Co(SO4)(py)4]n, [Co2(SO4)2(py)6]n, and [Co3(SO4)3(py)11]n

Ava M Park a, Duyen N K Pham b, James A Golen b, David R Manke b,*
PMCID: PMC6895941  PMID: 31871752

The crystal structures of two new forms of cobalt–pyridine–sulfate complexes are presented. The feature infinite chains of metal–pyridine units connected by bridging sulfate anions, which are distinct from the only previously reported structure of a cobalt–pyridine–sulfate compound.

Keywords: crystal structure, pyridine, sulfate, transition metals, crystal field theory, coordination chemistry, cobalt complexes

Abstract

The solid-state structures of two cobalt–pyridine–sulfate compounds, namely catena-poly[[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ2 O:O′], [Co(SO4)(C5H5N)4]n, (1), and catena-poly[[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ3 O:O′,O′′-[bis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ3 O,O′:O′′]n, [Co2(SO4)2(C5H5N)6]n, (2), are reported. Compound (1) displays a polymeric structure, with infinite chains of CoII cations adopting octa­hedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ions. Compound (2) is also polymeric with infinite chains of CoII cations. The first Co center has an octa­hedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The second Co center has an octa­hedral N2O4 coordination environment that involves two pyridine ligands and two bridging sulfate ions that chelate the Co atom. The structure of (2) was refined as a two-component inversion twin.

Chemical context  

The synthesis of metal–pyrdine–sulfates has been reported since the 19th century, when Jørgensen’s chain theory was still the prevailing hypothesis (Reitzenstein, 1894; Howe, 1898). Since that time, the structural understanding of metal complexes has greatly increased, first with the acceptance of Werner’s coordination theory (Werner, 1893), with crystal field theory from Bethe in 1929 (Bethe, 1929), and the modifications of theory in the ninety years since. Despite the long history of these compounds, their crystallographic study is rather limited. Before we began a crystallographic examination of metal–pyridine–sulfates in 2018, there were only two examples of such complexes without other ligands or components reported in the literature (Cotton & Reid, 1984; Memon et al., 2006).

Since we began studying the structural chemistry of metal–pyridine–sulfates, we have observed many different structural motifs in the complexes. The coordination environment of each compound can usually be predicted with crystal field theory, although the exact nature is dependent upon the number of pyridines bound and the binding mode of the sulfate anion. The sulfate anion can have a number of different coordination modes, including μ-sulfato-κ2-O:O, μ-sulfato-κ2-O:O′ and μ-sulfato-κ3-O:O′:O". Herein we report two new structures of cobalt–pyridine–sulfates formed by altering the growth conditions and compare these structures with the previously reported structure of a cobalt–pyridine–sulfate and the structures of related complexes.graphic file with name e-75-01888-scheme1.jpg

Structural commentary  

The asymmetric unit of the pink crystals of (1) consists of two pyridine mol­ecules and one half of a sulfate anion coordinated to a cobalt atom sitting on an inversion center (Fig. 1 a). When grown out, the cobalt ion shows an octa­hedral coordination environment (Fig. 1 b). The equatorial positions of the octa­hedron are occupied by four pyridine ligands in a square-planar arrangement. The CoN4 unit exhibits planarity enforced by symmetry, with cis N—Co—N angles of 86.45 (6) and 93.55 (6)°. To complete the octa­hedron, the axial positions are occupied by two sulfate ions, with an inversion enforced O—Co—O angle of 180° and cis O—Co—N angles of 88.87 (6) and 91.67 (6)°. The pyridine rings are rotated from the CoN4 plane by dihedral angles of 47.30 (10) and 78.33 (9)°. The 78.33 (9)° angles are constrained by two C—H⋯O inter­actions between the ortho hydrogen atoms and the two trans sulfates (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of compound (1), including (a) the asymmetric unit and (b) the coordination environment around Co1. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. C—H⋯O inter­actions (Table 1) are shown as dashed lines. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 1 − y, −Inline graphic + z; (iii) 1 − x, y, Inline graphic − z].

Table 1. Hydrogen-bond geometry (Å, °) for (1) .

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.93 2.51 3.106 (2) 122
C6—H6A⋯O2i 0.93 2.51 3.429 (3) 171
C10—H10A⋯O1 0.93 2.48 3.046 (2) 120
C10—H10A⋯O2ii 0.93 2.43 3.353 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The asymmetric unit of the purple crystals of (2) consists of two cobalt atoms, six coordinated pyridines and two sulfate anions (Fig. 2 a). There are two crystallographically unique cobalt atoms, with Co1 (Fig. 2 b) displaying an octa­hedral N4O2 coordination environment and Co2 (Fig. 2 c) exhibiting an octa­hedral N2O4 coordination geometry.

Figure 2.

Figure 2

The mol­ecular structure of compound (2), including (a) the asymmetric unit, (b) the coordination environment around Co1, and (c) the coordination environment around Co2. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. C—H⋯O inter­actions (Table 2) are shown as dashed lines. [Symmetry code: (i) −1 + x, −1 + y, −1 + z].

Co1 has four pyridine ligands occupying the equatorial positions of an octa­hedron, with the CoN4 plane showing a maximum deviation from planarity of 0.018 Å. Two sulfate anions occupy the axial positions to complete the octa­hedral coordination. The cis N—Co—N angles have values ranging from 87.48 (13) to 93.18 (12)°, and the trans O—Co—O angle is 173.43 (12)°. The planes of the four pyridine rings are rotated from the equatorial CoN4 plane by dihedral angles of 58.6 (2), 64.6 (2), 65.6 (2), and 73.1 (2)°. Two of the rings show one C—H⋯O inter­action with an ortho hydrogen atom, one ring shows two C—H⋯O inter­actions with two ortho hydrogen atoms, and the fourth ring shows no C—H⋯O inter­actions (Table 2).

Table 2. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O6 0.95 2.63 3.563 (6) 167
C2—H2A⋯O2i 0.95 2.52 3.219 (5) 131
C5—H5A⋯O4 0.95 2.42 3.009 (5) 120
C6—H6A⋯O5 0.95 2.56 3.054 (5) 112
C6—H6A⋯O7 0.95 2.47 3.322 (6) 149
C10—H10A⋯O4 0.95 2.53 3.010 (5) 112
C12—H12A⋯O7ii 0.95 2.60 3.271 (5) 128
C15—H15A⋯O5 0.95 2.45 3.017 (5) 118
C16—H16A⋯O2 0.95 2.19 3.139 (6) 176
C20—H20A⋯O5 0.95 2.51 3.091 (5) 119
C20—H20A⋯O6 0.95 2.32 3.272 (5) 175
C25—H25A⋯O8 0.95 2.55 3.162 (5) 123
C30—H30A⋯O7 0.95 2.54 3.116 (5) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Co2 is bound by two pyridine ligands and two chelating sulfate anions to give an octa­hedral coordination environment. The pyridine rings adopt a cis configuration, with an N—Co—N angle of 93.63 (13)°. The two sulfate ligands exhibit O—Co—O bite angles of 65.90 (10) and 66.37 (10)°. The other cis O—Co—O angles are 86.87 (11), 98.98 (11), and 102.84 (11)°, and the six cis N—Co—O angles range from 92.49 (12) to 98.33 (13)°. Each pyridine ring is involved in ortho C—H⋯O inter­actions (Table 2).

Supra­molecular features  

The CoII atoms in compound (1) are linked together into infinite chains along the [001] direction through sulfate anions with O—S—O bridges (Figs. 3 a, 4 a). Between each successive tetra­pyridine cobalt unit, there are parallel slipped π–π inter­actions [inter-centroid distance: 3.637 (1) Å, inter-planar distance: 3.611 (1) Å, slippage: 0.435 (1) Å].

Figure 3.

Figure 3

The infinite chains of (a) compound (1) along [001], (b) compound (2) along [111], and (c) the previously reported cobalt–pyridine-sulfate complex [Co3(SO4)3(C5H5N)11]n along [001] (Pham et al., 2019). Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. The π–π inter­actions in (1) are shown as dashed lines.

Figure 4.

Figure 4

The packing of (a) compound (1) along the c-axis and (b) compound (2) along the b-axis. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

The CoII atoms in compound (2) are linked together into infinite chains along the [111] direction through the sulfate anions (Figs. 3 b, 4 b). The chain alternates between tetra­pyridine cobalt units and di­pyridine cobalt units. No π–π inter­actions are observed in the crystal.

Database survey  

In a prior publication, we reported the structure of another cobalt–pyridine–sulfate [Co3(SO4)3(C5H5N)11)]n, which was grown at a lower concentration of cobalt. This structure shows two successive octa­hedral cobalt atoms with N4O2 coordination, where each atom is coordinated to four pyridines and two bridging sulfates. The third cobalt atom in the chain shows N3O3 coordination where three pyridines are bound and there are two sulfates bound, one of which is chelating to the cobalt (Pham et al., 2018). Fig. 3 compares the chain structure of this complex with those of compounds (1) and (2). In compound (1), every cobalt atom possesses an octa­hedral N4O2 coord­in­ation. This complex is isostructural with the structure observed for the iron and nickel pyridine–sulfate complexes (Roy et al., 2018). This structural motif is also consistent with that observed for the 4-picoline–sulfate structures of iron, cobalt, nickel and cadmium (Pham et al., 2019). In compound (2), the cobalt atoms alternate between N4O2 coordination and N2O4 coordination. This tetra­pyridine/bi­pyridine alternation is similar to what is observed in the zinc–pyridine–sulfate structure, which alternates between octa­hedral and tetra­hedral zinc centers. In the case of cobalt, the bis­(pyridine) cobalt center is still octa­hedral because the two coordinated sulfates both chelate to the cobalt. The end result is an infinite chain of octa­hedral cobalt atoms, which is true in compound (1) and the previously reported cobalt–pyridine–sulfate complex. The methane­sulfato complexes of cobalt (II) have also been reported as octa­hedral tetra­kis­(pyridine), [Co(SO3CH3)2(py)4], and octa­hedral bis­(pyridine), [Co(SO3CH3)2(py)2], compounds, consistent with the two independent cobalt centers observed in (2) (Johnson et al., 1977).

Synthesis and crystallization  

For compound (1), 40 mg of cobalt sulfate hepta­hydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (100 µL) in a 20 mL vial. The vial was heated to 338 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.

For compound (2), 48 mg of cobalt sulfate hepta­hydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (30 µL) in a 20 mL vial. The vial was heated to 358 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All structure solutions were obtained by intrinsic phasing. All non-hydrogen atoms were refined anisotropically (SHELXL) by full-matrix least squares on F 2. Hydrogen atoms were placed in calculated positions and then refined with a riding model with C—H bond lengths of 0.95 Å and with isotropic displacement parameters set to 1.20 U eq of the parent C atom. The structre of (2) was refined as a two-component inversion twin, BASF = 0.165 (13).

Table 3. Experimental details.

  (1) (2)
Crystal data
Chemical formula [Co(SO4)(C5H5N)4] [Co2(SO4)2(C5H5N)6]
M r 471.39 784.58
Crystal system, space group Monoclinic, C2/c Triclinic, P1
Temperature (K) 295 200
a, b, c (Å) 18.6323 (18), 10.0803 (9), 11.9403 (11) 9.5795 (6), 9.7612 (5), 10.7219 (6)
α, β, γ (°) 90, 115.945 (3), 90 98.488 (2), 107.697 (2), 115.948 (2)
V3) 2016.6 (3) 811.46 (8)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.99 1.21
Crystal size (mm) 0.28 × 0.13 × 0.06 0.25 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker APEXIII CMOS Bruker APEXIII photon2
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.667, 0.745 0.661, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 20212, 1854, 1572 22679, 6013, 5906
R int 0.071 0.026
(sin θ/λ)max−1) 0.604 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.063, 1.02 0.026, 0.072, 1.03
No. of reflections 1854 6013
No. of parameters 139 434
No. of restraints 0 3
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.24 0.79, −0.30
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.165 (13)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, I. DOI: 10.1107/S205698901901538X/sj5586sup1.cif

e-75-01888-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S205698901901538X/sj55861sup2.hkl

e-75-01888-1sup2.hkl (149.5KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698901901538X/sj55862sup3.hkl

e-75-01888-2sup3.hkl (477.9KB, hkl)

CCDC references: 1965662, 1965663, 1965662, 1965663

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Crystal data

[Co(SO4)(C5H5N)4] F(000) = 972
Mr = 471.39 Dx = 1.553 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 18.6323 (18) Å Cell parameters from 8333 reflections
b = 10.0803 (9) Å θ = 3.3–25.3°
c = 11.9403 (11) Å µ = 0.99 mm1
β = 115.945 (3)° T = 295 K
V = 2016.6 (3) Å3 BLOCK, pink
Z = 4 0.28 × 0.13 × 0.06 mm

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Data collection

Bruker APEXIII CMOS diffractometer 1572 reflections with I > 2σ(I)
φ and ω scans Rint = 0.071
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 25.4°, θmin = 3.3°
Tmin = 0.667, Tmax = 0.745 h = −22→22
20212 measured reflections k = −12→12
1854 independent reflections l = −14→14

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.4084P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.24 e Å3
1854 reflections Δρmin = −0.24 e Å3
139 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0019 (3)

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.5000 0.5000 0.5000 0.02070 (13)
O1 0.49333 (8) 0.59836 (16) 0.64714 (13) 0.0406 (4)
O2 0.57186 (9) 0.76549 (16) 0.79112 (15) 0.0433 (4)
N1 0.45647 (10) 0.32138 (17) 0.55318 (15) 0.0305 (4)
N2 0.37320 (9) 0.55056 (17) 0.38523 (14) 0.0257 (4)
C1 0.39850 (16) 0.3286 (3) 0.5901 (2) 0.0503 (7)
H1A 0.3780 0.4116 0.5942 0.060*
C2 0.36775 (18) 0.2191 (3) 0.6224 (3) 0.0649 (8)
H2A 0.3265 0.2285 0.6457 0.078*
C3 0.39806 (18) 0.0971 (3) 0.6200 (2) 0.0594 (8)
H3A 0.3780 0.0216 0.6410 0.071*
C4 0.45897 (19) 0.0885 (3) 0.5858 (3) 0.0582 (7)
H4A 0.4823 0.0069 0.5857 0.070*
C5 0.48541 (15) 0.2016 (2) 0.5514 (2) 0.0448 (6)
H5A 0.5257 0.1937 0.5257 0.054*
C6 0.33165 (12) 0.4887 (2) 0.2775 (2) 0.0360 (5)
H6A 0.3577 0.4259 0.2513 0.043*
C7 0.25194 (13) 0.5129 (3) 0.2028 (2) 0.0469 (6)
H7A 0.2255 0.4687 0.1274 0.056*
C8 0.21197 (12) 0.6030 (2) 0.2410 (2) 0.0404 (6)
H8A 0.1584 0.6218 0.1919 0.048*
C9 0.25326 (12) 0.6644 (2) 0.3534 (2) 0.0370 (5)
H9A 0.2276 0.7240 0.3832 0.044*
C10 0.33304 (12) 0.6372 (2) 0.42193 (19) 0.0331 (5)
H10A 0.3605 0.6809 0.4974 0.040*
S1 0.5000 0.68569 (6) 0.7500 0.01886 (16)

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0187 (2) 0.0246 (2) 0.0198 (2) 0.00353 (15) 0.00935 (15) −0.00111 (15)
O1 0.0358 (8) 0.0582 (11) 0.0268 (8) 0.0111 (8) 0.0128 (6) −0.0138 (7)
O2 0.0303 (8) 0.0391 (9) 0.0562 (10) −0.0150 (7) 0.0148 (7) 0.0026 (8)
N1 0.0321 (9) 0.0314 (10) 0.0290 (9) 0.0009 (8) 0.0141 (8) 0.0004 (8)
N2 0.0212 (8) 0.0300 (9) 0.0261 (9) 0.0040 (7) 0.0105 (7) 0.0013 (7)
C1 0.0583 (16) 0.0482 (16) 0.0638 (16) 0.0080 (13) 0.0445 (14) 0.0116 (13)
C2 0.0691 (19) 0.070 (2) 0.079 (2) −0.0043 (16) 0.0536 (17) 0.0158 (16)
C3 0.083 (2) 0.0493 (17) 0.0534 (16) −0.0231 (15) 0.0364 (15) 0.0029 (13)
C4 0.085 (2) 0.0324 (14) 0.0665 (18) −0.0050 (13) 0.0420 (16) −0.0024 (13)
C5 0.0510 (14) 0.0351 (13) 0.0563 (15) −0.0006 (11) 0.0309 (12) 0.0000 (11)
C6 0.0268 (11) 0.0426 (13) 0.0359 (11) 0.0071 (10) 0.0114 (9) −0.0080 (10)
C7 0.0286 (12) 0.0580 (16) 0.0401 (13) 0.0042 (11) 0.0021 (10) −0.0160 (12)
C8 0.0214 (11) 0.0496 (14) 0.0440 (13) 0.0096 (10) 0.0085 (10) 0.0030 (11)
C9 0.0304 (11) 0.0438 (14) 0.0399 (12) 0.0135 (10) 0.0183 (10) 0.0025 (10)
C10 0.0282 (11) 0.0406 (12) 0.0289 (11) 0.0058 (9) 0.0110 (9) −0.0033 (9)
S1 0.0181 (3) 0.0204 (3) 0.0206 (3) 0.000 0.0108 (3) 0.000

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Geometric parameters (Å, º)

Co1—O1i 2.0679 (13) C3—C4 1.367 (4)
Co1—O1 2.0679 (13) C3—H3A 0.9300
Co1—N1 2.1803 (17) C4—C5 1.373 (3)
Co1—N1i 2.1803 (17) C4—H4A 0.9300
Co1—N2 2.2105 (15) C5—H5A 0.9300
Co1—N2i 2.2105 (15) C6—C7 1.379 (3)
O1—S1 1.4715 (14) C6—H6A 0.9300
O2—S1 1.4511 (14) C7—C8 1.373 (3)
N1—C5 1.327 (3) C7—H7A 0.9300
N1—C1 1.335 (3) C8—C9 1.368 (3)
N2—C6 1.331 (3) C8—H8A 0.9300
N2—C10 1.342 (2) C9—C10 1.375 (3)
C1—C2 1.373 (4) C9—H9A 0.9300
C1—H1A 0.9300 C10—H10A 0.9300
C2—C3 1.359 (4) S1—O2ii 1.4511 (14)
C2—H2A 0.9300 S1—O1ii 1.4715 (14)
O1i—Co1—O1 180.0 C2—C3—H3A 121.0
O1i—Co1—N1 91.13 (6) C4—C3—H3A 121.0
O1—Co1—N1 88.87 (6) C3—C4—C5 119.3 (3)
O1i—Co1—N1i 88.87 (6) C3—C4—H4A 120.3
O1—Co1—N1i 91.13 (6) C5—C4—H4A 120.3
N1—Co1—N1i 180.0 N1—C5—C4 123.3 (2)
O1i—Co1—N2 91.66 (6) N1—C5—H5A 118.3
O1—Co1—N2 88.34 (6) C4—C5—H5A 118.3
N1—Co1—N2 86.45 (6) N2—C6—C7 123.24 (19)
N1i—Co1—N2 93.55 (6) N2—C6—H6A 118.4
O1i—Co1—N2i 88.33 (6) C7—C6—H6A 118.4
O1—Co1—N2i 91.67 (6) C8—C7—C6 119.3 (2)
N1—Co1—N2i 93.55 (6) C8—C7—H7A 120.3
N1i—Co1—N2i 86.45 (6) C6—C7—H7A 120.3
N2—Co1—N2i 180.0 C9—C8—C7 118.1 (2)
S1—O1—Co1 168.95 (11) C9—C8—H8A 120.9
C5—N1—C1 116.6 (2) C7—C8—H8A 120.9
C5—N1—Co1 122.80 (14) C8—C9—C10 119.39 (19)
C1—N1—Co1 120.61 (16) C8—C9—H9A 120.3
C6—N2—C10 116.66 (17) C10—C9—H9A 120.3
C6—N2—Co1 120.20 (13) N2—C10—C9 123.22 (19)
C10—N2—Co1 123.03 (13) N2—C10—H10A 118.4
N1—C1—C2 123.1 (2) C9—C10—H10A 118.4
N1—C1—H1A 118.5 O2—S1—O2ii 112.67 (14)
C2—C1—H1A 118.5 O2—S1—O1 110.03 (9)
C3—C2—C1 119.5 (2) O2ii—S1—O1 108.71 (8)
C3—C2—H2A 120.2 O2—S1—O1ii 108.71 (8)
C1—C2—H2A 120.2 O2ii—S1—O1ii 110.03 (9)
C2—C3—C4 118.1 (2) O1—S1—O1ii 106.52 (14)
C5—N1—C1—C2 −1.5 (4) N2—C6—C7—C8 −1.4 (4)
Co1—N1—C1—C2 178.7 (2) C6—C7—C8—C9 −0.7 (4)
N1—C1—C2—C3 1.5 (5) C7—C8—C9—C10 1.9 (3)
C1—C2—C3—C4 0.4 (5) C6—N2—C10—C9 −0.8 (3)
C2—C3—C4—C5 −2.1 (4) Co1—N2—C10—C9 −176.96 (16)
C1—N1—C5—C4 −0.3 (4) C8—C9—C10—N2 −1.2 (3)
Co1—N1—C5—C4 179.4 (2) Co1—O1—S1—O2 −16.8 (5)
C3—C4—C5—N1 2.2 (4) Co1—O1—S1—O2ii 107.0 (5)
C10—N2—C6—C7 2.1 (3) Co1—O1—S1—O1ii −134.5 (5)
Co1—N2—C6—C7 178.36 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2.

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O1i 0.93 2.51 3.106 (2) 122
C6—H6A···O2i 0.93 2.51 3.429 (3) 171
C10—H10A···O1 0.93 2.48 3.046 (2) 120
C10—H10A···O2ii 0.93 2.43 3.353 (3) 171

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2.

(2). Crystal data

[Co(SO4)2(C5H6N)6] Z = 1
Mr = 784.58 F(000) = 402
Triclinic, P1 Dx = 1.606 Mg m3
a = 9.5795 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7612 (5) Å Cell parameters from 9920 reflections
c = 10.7219 (6) Å θ = 2.6–25.7°
α = 98.488 (2)° µ = 1.21 mm1
β = 107.697 (2)° T = 200 K
γ = 115.948 (2)° PLATE, purple
V = 811.46 (8) Å3 0.25 × 0.20 × 0.02 mm

(2). Data collection

Bruker APEXIII photon2 diffractometer 5906 reflections with I > 2σ(I)
φ and ω scans Rint = 0.026
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 25.7°, θmin = 3.1°
Tmin = 0.661, Tmax = 0.745 h = −11→11
22679 measured reflections k = −11→11
6013 independent reflections l = −13→13

(2). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.1142P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.79 e Å3
6013 reflections Δρmin = −0.29 e Å3
434 parameters Absolute structure: Refined as an inversion twin
3 restraints Absolute structure parameter: 0.165 (13)

(2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin. BASF 0.16482

(2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.84425 (5) 0.55261 (5) 0.61510 (4) 0.01356 (12)
Co2 0.24785 (6) 0.13866 (6) 0.10725 (5) 0.01665 (13)
S1 1.17468 (11) 0.89862 (10) 0.89114 (9) 0.01596 (19)
S2 0.51931 (11) 0.19943 (10) 0.33225 (9) 0.0164 (2)
O1 1.1869 (4) 0.8903 (3) 1.0308 (3) 0.0257 (6)
O2 1.3166 (4) 0.9028 (4) 0.8658 (4) 0.0307 (7)
O3 1.1721 (4) 1.0501 (3) 0.8887 (3) 0.0241 (6)
O4 1.0118 (3) 0.7597 (3) 0.7855 (3) 0.0244 (6)
O5 0.6576 (4) 0.3553 (3) 0.4393 (3) 0.0217 (6)
O6 0.5406 (4) 0.0691 (4) 0.3655 (3) 0.0301 (7)
O7 0.3509 (3) 0.1777 (3) 0.3224 (3) 0.0223 (6)
O8 0.5184 (4) 0.2064 (4) 0.1943 (3) 0.0230 (6)
N1 0.7283 (4) 0.4360 (4) 0.7445 (4) 0.0204 (7)
N2 0.6741 (4) 0.6487 (4) 0.5820 (4) 0.0215 (7)
N3 0.9613 (4) 0.6672 (4) 0.4849 (3) 0.0200 (7)
N4 1.0052 (4) 0.4460 (4) 0.6447 (3) 0.0176 (7)
N5 0.3110 (5) 0.3784 (4) 0.1165 (4) 0.0246 (7)
N6 0.0033 (4) 0.0704 (4) 0.0989 (4) 0.0229 (7)
C1 0.6334 (6) 0.2757 (5) 0.7094 (5) 0.0272 (9)
H1A 0.6163 0.2109 0.6247 0.033*
C2 0.5587 (6) 0.1993 (6) 0.7905 (5) 0.0336 (10)
H2A 0.4927 0.0850 0.7619 0.040*
C3 0.5820 (6) 0.2929 (7) 0.9138 (5) 0.0369 (11)
H3A 0.5347 0.2447 0.9728 0.044*
C4 0.6773 (6) 0.4601 (7) 0.9487 (5) 0.0370 (11)
H4A 0.6929 0.5281 1.0310 0.044*
C5 0.7486 (6) 0.5257 (5) 0.8629 (4) 0.0286 (9)
H5A 0.8152 0.6397 0.8889 0.034*
C6 0.5027 (6) 0.5482 (6) 0.5237 (5) 0.0306 (10)
H6A 0.4581 0.4352 0.4991 0.037*
C7 0.3906 (7) 0.6036 (7) 0.4988 (6) 0.0488 (15)
H7A 0.2711 0.5296 0.4589 0.059*
C8 0.4526 (8) 0.7670 (8) 0.5321 (7) 0.0532 (16)
H8A 0.3771 0.8074 0.5150 0.064*
C9 0.6240 (8) 0.8687 (7) 0.5899 (6) 0.0464 (14)
H9A 0.6701 0.9819 0.6137 0.056*
C10 0.7326 (6) 0.8065 (6) 0.6143 (5) 0.0296 (10)
H10A 0.8524 0.8793 0.6554 0.036*
C11 1.0601 (5) 0.8273 (5) 0.5168 (4) 0.0246 (9)
H11A 1.0821 0.8958 0.6019 0.030*
C12 1.1313 (6) 0.8974 (6) 0.4317 (5) 0.0316 (10)
H12A 1.1984 1.0113 0.4572 0.038*
C13 1.1031 (6) 0.7992 (7) 0.3097 (5) 0.0355 (11)
H13A 1.1498 0.8437 0.2491 0.043*
C14 1.0062 (6) 0.6355 (6) 0.2778 (5) 0.0354 (11)
H14A 0.9873 0.5649 0.1953 0.042*
C15 0.9365 (5) 0.5741 (5) 0.3658 (5) 0.0277 (9)
H15A 0.8676 0.4604 0.3410 0.033*
C16 1.1720 (6) 0.5345 (6) 0.7278 (6) 0.0349 (11)
H16A 1.2212 0.6471 0.7689 0.042*
C17 1.2763 (6) 0.4698 (7) 0.7568 (6) 0.0461 (14)
H17A 1.3939 0.5371 0.8169 0.055*
C18 1.2079 (7) 0.3067 (7) 0.6978 (6) 0.0444 (13)
H18A 1.2760 0.2588 0.7180 0.053*
C19 1.0382 (7) 0.2158 (6) 0.6090 (6) 0.0429 (13)
H19A 0.9879 0.1040 0.5632 0.051*
C20 0.9411 (6) 0.2882 (5) 0.5866 (5) 0.0295 (10)
H20A 0.8230 0.2227 0.5272 0.035*
C21 0.1897 (7) 0.4092 (6) 0.0510 (6) 0.0390 (11)
H21A 0.0781 0.3207 −0.0062 0.047*
C22 0.2193 (8) 0.5635 (7) 0.0626 (7) 0.0458 (13)
H22A 0.1299 0.5798 0.0139 0.055*
C23 0.3786 (8) 0.6921 (6) 0.1451 (6) 0.0475 (15)
H23A 0.4017 0.7994 0.1571 0.057*
C24 0.5055 (8) 0.6619 (6) 0.2107 (6) 0.0456 (13)
H24A 0.6186 0.7487 0.2666 0.055*
C25 0.4666 (6) 0.5049 (5) 0.1944 (5) 0.0337 (10)
H25A 0.5548 0.4861 0.2408 0.040*
C26 −0.1383 (6) −0.0208 (6) −0.0188 (5) 0.0321 (10)
H26A −0.1291 −0.0677 −0.0979 0.039*
C27 −0.2969 (6) −0.0497 (6) −0.0301 (5) 0.0384 (11)
H27A −0.3944 −0.1150 −0.1154 0.046*
C28 −0.3120 (6) 0.0175 (6) 0.0842 (6) 0.0368 (11)
H28A −0.4192 0.0019 0.0782 0.044*
C29 −0.1684 (7) 0.1076 (7) 0.2070 (6) 0.0441 (13)
H29A −0.1751 0.1530 0.2882 0.053*
C30 −0.0132 (6) 0.1308 (6) 0.2096 (5) 0.0338 (10)
H30A 0.0855 0.1927 0.2945 0.041*

(2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0131 (2) 0.0118 (2) 0.0131 (2) 0.00517 (18) 0.00466 (18) 0.00285 (17)
Co2 0.0152 (2) 0.0145 (2) 0.0156 (2) 0.00629 (19) 0.00422 (19) 0.00207 (18)
S1 0.0135 (4) 0.0128 (4) 0.0152 (4) 0.0041 (3) 0.0040 (3) 0.0009 (3)
S2 0.0148 (4) 0.0132 (4) 0.0148 (4) 0.0049 (4) 0.0032 (4) 0.0021 (4)
O1 0.0351 (17) 0.0227 (15) 0.0163 (14) 0.0150 (13) 0.0074 (13) 0.0052 (12)
O2 0.0177 (14) 0.0232 (15) 0.0453 (19) 0.0067 (12) 0.0157 (14) 0.0028 (14)
O3 0.0320 (16) 0.0164 (14) 0.0256 (15) 0.0124 (13) 0.0133 (13) 0.0082 (12)
O4 0.0158 (13) 0.0201 (14) 0.0213 (15) 0.0030 (12) 0.0036 (12) −0.0055 (11)
O5 0.0182 (14) 0.0174 (14) 0.0173 (14) 0.0036 (11) 0.0036 (12) 0.0004 (11)
O6 0.0295 (16) 0.0180 (15) 0.0332 (18) 0.0114 (13) 0.0037 (14) 0.0064 (13)
O7 0.0165 (14) 0.0273 (15) 0.0192 (14) 0.0085 (12) 0.0073 (11) 0.0066 (12)
O8 0.0239 (14) 0.0275 (15) 0.0170 (14) 0.0131 (13) 0.0092 (12) 0.0045 (12)
N1 0.0187 (16) 0.0204 (17) 0.0201 (17) 0.0082 (14) 0.0082 (14) 0.0073 (14)
N2 0.0273 (18) 0.0250 (18) 0.0211 (17) 0.0173 (15) 0.0134 (15) 0.0102 (14)
N3 0.0195 (16) 0.0214 (17) 0.0191 (17) 0.0099 (14) 0.0084 (14) 0.0073 (14)
N4 0.0171 (16) 0.0174 (16) 0.0188 (17) 0.0083 (13) 0.0093 (14) 0.0052 (13)
N5 0.0304 (19) 0.0205 (18) 0.0229 (18) 0.0129 (16) 0.0116 (15) 0.0061 (15)
N6 0.0189 (17) 0.0236 (17) 0.0243 (18) 0.0103 (14) 0.0092 (14) 0.0038 (14)
C1 0.031 (2) 0.026 (2) 0.033 (2) 0.0157 (19) 0.0180 (19) 0.0152 (19)
C2 0.031 (2) 0.028 (2) 0.040 (3) 0.0087 (19) 0.018 (2) 0.020 (2)
C3 0.029 (2) 0.052 (3) 0.034 (3) 0.016 (2) 0.020 (2) 0.026 (2)
C4 0.034 (3) 0.047 (3) 0.023 (2) 0.014 (2) 0.015 (2) 0.008 (2)
C5 0.029 (2) 0.029 (2) 0.020 (2) 0.0102 (19) 0.0091 (18) 0.0037 (18)
C6 0.023 (2) 0.029 (2) 0.036 (3) 0.0144 (19) 0.0078 (19) 0.0027 (19)
C7 0.024 (2) 0.052 (3) 0.055 (4) 0.024 (2) 0.001 (2) −0.004 (3)
C8 0.046 (3) 0.056 (4) 0.061 (4) 0.043 (3) 0.005 (3) 0.007 (3)
C9 0.053 (3) 0.039 (3) 0.058 (4) 0.037 (3) 0.017 (3) 0.012 (3)
C10 0.036 (2) 0.028 (2) 0.029 (2) 0.022 (2) 0.010 (2) 0.0090 (19)
C11 0.031 (2) 0.022 (2) 0.026 (2) 0.0147 (18) 0.0138 (18) 0.0113 (17)
C12 0.033 (2) 0.032 (2) 0.041 (3) 0.018 (2) 0.022 (2) 0.023 (2)
C13 0.032 (2) 0.049 (3) 0.032 (3) 0.019 (2) 0.020 (2) 0.025 (2)
C14 0.030 (2) 0.043 (3) 0.025 (2) 0.012 (2) 0.015 (2) 0.006 (2)
C15 0.025 (2) 0.026 (2) 0.029 (2) 0.0082 (18) 0.0159 (19) 0.0061 (18)
C16 0.023 (2) 0.026 (2) 0.047 (3) 0.0133 (19) 0.008 (2) −0.001 (2)
C17 0.024 (2) 0.043 (3) 0.055 (3) 0.021 (2) 0.000 (2) −0.001 (3)
C18 0.042 (3) 0.045 (3) 0.060 (4) 0.035 (3) 0.018 (3) 0.017 (3)
C19 0.038 (3) 0.028 (2) 0.064 (4) 0.022 (2) 0.016 (3) 0.013 (2)
C20 0.024 (2) 0.024 (2) 0.037 (2) 0.0139 (18) 0.0080 (19) 0.0077 (19)
C21 0.035 (3) 0.036 (3) 0.051 (3) 0.020 (2) 0.017 (2) 0.024 (2)
C22 0.057 (3) 0.048 (3) 0.069 (4) 0.041 (3) 0.041 (3) 0.037 (3)
C23 0.079 (4) 0.030 (3) 0.058 (4) 0.035 (3) 0.045 (3) 0.023 (3)
C24 0.055 (3) 0.025 (2) 0.045 (3) 0.011 (2) 0.020 (3) 0.010 (2)
C25 0.038 (3) 0.021 (2) 0.032 (2) 0.011 (2) 0.010 (2) 0.0063 (19)
C26 0.024 (2) 0.035 (2) 0.030 (2) 0.013 (2) 0.0077 (19) 0.004 (2)
C27 0.020 (2) 0.041 (3) 0.039 (3) 0.012 (2) 0.003 (2) 0.004 (2)
C28 0.023 (2) 0.044 (3) 0.051 (3) 0.020 (2) 0.019 (2) 0.020 (2)
C29 0.038 (3) 0.060 (3) 0.046 (3) 0.031 (3) 0.025 (2) 0.013 (3)
C30 0.021 (2) 0.044 (3) 0.030 (2) 0.017 (2) 0.0062 (18) 0.004 (2)

(2). Geometric parameters (Å, º)

Co1—O4 2.070 (3) C6—C7 1.376 (7)
Co1—O5 2.080 (3) C6—H6A 0.9500
Co1—N2 2.179 (3) C7—C8 1.377 (9)
Co1—N1 2.180 (3) C7—H7A 0.9500
Co1—N4 2.183 (3) C8—C9 1.356 (9)
Co1—N3 2.185 (3) C8—H8A 0.9500
Co2—N6 2.104 (3) C9—C10 1.398 (6)
Co2—O7 2.113 (3) C9—H9A 0.9500
Co2—N5 2.123 (3) C10—H10A 0.9500
Co2—O3i 2.141 (3) C11—C12 1.385 (6)
Co2—O1i 2.185 (3) C11—H11A 0.9500
Co2—O8 2.208 (3) C12—C13 1.375 (7)
Co2—S1i 2.7061 (11) C12—H12A 0.9500
Co2—S2 2.7107 (10) C13—C14 1.370 (7)
S1—O2 1.450 (3) C13—H13A 0.9500
S1—O4 1.476 (3) C14—C15 1.378 (7)
S1—O1 1.483 (3) C14—H14A 0.9500
S1—O3 1.493 (3) C15—H15A 0.9500
S1—Co2ii 2.7062 (11) C16—C17 1.384 (7)
S2—O6 1.451 (3) C16—H16A 0.9500
S2—O5 1.477 (3) C17—C18 1.379 (8)
S2—O8 1.488 (3) C17—H17A 0.9500
S2—O7 1.500 (3) C18—C19 1.372 (8)
O1—Co2ii 2.185 (3) C18—H18A 0.9500
O3—Co2ii 2.141 (3) C19—C20 1.383 (6)
N1—C5 1.337 (6) C19—H19A 0.9500
N1—C1 1.337 (6) C20—H20A 0.9500
N2—C10 1.333 (6) C21—C22 1.383 (7)
N2—C6 1.355 (6) C21—H21A 0.9500
N3—C15 1.340 (5) C22—C23 1.364 (9)
N3—C11 1.344 (5) C22—H22A 0.9500
N4—C16 1.339 (6) C23—C24 1.383 (9)
N4—C20 1.340 (6) C23—H23A 0.9500
N5—C25 1.331 (6) C24—C25 1.379 (7)
N5—C21 1.344 (6) C24—H24A 0.9500
N6—C30 1.331 (6) C25—H25A 0.9500
N6—C26 1.340 (6) C26—C27 1.381 (7)
C1—C2 1.388 (6) C26—H26A 0.9500
C1—H1A 0.9500 C27—C28 1.380 (8)
C2—C3 1.384 (8) C27—H27A 0.9500
C2—H2A 0.9500 C28—C29 1.378 (8)
C3—C4 1.395 (8) C28—H28A 0.9500
C3—H3A 0.9500 C29—C30 1.393 (7)
C4—C5 1.378 (7) C29—H29A 0.9500
C4—H4A 0.9500 C30—H30A 0.9500
C5—H5A 0.9500
O4—Co1—O5 173.43 (12) C2—C1—H1A 118.3
O4—Co1—N2 85.60 (13) C3—C2—C1 118.7 (4)
O5—Co1—N2 87.84 (12) C3—C2—H2A 120.6
O4—Co1—N1 89.17 (13) C1—C2—H2A 120.6
O5—Co1—N1 90.86 (12) C2—C3—C4 117.9 (4)
N2—Co1—N1 87.48 (13) C2—C3—H3A 121.0
O4—Co1—N4 96.45 (12) C4—C3—H3A 121.0
O5—Co1—N4 90.12 (12) C5—C4—C3 119.4 (5)
N2—Co1—N4 177.57 (14) C5—C4—H4A 120.3
N1—Co1—N4 91.24 (12) C3—C4—H4A 120.3
O4—Co1—N3 91.19 (13) N1—C5—C4 122.9 (4)
O5—Co1—N3 88.85 (12) N1—C5—H5A 118.5
N2—Co1—N3 93.18 (12) C4—C5—H5A 118.5
N1—Co1—N3 179.27 (14) N2—C6—C7 122.5 (5)
N4—Co1—N3 88.08 (12) N2—C6—H6A 118.8
N6—Co2—O7 92.49 (12) C7—C6—H6A 118.8
N6—Co2—N5 93.63 (13) C6—C7—C8 119.6 (5)
O7—Co2—N5 98.33 (13) C6—C7—H7A 120.2
N6—Co2—O3i 96.90 (13) C8—C7—H7A 120.2
O7—Co2—O3i 162.62 (11) C9—C8—C7 118.4 (5)
N5—Co2—O3i 95.64 (12) C9—C8—H8A 120.8
N6—Co2—O1i 93.88 (13) C7—C8—H8A 120.8
O7—Co2—O1i 98.98 (11) C8—C9—C10 119.8 (5)
N5—Co2—O1i 160.79 (12) C8—C9—H9A 120.1
O3i—Co2—O1i 65.90 (10) C10—C9—H9A 120.1
N6—Co2—O8 158.65 (12) N2—C10—C9 122.3 (5)
O7—Co2—O8 66.37 (10) N2—C10—H10A 118.8
N5—Co2—O8 92.48 (13) C9—C10—H10A 118.8
O3i—Co2—O8 102.84 (11) N3—C11—C12 123.2 (4)
O1i—Co2—O8 86.87 (11) N3—C11—H11A 118.4
N6—Co2—S1i 101.38 (10) C12—C11—H11A 118.4
O7—Co2—S1i 130.13 (8) C13—C12—C11 118.9 (4)
N5—Co2—S1i 127.73 (10) C13—C12—H12A 120.6
O3i—Co2—S1i 33.37 (7) C11—C12—H12A 120.6
O1i—Co2—S1i 33.18 (8) C14—C13—C12 118.5 (4)
O8—Co2—S1i 90.91 (8) C14—C13—H13A 120.8
N6—Co2—S2 125.39 (10) C12—C13—H13A 120.8
O7—Co2—S2 33.41 (8) C13—C14—C15 119.6 (5)
N5—Co2—S2 99.84 (10) C13—C14—H14A 120.2
O3i—Co2—S2 133.35 (8) C15—C14—H14A 120.2
O1i—Co2—S2 90.12 (8) N3—C15—C14 123.0 (4)
O8—Co2—S2 33.27 (7) N3—C15—H15A 118.5
S1i—Co2—S2 110.52 (3) C14—C15—H15A 118.5
O2—S1—O4 110.31 (18) N4—C16—C17 123.2 (4)
O2—S1—O1 112.58 (19) N4—C16—H16A 118.4
O4—S1—O1 109.17 (18) C17—C16—H16A 118.4
O2—S1—O3 111.06 (18) C18—C17—C16 119.4 (5)
O4—S1—O3 109.08 (18) C18—C17—H17A 120.3
O1—S1—O3 104.45 (16) C16—C17—H17A 120.3
O2—S1—Co2ii 117.43 (14) C19—C18—C17 117.9 (4)
O4—S1—Co2ii 132.24 (12) C19—C18—H18A 121.1
O1—S1—Co2ii 53.72 (11) C17—C18—H18A 121.1
O3—S1—Co2ii 52.05 (12) C18—C19—C20 119.5 (5)
O6—S2—O5 110.02 (17) C18—C19—H19A 120.2
O6—S2—O8 112.20 (18) C20—C19—H19A 120.2
O5—S2—O8 109.12 (17) N4—C20—C19 123.2 (4)
O6—S2—O7 111.68 (18) N4—C20—H20A 118.4
O5—S2—O7 108.93 (17) C19—C20—H20A 118.4
O8—S2—O7 104.72 (17) N5—C21—C22 123.3 (5)
O6—S2—Co2 120.94 (13) N5—C21—H21A 118.4
O5—S2—Co2 128.99 (12) C22—C21—H21A 118.4
O8—S2—Co2 54.46 (11) C23—C22—C21 119.1 (5)
O7—S2—Co2 50.87 (11) C23—C22—H22A 120.5
S1—O1—Co2ii 93.10 (14) C21—C22—H22A 120.5
S1—O3—Co2ii 94.57 (14) C22—C23—C24 118.2 (4)
S1—O4—Co1 159.38 (19) C22—C23—H23A 120.9
S2—O5—Co1 169.67 (19) C24—C23—H23A 120.9
S2—O7—Co2 95.72 (15) C25—C24—C23 119.5 (5)
S2—O8—Co2 92.27 (14) C25—C24—H24A 120.3
C5—N1—C1 117.6 (4) C23—C24—H24A 120.3
C5—N1—Co1 119.9 (3) N5—C25—C24 123.0 (5)
C1—N1—Co1 122.6 (3) N5—C25—H25A 118.5
C10—N2—C6 117.3 (4) C24—C25—H25A 118.5
C10—N2—Co1 122.1 (3) N6—C26—C27 122.9 (5)
C6—N2—Co1 120.6 (3) N6—C26—H26A 118.5
C15—N3—C11 116.8 (4) C27—C26—H26A 118.5
C15—N3—Co1 119.0 (3) C28—C27—C26 119.1 (4)
C11—N3—Co1 124.2 (3) C28—C27—H27A 120.4
C16—N4—C20 116.7 (4) C26—C27—H27A 120.4
C16—N4—Co1 121.3 (3) C29—C28—C27 118.7 (4)
C20—N4—Co1 121.9 (3) C29—C28—H28A 120.7
C25—N5—C21 117.0 (4) C27—C28—H28A 120.7
C25—N5—Co2 122.4 (3) C28—C29—C30 118.5 (5)
C21—N5—Co2 120.4 (3) C28—C29—H29A 120.7
C30—N6—C26 117.5 (4) C30—C29—H29A 120.7
C30—N6—Co2 119.9 (3) N6—C30—C29 123.2 (4)
C26—N6—Co2 122.3 (3) N6—C30—H30A 118.4
N1—C1—C2 123.4 (4) C29—C30—H30A 118.4
N1—C1—H1A 118.3
O2—S1—O1—Co2ii 108.27 (16) Co1—N2—C10—C9 178.3 (4)
O4—S1—O1—Co2ii −128.88 (15) C8—C9—C10—N2 0.4 (9)
O3—S1—O1—Co2ii −12.33 (17) C15—N3—C11—C12 1.7 (6)
O2—S1—O3—Co2ii −109.00 (18) Co1—N3—C11—C12 −179.2 (3)
O4—S1—O3—Co2ii 129.22 (15) N3—C11—C12—C13 −1.4 (7)
O1—S1—O3—Co2ii 12.61 (17) C11—C12—C13—C14 −0.4 (7)
O2—S1—O4—Co1 1.7 (7) C12—C13—C14—C15 1.6 (7)
O1—S1—O4—Co1 −122.5 (6) C11—N3—C15—C14 −0.3 (6)
O3—S1—O4—Co1 124.0 (6) Co1—N3—C15—C14 −179.5 (4)
Co2ii—S1—O4—Co1 179.6 (5) C13—C14—C15—N3 −1.4 (7)
O6—S2—O5—Co1 −43.6 (11) C20—N4—C16—C17 −1.2 (8)
O8—S2—O5—Co1 −167.1 (11) Co1—N4—C16—C17 175.5 (4)
O7—S2—O5—Co1 79.2 (11) N4—C16—C17—C18 0.4 (9)
Co2—S2—O5—Co1 133.7 (10) C16—C17—C18—C19 1.7 (9)
O6—S2—O7—Co2 −112.94 (17) C17—C18—C19—C20 −2.8 (9)
O5—S2—O7—Co2 125.34 (15) C16—N4—C20—C19 0.0 (7)
O8—S2—O7—Co2 8.72 (18) Co1—N4—C20—C19 −176.7 (4)
O6—S2—O8—Co2 113.01 (16) C18—C19—C20—N4 2.0 (8)
O5—S2—O8—Co2 −124.80 (14) C25—N5—C21—C22 −0.8 (8)
O7—S2—O8—Co2 −8.31 (17) Co2—N5—C21—C22 174.2 (4)
C5—N1—C1—C2 −1.2 (6) N5—C21—C22—C23 −0.5 (8)
Co1—N1—C1—C2 180.0 (3) C21—C22—C23—C24 1.8 (8)
N1—C1—C2—C3 0.4 (7) C22—C23—C24—C25 −1.9 (8)
C1—C2—C3—C4 1.2 (7) C21—N5—C25—C24 0.7 (7)
C2—C3—C4—C5 −2.1 (7) Co2—N5—C25—C24 −174.2 (4)
C1—N1—C5—C4 0.3 (7) C23—C24—C25—N5 0.6 (8)
Co1—N1—C5—C4 179.2 (4) C30—N6—C26—C27 2.0 (7)
C3—C4—C5—N1 1.3 (7) Co2—N6—C26—C27 −171.6 (4)
C10—N2—C6—C7 −0.5 (7) N6—C26—C27—C28 −0.1 (8)
Co1—N2—C6—C7 −178.9 (4) C26—C27—C28—C29 −1.8 (8)
N2—C6—C7—C8 0.8 (9) C27—C28—C29—C30 1.8 (8)
C6—C7—C8—C9 −0.5 (10) C26—N6—C30—C29 −2.1 (7)
C7—C8—C9—C10 −0.1 (10) Co2—N6—C30—C29 171.7 (4)
C6—N2—C10—C9 −0.1 (7) C28—C29—C30—N6 0.2 (8)

Symmetry codes: (i) x−1, y−1, z−1; (ii) x+1, y+1, z+1.

(2). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O6 0.95 2.63 3.563 (6) 167
C2—H2A···O2iii 0.95 2.52 3.219 (5) 131
C5—H5A···O4 0.95 2.42 3.009 (5) 120
C6—H6A···O5 0.95 2.56 3.054 (5) 112
C6—H6A···O7 0.95 2.47 3.322 (6) 149
C10—H10A···O4 0.95 2.53 3.010 (5) 112
C12—H12A···O7iv 0.95 2.60 3.271 (5) 128
C15—H15A···O5 0.95 2.45 3.017 (5) 118
C16—H16A···O2 0.95 2.19 3.139 (6) 176
C20—H20A···O5 0.95 2.51 3.091 (5) 119
C20—H20A···O6 0.95 2.32 3.272 (5) 175
C25—H25A···O8 0.95 2.55 3.162 (5) 123
C30—H30A···O7 0.95 2.54 3.116 (5) 119

Symmetry codes: (iii) x−1, y−1, z; (iv) x+1, y+1, z.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-1429086.

References

  1. Bethe, H. A. (1929). Ann. Phys. 395, 133–208.
  2. Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cotton, F. A. & Reid, A. H. Jr (1984). New J. Chem. 8, 203–206.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Howe, J. L. (1898). Science, 8, 945–947.
  6. Johnson, N. O., Turk, J. T., Bull, W. E. & Mayfield, H. G. (1977). Inorg. Chim. Acta, 25, 235–239.
  7. Memon, A. A., Afzaal, M., Malik, M. A., Nguyen, C. Q., O’Brien, P. & Raftery, J. (2006). Dalton Trans. pp. 4499–4505. [DOI] [PubMed]
  8. Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857–861. [DOI] [PMC free article] [PubMed]
  9. Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568–574. [DOI] [PubMed]
  10. Reitzenstein, F. (1894). Justus Liebigs Ann. Chem. 282, 267–280.
  11. Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Werner, A. (1893). Z. Anorg. Chem. 3, 267–330.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, I. DOI: 10.1107/S205698901901538X/sj5586sup1.cif

e-75-01888-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S205698901901538X/sj55861sup2.hkl

e-75-01888-1sup2.hkl (149.5KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698901901538X/sj55862sup3.hkl

e-75-01888-2sup3.hkl (477.9KB, hkl)

CCDC references: 1965662, 1965663, 1965662, 1965663

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES