Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 8;75(Pt 12):1844–1847. doi: 10.1107/S2056989019014877

Crystal structure of 1,4-bis­[5-(2-meth­oxy­phen­yl)-2H-tetra­zol-2-yl]butane

Young Min Byun a, Farwa Ume a, Ji Yeon Ryu a, Junseong Lee a,*, Hyoung-Ryun Park a,*
PMCID: PMC6895957  PMID: 31871742

The diffraction data confirmed the title compound as the main isomer produced in a coupling reaction. The structure and Hirshfeld surface analysis of the formed di-tetra­zolyl chelate ligand are reported.

Keywords: crystal structure, tetra­zole, bis-tetra­zol­yl, meth­oxy­lphenyl tetra­zole

Abstract

The title compound, C20H22N8O2, was synthesized by the coupling reaction of a sodium tetra­zolate salt and di­bromo­butane in a molar ratio of 2:1. The reaction can produce several possible regioisomers and the title compound was separated as the major product. The X-ray crystallographic study confirmed that the title compound crystallizes in the monoclinic P21/c space group and possesses a bridging butyl­ene group that connects two identical phenyl tetra­zole moieties. The butyl­ene group is attached not to the first but the second nitro­gen atoms of both tetra­zole rings. The dihedral angles between the phenyl groups and the adjacent tetra­zolyl rings are 5.32 (6) and 15.37 (7)°. In the crystal, the mol­ecules form centrosymmetric dimers through C—H⋯O hydrogen bonds between a C—H group of the butyl­ene linker and the O atom of a meth­oxy group.

Chemical context  

Tetra­zole ligands have four nitro­gen atoms in their five-membered rings and the lone pairs of these nitro­gen atoms are useful for coordination bonds with metal ions (Zhao et al., 2008). Tetra­zole has a variety of binding modes with metal ions, which results in the unusual formation of high-dimensional metal–organic frameworks (MOFs) or coordination polymers (Karaghiosoff et al., 2009; Liu et al., 2013). Valuable mono-, bis- and polytetra­zole ligands for the formation of MOFs and coordination polymers have been also reported (Boland et al., 2013; Fan et al., 2016; Tăbăcaru et al., 2018; Zhao et al., 2016). As an extension of a project on the study of self-assembly behaviour in solution, we designed a di­tetra­zolyl chelate ligand possessing a butane bridge. It is worth noting that tetra­zole has two different resonance structures in which the hydrogen atoms are located at either the N1 or N2 positions. In many cases, this results in the formation of several products (Lee et al., 2017). It is therefore essential to study the mol­ecular structure of synthesized tetra­zole complexes by X-ray crystallography.graphic file with name e-75-01844-scheme1.jpg

The title compound was isolated as an inter­mediate in the middle of the synthetic route for a chelate ligand. The reaction between the sodium salt of tetra­zole and 1,4-di­bromo­butane gave three isomeric products (Fig. 1). Using column chromatography, the major product was isolated and its mol­ecular structure was determined unambiguously by X-ray crystallography. This compound is a useful precursor for the synthesis of dinuclear metal complexes with the expectation of synergetic effects of two metal centers (Fig. 2). Herein, we report the synthesis and crystal structure of this compound.

Figure 1.

Figure 1

Synthesis of the title compound (I).

Figure 2.

Figure 2

Synthetic route of the desired dinuclear metal complexes from the title compound (I).

Structural commentary  

The reaction yielded three isomeric products as described in Section 5, Synthesis and crystallization, and the structural analysis confirms the formation of the desired major product. The mol­ecular structure of the title compound is shown in Fig. 3. There are no unusual bond lengths or angles. The title compound possesses two identical phenyl tetra­zole fragments, connected by a butyl (C17–C20) bridge. The butyl group is attached to the second N atom of both tetra­zole rings (N2 and N6, Fig. 3). The dihedral angles between the phenyl group and tetra­zolyl ring are somewhat different in the two phenyl­tetra­zolyl groups. One phenyl­tetra­zolyl group (N1–N4/C1–C7) is almost planar with an angle of 5.32 (6)° between the mean planes of the rings. However, the other phenyl­tetra­zolyl group (N5–N8/C9–C15) is tilted with a dihedral angle of 15.37 (7)°.

Figure 3.

Figure 3

A view of the mol­ecular structure of the title compound, with the atom labelling and 30% probability displacement ellipsoids.

Two intra­molecular C—H⋯N hydrogen bonds (Table 1) occur, which are shown as yellow dashed lines in Fig. 4. These inter­actions may contribute to the planarity of the phenyl­tetra­zolyl units.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N4 0.95 2.48 2.8371 (16) 102
C15—H15⋯N8 0.95 2.53 2.8586 (17) 101
C17—H17A⋯O1i 0.99 2.58 3.4337 (15) 144

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

A plot showing the intra­molecular C—H⋯N hydrogen bonding (dashed yellow lines) and short contacts between mol­ecules (dashed pink, sky-blue and blue lines).

Supra­molecular features  

The two phenyl­tetra­zolyl fragments exhibit different inter­molecular inter­actions. The tilted fragment (N5–N8/C9–C15) inter­acts with the butyl bridge of a glide-related mol­ecule through C19—H19A⋯C14ii [H⋯A = 2.812 (2) Å; symmetry code: (ii) x, −y + Inline graphic, z + Inline graphic], C19—H19A⋯C15ii [H⋯A = 2.895 (2) Å] and C17—H17B⋯N8ii [H⋯A = 2.729 (2) Å] contacts (Fig. 4, pink dashed lines). There is an additional weak C14ii—H14ii⋯O2 inter­action [H⋯A = 2.624 (2) Å] between the same pair of mol­ecules, which is indicated by a sky-blue dashed line in Fig. 4. The bridging butyl group forms a further C18—H18B⋯C5iii [H⋯C = 2.738 (2) Å; symmetry code: (iii) x, −y + Inline graphic, z − Inline graphic] close contact (Fig. 4, red dashed line) with a mol­ecule generated by an adjacent glide plane. The planar fragments of screw-related mol­ecules form C4—H4⋯C1iv [H⋯A = 2.692 (2) Å; symmetry code: (iv) −x + 2, y − Inline graphic, −z + Inline graphic] and C8—H8C⋯C7iv [H⋯A = 2.828 (2) Å] close contacts, which are indicated by blue dashed lines in the right-hand side of Fig. 4 (for clarity a different reference mol­ecule was used for the illustration of this contact). It is inter­esting that the C1 atom has another close C—H⋯C contact from the opposite side of the aromatic plane (Fig. 4, purple dashed lines), C16—H16A⋯C1v [H⋯C = 2.798 (2) Å; symmetry code: (v) −x + 1, y + Inline graphic, −z − Inline graphic]. There is one notable close contact, C17—H17A⋯O1i that can be considered a weak hydrogen bond, which is indicated by green dashed line in Fig. 5. This contact forms a dimeric rectangle between two mol­ecules. This rectangle extends in the c-axis direction by the short inter­actions described above.

Figure 5.

Figure 5

A plot showing the short contacts between mol­ecules (dashed green and blue lines).

To provide an overall view of the weak inter­actions between the mol­ecules, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) d norm surface plotted over a fixed colour scale of −0.1339 (red) to 1.4773 a.u. (blue). The 3D d norm surface of the title complex is shown in Fig. 6 a and 6b. The red spots indicate short contacts, i.e., negative d norm values on the surface, which highlight the most important weak inter­actions: C17—H17A⋯O1i hydrogen bond (green dashed line), C4—H4⋯C1iv contact (blue in Fig. 6 a), C18—H18B⋯C5iii (pink in Fig. 6 a, red in Fig. 6 b) and C16—H16A⋯C1v (blue in Fig. 6 b).

Figure 6.

Figure 6

d norm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions.(a) front side, (b) back side.

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.40, November 2018; Groom et al., 2016) for bis­(tetra­zol­yl)alkane fragments provided four hits with a methyl­ene bridge [SAVPAJ, SAVPIR (Freis et al., 2017), OYIWOK02 (Feng, Qiu et al., 2016) and UMOJEN (Feng, Bi et al., 2016)] and two with a propyl­ene bridge (SIBFIV, SIBFUH; Wurzenberger et al., 2018). The butyl­ene-bridged examples include a bis­tetra­zolyl copper complex (SIBGIW; Wurzenberger et al., 2018) and three bis­(pyridyl­tetra­zol­yl)silver complexes (QOKBAV, QOKBEZ, QOKBID; Wang et al., 2014). All of the above bis­(tetra­zol­yl)alkane structures are metal complexes. It is worth noting that inter­esting metal-free cyclic bis­tetra­zolyl compounds have been reported (VELPUZ, VELPOT; Voitekhovich et al., 2012) in which the bis­(tetra­zol­yl)butane fragment is part of a ring.

Synthesis and crystallization  

The synthesis scheme for the title compound is represented in Fig. 1. The sodium salt of 5-(2-meth­oxy­phen­yl)-1H-tetra­zole (495 mg, 2.5 mmol) and di­bromo­butane (150 µl, 1.25 mmol) were dissolved in aceto­nitrile and refluxed for 2 d. The resulting white solid was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using hexa­ne:acetone (1:1) as eluent. Three isomeric compounds were obtained, as shown in Fig. 1. The major product (I) (yield = 35%) was recrystallized in ethanol by the slow evaporation method and yielded colourless crystals of the title compound.

Spectroscopic data: 1H NMR (DMSO, 400 MHz): δ = 7.62 (t, 2H, Ph), 7.36 (d, 2H, Ph), 7.22 (d, 2H, Ph), 7.12 (t, 2H, Ph), 4.13 (s, 4H, CH2), 3.71 (s, 6H, OCH3), 1.66 (s, 4H, CH2). 13C NMR (125 MHz, DMSO): 156.56, 152.18, 133.10, 131.20, 120.80, 112.26, 111.91, 55.50, 46.63, 25.57 ppm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were included in calculated positions using a riding model, with C—H = 0.95–1.00 Å and U iso(H) = 1.5U eq(C) for methyl H atoms and U iso(H) = 1.2U eq(C) for all others. Two reflections (100 and 110) were omitted because of truncation by the beamstop.

Table 2. Experimental details.

Crystal data
Chemical formula C20H22N8O2
M r 406.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.2904 (2), 10.2785 (2), 14.4968 (3)
β (°) 100.2538 (9)
V3) 1948.71 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.1 × 0.1 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.706, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 26494, 4008, 3516
R int 0.021
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.098, 1.05
No. of reflections 4008
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.37

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138sup1.cif

e-75-01844-sup1.cif (805.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138Isup2.hkl

e-75-01844-Isup2.hkl (319.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup4.cml

CCDC references: 1963337, 1963337

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C20H22N8O2 F(000) = 856
Mr = 406.45 Dx = 1.385 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.2904 (2) Å Cell parameters from 9933 reflections
b = 10.2785 (2) Å θ = 2.5–26.4°
c = 14.4968 (3) Å µ = 0.10 mm1
β = 100.2538 (9)° T = 100 K
V = 1948.71 (6) Å3 Block, colorless
Z = 4 0.1 × 0.1 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 3516 reflections with I > 2σ(I)
φ and ω scans Rint = 0.021
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.5°, θmin = 2.4°
Tmin = 0.706, Tmax = 0.745 h = −16→16
26494 measured reflections k = −12→12
4008 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.7236P] where P = (Fo2 + 2Fc2)/3
4008 reflections (Δ/σ)max = 0.001
273 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C18(H18A,H18B), C19(H19A,H19B), C17(H17A,H17B), C20(H20A,H20B) 2.b Aromatic/amide H refined with riding coordinates: C7(H7), C13(H13), C15(H15), C4(H4), C6(H6), C12(H12), C5(H5), C14(H14) 2.c Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C16(H16A,H16B,H16C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.95431 (7) 0.24652 (8) 0.11811 (6) 0.0258 (2)
N1 0.86468 (7) 0.47789 (10) 0.06134 (7) 0.0217 (2)
N2 0.81869 (8) 0.58734 (10) 0.02753 (7) 0.0217 (2)
N5 0.60298 (7) 0.58496 (10) −0.44500 (7) 0.0226 (2)
N6 0.68182 (8) 0.51604 (10) −0.40215 (7) 0.0247 (2)
N4 0.77518 (8) 0.57102 (11) 0.15994 (7) 0.0269 (2)
C3 0.92713 (9) 0.26068 (12) 0.20399 (8) 0.0220 (3)
C1 0.83621 (8) 0.46963 (11) 0.14486 (8) 0.0198 (2)
N3 0.76475 (8) 0.64445 (11) 0.08397 (7) 0.0278 (2)
C9 0.62616 (9) 0.59998 (12) −0.52995 (8) 0.0220 (2)
O2 0.46627 (8) 0.77149 (12) −0.51135 (6) 0.0463 (3)
C10 0.56607 (9) 0.67077 (12) −0.60922 (8) 0.0215 (2)
N8 0.71619 (9) 0.54247 (13) −0.53723 (8) 0.0348 (3)
C7 0.83412 (9) 0.38359 (12) 0.30302 (8) 0.0238 (3)
H7 0.7911 0.4547 0.3117 0.029*
C2 0.86647 (9) 0.36911 (12) 0.21675 (8) 0.0207 (2)
C13 0.46290 (10) 0.80750 (13) −0.76430 (9) 0.0284 (3)
H13 0.4280 0.8544 −0.8169 0.034*
C18 0.74738 (9) 0.55296 (12) −0.13870 (8) 0.0232 (3)
H18A 0.6763 0.5728 −0.1314 0.028*
H18B 0.7596 0.4593 −0.1251 0.028*
C19 0.75877 (9) 0.57977 (12) −0.23988 (8) 0.0242 (3)
H19A 0.7355 0.6692 −0.2580 0.029*
H19B 0.8314 0.5718 −0.2464 0.029*
C15 0.59024 (9) 0.65380 (12) −0.69829 (8) 0.0237 (3)
H15 0.6431 0.5947 −0.7061 0.028*
C4 0.95664 (9) 0.17429 (12) 0.27783 (9) 0.0268 (3)
H4 0.9983 0.1016 0.2696 0.032*
C6 0.86318 (10) 0.29699 (13) 0.37594 (9) 0.0282 (3)
H6 0.8405 0.3085 0.4339 0.034*
N7 0.75068 (9) 0.48940 (13) −0.45441 (8) 0.0366 (3)
C17 0.82070 (9) 0.63252 (12) −0.06795 (8) 0.0240 (3)
H17A 0.8909 0.6243 −0.0814 0.029*
H17B 0.8010 0.7255 −0.0736 0.029*
C12 0.43688 (10) 0.82663 (13) −0.67683 (9) 0.0299 (3)
H12 0.3844 0.8866 −0.6698 0.036*
C11 0.48755 (10) 0.75822 (13) −0.59921 (8) 0.0276 (3)
C8 1.00848 (10) 0.13020 (13) 0.10279 (10) 0.0302 (3)
H8A 1.0215 0.1294 0.0383 0.045*
H8B 0.9673 0.0541 0.1129 0.045*
H8C 1.0737 0.1275 0.1467 0.045*
C5 0.92583 (10) 0.19321 (13) 0.36327 (9) 0.0289 (3)
H5 0.9478 0.1346 0.4135 0.035*
C20 0.69416 (10) 0.48127 (13) −0.30300 (8) 0.0259 (3)
H20A 0.7268 0.3946 −0.2934 0.031*
H20B 0.6259 0.4753 −0.2849 0.031*
C14 0.53931 (10) 0.72068 (13) −0.77559 (8) 0.0265 (3)
H14 0.5566 0.7071 −0.8357 0.032*
C16 0.38052 (17) 0.8497 (2) −0.50095 (12) 0.0780 (8)
H16A 0.3195 0.8174 −0.5428 0.117*
H16B 0.3934 0.9400 −0.5170 0.117*
H16C 0.3697 0.8453 −0.4359 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0290 (5) 0.0251 (4) 0.0246 (4) 0.0063 (4) 0.0083 (4) 0.0012 (3)
N1 0.0245 (5) 0.0214 (5) 0.0190 (5) 0.0009 (4) 0.0038 (4) 0.0011 (4)
N2 0.0242 (5) 0.0221 (5) 0.0186 (5) 0.0009 (4) 0.0035 (4) 0.0003 (4)
N5 0.0233 (5) 0.0256 (5) 0.0184 (5) 0.0025 (4) 0.0024 (4) 0.0011 (4)
N6 0.0260 (5) 0.0293 (6) 0.0184 (5) 0.0058 (4) 0.0030 (4) 0.0014 (4)
N4 0.0316 (6) 0.0290 (6) 0.0208 (5) 0.0073 (4) 0.0070 (4) 0.0029 (4)
C3 0.0189 (5) 0.0251 (6) 0.0217 (6) −0.0028 (4) 0.0029 (4) 0.0003 (5)
C1 0.0183 (5) 0.0222 (6) 0.0186 (5) −0.0020 (4) 0.0024 (4) −0.0023 (4)
N3 0.0332 (6) 0.0288 (6) 0.0227 (5) 0.0071 (5) 0.0082 (4) 0.0018 (4)
C9 0.0234 (6) 0.0241 (6) 0.0185 (6) 0.0016 (5) 0.0037 (4) −0.0030 (5)
O2 0.0503 (6) 0.0703 (8) 0.0190 (5) 0.0395 (6) 0.0080 (4) 0.0032 (5)
C10 0.0227 (6) 0.0234 (6) 0.0181 (6) −0.0002 (5) 0.0024 (4) −0.0010 (5)
N8 0.0351 (6) 0.0489 (7) 0.0212 (5) 0.0174 (5) 0.0067 (5) 0.0042 (5)
C7 0.0229 (6) 0.0275 (6) 0.0208 (6) −0.0020 (5) 0.0032 (5) −0.0014 (5)
C2 0.0192 (5) 0.0233 (6) 0.0188 (6) −0.0028 (4) 0.0015 (4) 0.0004 (5)
C13 0.0335 (7) 0.0285 (6) 0.0214 (6) −0.0001 (5) 0.0000 (5) 0.0046 (5)
C18 0.0253 (6) 0.0254 (6) 0.0188 (6) 0.0001 (5) 0.0040 (5) 0.0036 (5)
C19 0.0268 (6) 0.0267 (6) 0.0193 (6) 0.0018 (5) 0.0047 (5) 0.0038 (5)
C15 0.0265 (6) 0.0242 (6) 0.0213 (6) −0.0004 (5) 0.0067 (5) −0.0012 (5)
C4 0.0221 (6) 0.0264 (6) 0.0313 (7) 0.0007 (5) 0.0030 (5) 0.0052 (5)
C6 0.0283 (6) 0.0363 (7) 0.0200 (6) −0.0044 (5) 0.0047 (5) 0.0025 (5)
N7 0.0370 (6) 0.0523 (8) 0.0214 (5) 0.0202 (6) 0.0075 (5) 0.0051 (5)
C17 0.0292 (6) 0.0245 (6) 0.0189 (6) −0.0004 (5) 0.0062 (5) 0.0041 (5)
C12 0.0311 (7) 0.0320 (7) 0.0254 (6) 0.0100 (5) 0.0019 (5) 0.0018 (5)
C11 0.0293 (6) 0.0345 (7) 0.0187 (6) 0.0067 (5) 0.0035 (5) −0.0008 (5)
C8 0.0318 (7) 0.0250 (6) 0.0356 (7) 0.0057 (5) 0.0107 (6) −0.0010 (5)
C5 0.0259 (6) 0.0338 (7) 0.0256 (6) −0.0028 (5) 0.0008 (5) 0.0098 (5)
C20 0.0304 (6) 0.0292 (7) 0.0174 (6) 0.0015 (5) 0.0026 (5) 0.0046 (5)
C14 0.0335 (7) 0.0288 (6) 0.0177 (6) −0.0033 (5) 0.0060 (5) 0.0005 (5)
C16 0.0869 (14) 0.1223 (19) 0.0290 (8) 0.0798 (14) 0.0218 (9) 0.0134 (10)

Geometric parameters (Å, º)

O1—C3 1.3644 (14) C18—H18A 0.9900
O1—C8 1.4331 (15) C18—H18B 0.9900
N1—N2 1.3315 (14) C18—C19 1.5262 (16)
N1—C1 1.3339 (15) C18—C17 1.5214 (17)
N2—N3 1.3179 (14) C19—H19A 0.9900
N2—C17 1.4647 (14) C19—H19B 0.9900
N5—N6 1.3243 (14) C19—C20 1.5232 (17)
N5—C9 1.3306 (15) C15—H15 0.9500
N6—N7 1.3166 (15) C15—C14 1.3843 (17)
N6—C20 1.4618 (15) C4—H4 0.9500
N4—C1 1.3619 (15) C4—C5 1.3858 (18)
N4—N3 1.3218 (15) C6—H6 0.9500
C3—C2 1.4069 (17) C6—C5 1.3854 (19)
C3—C4 1.3924 (17) C17—H17A 0.9900
C1—C2 1.4719 (16) C17—H17B 0.9900
C9—C10 1.4700 (16) C12—H12 0.9500
C9—N8 1.3555 (16) C12—C11 1.3945 (18)
O2—C11 1.3597 (15) C8—H8A 0.9800
O2—C16 1.4242 (18) C8—H8B 0.9800
C10—C15 1.3959 (16) C8—H8C 0.9800
C10—C11 1.4043 (17) C5—H5 0.9500
N8—N7 1.3240 (16) C20—H20A 0.9900
C7—H7 0.9500 C20—H20B 0.9900
C7—C2 1.4009 (16) C14—H14 0.9500
C7—C6 1.3833 (18) C16—H16A 0.9800
C13—H13 0.9500 C16—H16B 0.9800
C13—C12 1.3864 (18) C16—H16C 0.9800
C13—C14 1.3834 (18)
C3—O1—C8 116.89 (10) C10—C15—H15 119.1
N2—N1—C1 101.66 (9) C14—C15—C10 121.79 (11)
N1—N2—C17 122.10 (10) C14—C15—H15 119.1
N3—N2—N1 114.36 (9) C3—C4—H4 119.7
N3—N2—C17 123.30 (10) C5—C4—C3 120.67 (12)
N6—N5—C9 101.65 (9) C5—C4—H4 119.7
N5—N6—C20 122.20 (10) C7—C6—H6 120.4
N7—N6—N5 114.48 (10) C7—C6—C5 119.12 (11)
N7—N6—C20 123.17 (10) C5—C6—H6 120.4
N3—N4—C1 106.28 (10) N6—N7—N8 105.79 (10)
O1—C3—C2 117.10 (10) N2—C17—C18 110.45 (9)
O1—C3—C4 123.32 (11) N2—C17—H17A 109.6
C4—C3—C2 119.58 (11) N2—C17—H17B 109.6
N1—C1—N4 111.73 (10) C18—C17—H17A 109.6
N1—C1—C2 126.98 (10) C18—C17—H17B 109.6
N4—C1—C2 121.26 (10) H17A—C17—H17B 108.1
N2—N3—N4 105.96 (10) C13—C12—H12 119.9
N5—C9—C10 126.72 (10) C13—C12—C11 120.22 (12)
N5—C9—N8 111.99 (10) C11—C12—H12 119.9
N8—C9—C10 121.28 (10) O2—C11—C10 116.32 (11)
C11—O2—C16 117.36 (11) O2—C11—C12 123.66 (11)
C15—C10—C9 118.61 (11) C12—C11—C10 120.02 (11)
C15—C10—C11 118.25 (11) O1—C8—H8A 109.5
C11—C10—C9 123.11 (10) O1—C8—H8B 109.5
N7—N8—C9 106.08 (10) O1—C8—H8C 109.5
C2—C7—H7 119.1 H8A—C8—H8B 109.5
C6—C7—H7 119.1 H8A—C8—H8C 109.5
C6—C7—C2 121.70 (12) H8B—C8—H8C 109.5
C3—C2—C1 123.62 (10) C4—C5—H5 119.8
C7—C2—C3 118.41 (11) C6—C5—C4 120.45 (12)
C7—C2—C1 117.97 (11) C6—C5—H5 119.8
C12—C13—H13 119.7 N6—C20—C19 112.38 (10)
C14—C13—H13 119.7 N6—C20—H20A 109.1
C14—C13—C12 120.50 (12) N6—C20—H20B 109.1
H18A—C18—H18B 107.8 C19—C20—H20A 109.1
C19—C18—H18A 109.0 C19—C20—H20B 109.1
C19—C18—H18B 109.0 H20A—C20—H20B 107.9
C17—C18—H18A 109.0 C13—C14—C15 119.21 (11)
C17—C18—H18B 109.0 C13—C14—H14 120.4
C17—C18—C19 112.93 (10) C15—C14—H14 120.4
C18—C19—H19A 110.0 O2—C16—H16A 109.5
C18—C19—H19B 110.0 O2—C16—H16B 109.5
H19A—C19—H19B 108.4 O2—C16—H16C 109.5
C20—C19—C18 108.39 (10) H16A—C16—H16B 109.5
C20—C19—H19A 110.0 H16A—C16—H16C 109.5
C20—C19—H19B 110.0 H16B—C16—H16C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···N4 0.95 2.48 2.8371 (16) 102
C15—H15···N8 0.95 2.53 2.8586 (17) 101
C17—H17A···O1i 0.99 2.58 3.4337 (15) 144

Symmetry code: (i) −x+2, −y+1, −z.

Funding Statement

This work was funded by National Research Foundation of Korea grants 2016R1D1A1B03930507, 2019R1A2C1001989, and 2015R1A4A1041036.

References

  1. Boland, Y., Safin, D. A., Tinant, B., Babashkina, M. G., Marchand-Brynaert, J. & Garcia, Y. (2013). New J. Chem. 37, 1174–1179.
  2. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Fan, J.-Z., Du, C.-C. & Wang, D.-Z. (2016). Polyhedron, 117, 487–495.
  5. Feng, Y.-A., Qiu, H., Yang, S.-A., Du, J. & Zhang, T.-L. (2016). Dalton Trans. 45, 17117–17122. [DOI] [PubMed]
  6. Feng, Y., Bi, Y., Zhao, W. & Zhang, T. (2016). J. Mater. Chem. A, 4, 7596–7600.
  7. Freis, M., Klapötke, T. M., Stierstorfer, J. & Szimhardt, N. (2017). Inorg. Chem. 56, 7936–7947. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176. [DOI] [PubMed]
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Lee, S. G., Ryu, J. Y. & Lee, J. (2017). Acta Cryst. E73, 1971–1973. [DOI] [PMC free article] [PubMed]
  12. Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725. [DOI] [PubMed]
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Tăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1–30.
  18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  19. Voitekhovich, S. V., Lyakhov, A. S., Ivashkevich, L. S. & Gaponik, P. N. (2012). Tetrahedron Lett. 53, 6111–6114.
  20. Wang, X.-L., Li, N., Tian, A.-X., Ying, J., Li, T.-J., Lin, X.-L., Luan, J. & Yang, Y. (2014). Inorg. Chem. 53, 7118–7129. [DOI] [PubMed]
  21. Wurzenberger, M. H. H., Szimhardt, N. & Stierstorfer, J. (2018). J. Am. Chem. Soc. 140, 3206–3209. [DOI] [PubMed]
  22. Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. [DOI] [PubMed]
  23. Zhao, Y.-P., Li, Y., Cui, C.-Y., Xiao, Y., Li, R., Wang, S.-H., Zheng, F.-K. & Guo, G.-C. (2016). Inorg. Chem. 55, 7335–7340. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138sup1.cif

e-75-01844-sup1.cif (805.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138Isup2.hkl

e-75-01844-Isup2.hkl (319.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup4.cml

CCDC references: 1963337, 1963337

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES