Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 15;75(Pt 12):1871–1874. doi: 10.1107/S2056989019015238

Crystal structure of [K(18-crown-6)]+ 2[Pt(CN)4]2−

Malte Sellin a, Moritz Malischewski a,*
PMCID: PMC6895955  PMID: 31871748

K2Pt(CN)4 becomes soluble in di­chloro­methane upon addition of two equivalents of 18-crown-6. Crystals of [K(18-crown-6)]2 [Pt(CN)4] are obtained upon layering the di­chloro­methane solution with di­ethyl­ether. No Pt⋯Pt inter­actions are observed in the crystal.

Keywords: tetra­cyano­platinate, crown ether, platinum, potassium, crystal structure

Abstract

In the title compound, di-μ-cyanato-1:2κ2 N:C;2:3κ2 C:N-di­cyanato-2κ2 C-bis­(1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne)-1κ6 O;3κ6 O-1,3-dipotassium(I)-2-platinum(II), [K2Pt(CN)4(C12H24O6)2] or [K(18-crown-6)]2·[Pt(CN)4], two trans-orientated cyano groups of the square-planar [Pt(CN)4]2− dianion (Pt site symmetry Inline graphic) bind to one potassium ion each, which are additionally coordinated by the six O atoms of 18-crown-6. No Pt⋯Pt inter­actions occur in the crystal, but very weak Pt⋯H contacts (2.79 Å) are observed.

Chemical context  

Polycyano­metallates are an important class of inorganic compounds with intriguing properties. As a result of their anionic nature and high nucleophilicity, they have been widely used as metallo-ligands in coordination chemistry. Depending on the geometry of the polycyano­metallate, various topologies can be realized (Alexandrov et al., 2015). While photomagnetic effects have been predominantly realized with hexa- and octa­cyano­metallates (Ohkoshi et al., 2012), studies on tetra­cyano­platinates and their derivatives have focused on the high electrical conductivities of mixed-valent Krogmann’s salts K2[Pt(CN)4]Br0.32·2.6H2O (Krogmann, 1969), vapochromic sensor materials (e.g. Zn[Pt(CN)4] for ammonia (Varju et al., 2019) and spin-crossover compounds such as [Fe(pyrazine)][Pt(CN)4]·2H2O (Niel et al., 2001). However, alkali salts of polycyano­metallates are in generally water-soluble but suffer from insolubility in organic solvents. A general way to increase the solubility of metals salts in organic solvents is the utilization of crown ethers. For example, even potassium permanganate KMnO4 becomes benzene-soluble by coordination of 18-crown-6 to the potassium cation (Doheny & Ganem, 1980). During our attempts to explore the coordination chemistry of the tetra­cyano­platinate dianion [Pt(CN)4]2− in organic solvents, we realized that commercially available K2[Pt(CN)4] is insoluble in di­chloro­methane but dissolves rapidly upon addition of 18-crown-6. The product [K(18-crown-6)]2 [Pt(CN)4], which was already isolated many years ago by a rather complicated procedure (Almeida & Pidcock, 1981), could now be obtained in crystalline form. In contrast to other tetra­cyano­platinate(II) salts with large organic cations [e.g. PPh4 + (see Nast & Moerler, 1969) and NBu4 + (see Mason & Gray, 1968)], which are prepared by metathesis reactions in water, this new procedure makes the access to tetra­cyano­platinate salts with solubility in organic solvents even more facile.graphic file with name e-75-01871-scheme1.jpg

Structural Commentary  

[K(18-crown-6)]2 [Pt(CN)4] (Fig. 1) crystallizes in the monoclinic space group P21/n. The tetra­cyano­platinate moiety displays a square-planar mol­ecular geometry with the platinum atom lying on a crystallographic inversion centre. Two trans-orientated cyano groups coordinate via their terminal nitro­gen atoms to the potassium ions in a rather bent fashion [K1—N1—C1 = 146.76 (17)°] while the Pt—C—N bonds are almost linear [Pt1—C2—N2 = 178.81 (18)°]. The Pt—C and C—N bond lengths do not differ significantly between the terminal or bridging cyano ligands [Pt1—C2 = 1.996 (2) Å versus Pt1—C1 = 1.991 (2) Å and C2—N2 = 1.155 (3) Å versus C1—N1 = 1.154 (3) Å]. The six oxygen atoms of the crown ether coordinate to the potassium ion in a hexa­gonal-planar fashion. Additionally, one apical position is occupied by a nitro­gen atom of a cyano group, although the K—N distance is relatively long [2.732 (2) Å]. The potassium ion is located 0.295 Å above the the O6 centroid [K—O distances = 2.769 (1)–2.837 (1) Å].

Figure 1.

Figure 1

The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level.

Supra­molecular features  

A common feature of tetra­cyano­platinate salts is the formation of columnar stacks of the planar tetra­cyano­platinate anions with Pt⋯Pt distances in the range of 3.0–3.8 Å, see, for example, Washecheck et al. (1976), Holzapfel et al. (1981), Mühle et al. (2004) and Neuhausen et al. (2011). However, in the crystal structure of the title compound (Fig. 2), no platino­philic inter­actions are observed. This is in accordance with findings of Stojanovic et al. (2011) who stated that large organic cations can suppress the formation of Pt⋯Pt contacts. Inter­molecular inter­actions are not very pronounced in this crystal structure. However, the two uncoordinated cyano groups each point towards one neighbouring hydrogen atom in a slightly bent fashion (C—N⋯H = 152°; Table 1) although the N⋯H distance is relatively long (2.55 Å). Moreover, two hydrogen atoms from two different crown ether mol­ecules form weak contacts to the platinum atom in a linear fashion (H⋯Pt⋯H = 180°), which results in a distorted axially elongated pseudo-octa­hedral PtC4H2 coordination environment for the platinum atom. The Pt⋯H distances are slightly smaller than the sum of the van der Waals radii (2.79 Å).

Figure 2.

Figure 2

Packing in the unit cell of the title compound.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N1i 0.99 2.54 3.510 (3) 165
C9—H9B⋯N2ii 0.99 2.55 3.459 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Database survey  

A database survey (CSD version 5.40, update of November 2018; Groom et al., 2016) gave 348 hits for the [Pt(CN)4] moiety and 1562 hits for the [K(18-crown-6)] moiety. While the tetra­cyano­platinate moiety binds to many elements from the periodic table, only a few tetra­cyano­platinate salts with metal–crown ether counter-cations are known. For example, complexes of Ba2+ [Pt(CN)4]2− with 18-crown-6 (Olmstead et al., (2005), dibenzo-18-crown-6 (Olmstead et al., 2016)) and di­aza-18-crown-6 (Olmstead et al., 2009). In the first two examples, the Ba2+ cation exhibits a coordination number of 10 whereas only ninefold coordination is observed in the last case. In general, these high coordination numbers result from bridging cyanide ligands and oxygen-containing donor solvents that bind to the Ba2+ cations. In [Tl(18-crown-6)]2[Pt(CN)4] (Liu et al., 2006), only a sevenfold coordination is observed for the thallium cation. Inter­estingly, Tl+ does not bind to a terminal cyanide group but forms a weak metallophilic contact to Pt2+ (Tl⋯Pt distance = 3.185 Å).

The combination of [K(18-crown-6)] cations with other polycyano­metallates is relatively rare. Crystal structures of [K3(18-crown-6)3(H2O)4][Cr(CN)6]·3H2O (Zhou et al., 2003), [K(18-crown-6)]2[K(18-crown-6)(H2O)2][Ru(CN)6]·CH2Cl2 (Vostrikova & Peresypkina, 2011) and [K(18-crown-6)]2[K(18-crown-6)(C3H7OH)][Os(CN)6]·2C3H7OH·H2O (Vos­tri­kova & Peresypkina, 2011) have been reported in the literature.

Synthesis and crystallization  

Potassium tetra­cyano­platinate (37.7 mg, 0.1 mmol) was suspended in 3 ml of CH2Cl2. Then, 52.8 mg (0.2 mmol) of 18-crown-6 were added and the mixture was stirred for several minutes until the solid had completely dissolved. A small part of the solution was placed in a narrow glass tube and layered with diethyl ether. Colourless blocks of the title compound formed overnight. IR(ATR) (cm−1): 2898–2815 [m, v(CH)], 2126 [s, n(CN)], 1451 [w, d(CH2)], 1099 [vs, n(CO)]. 1H NMR (400 MHz in CD2Cl2): 3.62 (s, crown ether) ppm. 13C(1H) NMR (101 MHz in CD2Cl2): 122.4 (CN, 1 J Pt—C = 1018 Hz), 70.1 (crown) ppm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed geometrically with a constrained C—H distance of 0.99 Å and refined as riding atoms with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [K2Pt(CN)4(C12H24O6)2]
M r 905.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.7341 (10), 13.7280 (12), 11.8876 (10)
β (°) 94.999 (3)
V3) 1907.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.96
Crystal size (mm) 0.44 × 0.44 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.306, 0.564
No. of measured, independent and observed [I > 2σ(I)] reflections 57788, 5839, 4658
R int 0.047
(sin θ/λ)max−1) 0.716
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.019, 0.051, 1.05
No. of reflections 5839
No. of parameters 215
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.54

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXS (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019015238/hb4322sup1.cif

e-75-01871-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015238/hb4322Isup2.hkl

e-75-01871-Isup2.hkl (464.4KB, hkl)

CCDC references: 1965195, 1965195

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[K2Pt(CN)4(C12H24O6)2] F(000) = 912
Mr = 905.99 Dx = 1.577 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.7341 (10) Å Cell parameters from 9630 reflections
b = 13.7280 (12) Å θ = 2.3–30.6°
c = 11.8876 (10) Å µ = 3.96 mm1
β = 94.999 (3)° T = 100 K
V = 1907.6 (3) Å3 Block, colourless
Z = 2 0.44 × 0.44 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 4658 reflections with I > 2σ(I)
φ and ω scans Rint = 0.047
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 30.6°, θmin = 2.3°
Tmin = 0.306, Tmax = 0.564 h = −16→16
57788 measured reflections k = −19→19
5839 independent reflections l = −17→16

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0186P)2 + 1.9161P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 1.25 e Å3
5839 reflections Δρmin = −1.54 e Å3
215 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0120 (4)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.500000 0.500000 0.000000 0.01307 (4)
K1 0.81107 (3) 0.50085 (2) 0.38736 (3) 0.01684 (7)
O5 0.93998 (11) 0.65091 (10) 0.29546 (12) 0.0220 (3)
O2 0.71541 (11) 0.34705 (10) 0.50409 (12) 0.0232 (3)
O4 0.97580 (12) 0.45517 (10) 0.23439 (12) 0.0256 (3)
O3 0.82893 (12) 0.31294 (10) 0.30722 (12) 0.0254 (3)
O1 0.68912 (13) 0.54392 (11) 0.57027 (12) 0.0258 (3)
O6 0.84409 (13) 0.68057 (10) 0.50316 (12) 0.0273 (3)
C2 0.34516 (17) 0.47354 (16) 0.05042 (17) 0.0234 (4)
N2 0.25437 (16) 0.45768 (17) 0.07632 (17) 0.0358 (4)
N1 0.61178 (17) 0.50228 (13) 0.25023 (17) 0.0284 (4)
C9 0.99412 (18) 0.53486 (16) 0.15999 (18) 0.0268 (4)
H9A 0.922679 0.549960 0.112661 0.032*
H9B 1.054051 0.517845 0.109679 0.032*
C1 0.56960 (16) 0.50133 (12) 0.15887 (17) 0.0192 (3)
C5 0.68672 (17) 0.26882 (14) 0.42770 (18) 0.0265 (4)
H5A 0.628172 0.290733 0.368065 0.032*
H5B 0.654414 0.214014 0.468750 0.032*
C10 1.03093 (17) 0.62118 (15) 0.23170 (19) 0.0276 (4)
H10A 1.098625 0.603787 0.283356 0.033*
H10B 1.052471 0.675460 0.182981 0.033*
C4 0.61633 (18) 0.38299 (16) 0.5518 (2) 0.0309 (4)
H4A 0.579757 0.329734 0.591811 0.037*
H4B 0.560472 0.407414 0.491136 0.037*
C6 0.79142 (17) 0.23559 (14) 0.37517 (17) 0.0250 (4)
H6A 0.852386 0.218411 0.434705 0.030*
H6B 0.773614 0.177181 0.328031 0.030*
C8 0.9510 (2) 0.36800 (15) 0.1721 (2) 0.0335 (5)
H8A 1.016517 0.350456 0.129004 0.040*
H8B 0.882998 0.377767 0.117934 0.040*
C14 0.7268 (2) 0.62271 (15) 0.64242 (18) 0.0308 (4)
H14A 0.795873 0.603522 0.691114 0.037*
H14B 0.666168 0.640928 0.691447 0.037*
C11 0.97505 (19) 0.72802 (15) 0.37123 (18) 0.0295 (4)
H11A 1.002946 0.783790 0.328515 0.035*
H11B 1.038243 0.705558 0.425670 0.035*
C12 0.8756 (2) 0.75891 (14) 0.43299 (19) 0.0311 (4)
H12A 0.896408 0.816886 0.479879 0.037*
H12B 0.810247 0.776359 0.378360 0.037*
C7 0.9286 (2) 0.28768 (15) 0.2533 (2) 0.0329 (5)
H7A 0.916538 0.225258 0.212284 0.039*
H7B 0.994834 0.280173 0.310186 0.039*
C3 0.65005 (18) 0.46399 (16) 0.63312 (18) 0.0280 (4)
H3A 0.583590 0.484034 0.673536 0.034*
H3B 0.711603 0.441769 0.689539 0.034*
C13 0.7534 (2) 0.70708 (15) 0.5689 (2) 0.0342 (5)
H13A 0.684720 0.724656 0.518624 0.041*
H13B 0.775999 0.764336 0.616299 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.01451 (5) 0.01192 (5) 0.01299 (6) 0.00149 (3) 0.00243 (3) −0.00065 (3)
K1 0.01690 (16) 0.01710 (16) 0.01701 (17) −0.00121 (12) 0.00425 (13) −0.00143 (13)
O5 0.0216 (6) 0.0192 (6) 0.0254 (7) −0.0033 (5) 0.0037 (5) −0.0028 (5)
O2 0.0223 (6) 0.0220 (6) 0.0260 (7) −0.0027 (5) 0.0065 (5) −0.0029 (5)
O4 0.0296 (7) 0.0201 (7) 0.0283 (7) 0.0010 (5) 0.0104 (6) −0.0033 (6)
O3 0.0289 (7) 0.0185 (6) 0.0301 (8) 0.0011 (5) 0.0105 (6) −0.0019 (5)
O1 0.0319 (7) 0.0256 (7) 0.0213 (7) −0.0017 (6) 0.0103 (6) −0.0027 (6)
O6 0.0382 (8) 0.0194 (6) 0.0255 (7) −0.0025 (6) 0.0099 (6) −0.0032 (5)
C2 0.0251 (9) 0.0275 (9) 0.0176 (8) 0.0004 (7) 0.0018 (7) −0.0031 (7)
N2 0.0260 (9) 0.0547 (13) 0.0273 (9) −0.0040 (9) 0.0062 (7) −0.0055 (9)
N1 0.0228 (8) 0.0430 (11) 0.0193 (8) 0.0027 (7) 0.0013 (7) −0.0011 (7)
C9 0.0278 (10) 0.0273 (9) 0.0272 (10) 0.0016 (8) 0.0138 (8) 0.0007 (8)
C1 0.0156 (8) 0.0228 (9) 0.0193 (8) 0.0009 (6) 0.0030 (6) −0.0009 (6)
C5 0.0282 (10) 0.0226 (9) 0.0291 (10) −0.0070 (7) 0.0052 (8) −0.0030 (8)
C10 0.0202 (9) 0.0268 (9) 0.0373 (11) −0.0026 (7) 0.0101 (8) 0.0013 (8)
C4 0.0261 (10) 0.0301 (10) 0.0390 (12) −0.0041 (8) 0.0167 (9) −0.0026 (9)
C6 0.0300 (10) 0.0180 (8) 0.0268 (10) −0.0017 (7) 0.0020 (8) −0.0013 (7)
C8 0.0426 (12) 0.0252 (10) 0.0355 (12) −0.0025 (9) 0.0194 (10) −0.0103 (9)
C14 0.0422 (12) 0.0276 (10) 0.0243 (10) 0.0007 (9) 0.0131 (9) −0.0070 (8)
C11 0.0360 (11) 0.0226 (9) 0.0301 (10) −0.0121 (8) 0.0037 (8) −0.0037 (8)
C12 0.0475 (13) 0.0174 (9) 0.0292 (10) −0.0060 (8) 0.0075 (9) −0.0046 (8)
C7 0.0376 (11) 0.0207 (9) 0.0427 (13) 0.0024 (8) 0.0169 (10) −0.0080 (9)
C3 0.0280 (10) 0.0310 (10) 0.0273 (10) 0.0011 (8) 0.0162 (8) 0.0006 (8)
C13 0.0496 (13) 0.0227 (10) 0.0322 (11) 0.0032 (9) 0.0147 (10) −0.0070 (8)

Geometric parameters (Å, º)

Pt1—C2i 1.996 (2) C9—C10 1.501 (3)
Pt1—C2 1.996 (2) C5—H5A 0.9900
Pt1—C1i 1.991 (2) C5—H5B 0.9900
Pt1—C1 1.991 (2) C5—C6 1.497 (3)
K1—K1ii 4.9761 (9) C10—H10A 0.9900
K1—O5 2.8308 (14) C10—H10B 0.9900
K1—O2 2.8133 (14) C4—H4A 0.9900
K1—O4 2.8369 (14) C4—H4B 0.9900
K1—O3 2.7642 (14) C4—C3 1.503 (3)
K1—O1 2.7691 (14) C6—H6A 0.9900
K1—O6 2.8354 (14) C6—H6B 0.9900
K1—N1 2.732 (2) C8—H8A 0.9900
K1—C4 3.527 (2) C8—H8B 0.9900
O5—C10 1.422 (2) C8—C7 1.503 (3)
O5—C11 1.427 (2) C14—H14A 0.9900
O2—C5 1.428 (2) C14—H14B 0.9900
O2—C4 1.425 (2) C14—C13 1.500 (3)
O4—C9 1.435 (3) C11—H11A 0.9900
O4—C8 1.424 (2) C11—H11B 0.9900
O3—C6 1.427 (2) C11—C12 1.493 (3)
O3—C7 1.425 (2) C12—H12A 0.9900
O1—C14 1.426 (2) C12—H12B 0.9900
O1—C3 1.426 (3) C7—H7A 0.9900
O6—C12 1.429 (2) C7—H7B 0.9900
O6—C13 1.421 (3) C3—H3A 0.9900
C2—N2 1.155 (3) C3—H3B 0.9900
N1—C1 1.154 (3) C13—H13A 0.9900
C9—H9A 0.9900 C13—H13B 0.9900
C9—H9B 0.9900
C2i—Pt1—C2 180.0 O2—C5—H5B 109.7
C1—Pt1—C2 91.47 (8) O2—C5—C6 109.75 (16)
C1i—Pt1—C2i 91.47 (8) H5A—C5—H5B 108.2
C1—Pt1—C2i 88.53 (8) C6—C5—H5A 109.7
C1i—Pt1—C2 88.53 (8) C6—C5—H5B 109.7
C1i—Pt1—C1 180.0 O5—C10—C9 109.71 (16)
O5—K1—K1ii 74.34 (3) O5—C10—H10A 109.7
O5—K1—O4 59.78 (4) O5—C10—H10B 109.7
O5—K1—O6 59.94 (4) C9—C10—H10A 109.7
O5—K1—C4 160.31 (5) C9—C10—H10B 109.7
O2—K1—K1ii 96.09 (3) H10A—C10—H10B 108.2
O2—K1—O5 170.43 (4) K1—C4—H4A 159.0
O2—K1—O4 118.28 (4) K1—C4—H4B 82.0
O2—K1—O6 117.20 (4) O2—C4—K1 49.29 (9)
O2—K1—C4 22.59 (4) O2—C4—H4A 109.8
O4—K1—K1ii 73.68 (3) O2—C4—H4B 109.8
O4—K1—C4 139.85 (5) O2—C4—C3 109.49 (17)
O3—K1—K1ii 95.19 (3) H4A—C4—H4B 108.2
O3—K1—O5 119.15 (4) C3—C4—K1 82.54 (11)
O3—K1—O2 61.00 (4) C3—C4—H4A 109.8
O3—K1—O4 59.77 (4) C3—C4—H4B 109.8
O3—K1—O1 121.99 (4) O3—C6—C5 108.32 (16)
O3—K1—O6 165.50 (5) O3—C6—H6A 110.0
O3—K1—C4 80.51 (5) O3—C6—H6B 110.0
O1—K1—K1ii 94.33 (3) C5—C6—H6A 110.0
O1—K1—O5 118.53 (4) C5—C6—H6B 110.0
O1—K1—O2 61.13 (4) H6A—C6—H6B 108.4
O1—K1—O4 167.99 (5) O4—C8—H8A 109.9
O1—K1—O6 59.40 (4) O4—C8—H8B 109.9
O1—K1—C4 42.15 (5) O4—C8—C7 108.77 (18)
O6—K1—K1ii 70.44 (3) H8A—C8—H8B 108.3
O6—K1—O4 115.57 (4) C7—C8—H8A 109.9
O6—K1—C4 101.40 (5) C7—C8—H8B 109.9
N1—K1—K1ii 175.95 (5) O1—C14—H14A 110.2
N1—K1—O5 102.88 (5) O1—C14—H14B 110.2
N1—K1—O2 86.68 (5) O1—C14—C13 107.71 (17)
N1—K1—O4 102.40 (5) H14A—C14—H14B 108.5
N1—K1—O3 83.55 (5) C13—C14—H14A 110.2
N1—K1—O1 89.59 (5) C13—C14—H14B 110.2
N1—K1—O6 110.92 (5) O5—C11—H11A 109.9
N1—K1—C4 76.81 (6) O5—C11—H11B 109.9
C4—K1—K1ii 106.82 (4) O5—C11—C12 109.03 (17)
C10—O5—K1 116.61 (11) H11A—C11—H11B 108.3
C10—O5—C11 111.15 (15) C12—C11—H11A 109.9
C11—O5—K1 115.51 (11) C12—C11—H11B 109.9
C5—O2—K1 109.45 (11) O6—C12—C11 109.03 (17)
C4—O2—K1 108.12 (11) O6—C12—H12A 109.9
C4—O2—C5 110.99 (15) O6—C12—H12B 109.9
C9—O4—K1 111.94 (11) C11—C12—H12A 109.9
C8—O4—K1 113.54 (11) C11—C12—H12B 109.9
C8—O4—C9 110.80 (17) H12A—C12—H12B 108.3
C6—O3—K1 117.58 (11) O3—C7—C8 107.85 (17)
C7—O3—K1 118.16 (11) O3—C7—H7A 110.1
C7—O3—C6 112.30 (15) O3—C7—H7B 110.1
C14—O1—K1 118.68 (12) C8—C7—H7A 110.1
C3—O1—K1 117.32 (11) C8—C7—H7B 110.1
C3—O1—C14 111.44 (16) H7A—C7—H7B 108.4
C12—O6—K1 113.75 (11) O1—C3—C4 108.13 (17)
C13—O6—K1 114.36 (12) O1—C3—H3A 110.1
C13—O6—C12 111.85 (16) O1—C3—H3B 110.1
N2—C2—Pt1 177.97 (18) C4—C3—H3A 110.1
C1—N1—K1 146.76 (17) C4—C3—H3B 110.1
O4—C9—H9A 110.2 H3A—C3—H3B 108.4
O4—C9—H9B 110.2 O6—C13—C14 109.05 (17)
O4—C9—C10 107.64 (17) O6—C13—H13A 109.9
H9A—C9—H9B 108.5 O6—C13—H13B 109.9
C10—C9—H9A 110.2 C14—C13—H13A 109.9
C10—C9—H9B 110.2 C14—C13—H13B 109.9
N1—C1—Pt1 178.81 (18) H13A—C13—H13B 108.3
O2—C5—H5A 109.7

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···N1iii 0.99 2.54 3.510 (3) 165
C9—H9B···N2iv 0.99 2.55 3.459 (3) 152

Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z.

Funding Statement

This work was funded by Freie Universität Berlin grant . Deutsche Forschungsgemeinschaft grant .

References

  1. Alexandrov, E. V., Virovets, A. V., Blatov, V. A. & Peresypkina, E. V. (2015). Chem. Rev. 115, 12286–12319. [DOI] [PubMed]
  2. Almeida, J. F. & Pidcock, A. (1981). J. Organomet. Chem. 208, 273–278.
  3. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Doheny, A. J. & Ganem, B. (1980). J. Chem. Educ. 57, 308.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Holzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47–67.
  8. Krogmann, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 35–42.
  9. Liu, F.-H., Chen, W.-Z. & Wang, D.-Q. (2006). Chin J. Struct. Chem. 25, 677–680.
  10. Mason, W. R. III & Gray, H. B. (1968). J. Am. Chem. Soc. 90, 5721–5729.
  11. Mühle, C., Nuss, J., Dinnebier, R. E. & Jansen, M. (2004). Z. Anorg. Allg. Chem. 630, 1462–1468.
  12. Nast, R. & Moerler, H.-D. (1969). Chem. Ber. 102, 2050–2056.
  13. Neuhausen, C., Pattison, P. & Schiltz, M. (2011). CrystEngComm, 13, 430–432.
  14. Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839. [DOI] [PubMed]
  15. Ohkoshi, S.-I. & Tokoro, H. (2012). Acc. Chem. Res. 45, 1749–1758. [DOI] [PubMed]
  16. Olmstead, M. M., Beavers, C. M. & Paw, U. L. (2009). Acta Cryst. E65, m408–m409. [DOI] [PMC free article] [PubMed]
  17. Olmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048–m1050.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Stojanovic, M., Robinson, N. J., Ngo, T. & Sykora, R. E. (2011). J. Chem. Crystallogr. 41, 1425–1432.
  21. Varju, D. R., Wollschlaeger, S. A. & Leznoff, D. B. (2019). Chem. Eur. J. 25, 9017–9025. [DOI] [PubMed]
  22. Vostrikova, K. E. & Peresypkina, E. V. (2011). Eur. J. Inorg. Chem. pp. 811–815.
  23. Washecheck, D. M., Peterson, S. W., Reis, A. H. Jr & Williams, J. M. (1976). Inorg. Chem. 15, 74–78.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Zhou, B.-C., Kou, H.-Z., He, Y., Wang, R.-J., Li, Y.-D. & Wang, H.-G. (2003). Chin. J. Chem. 21, 352–355.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019015238/hb4322sup1.cif

e-75-01871-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015238/hb4322Isup2.hkl

e-75-01871-Isup2.hkl (464.4KB, hkl)

CCDC references: 1965195, 1965195

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES