The diffraction data confirmed the title compound as the main isomer produced in a coupling reaction. The structure and Hirshfeld surface analysis of the formed di-tetrazolyl chelate ligand are reported.
Keywords: crystal structure, tetrazole, bis-tetrazolyl, methoxylphenyl tetrazole
Abstract
The title compound, C20H22N8O2, was synthesized by the coupling reaction of a sodium tetrazolate salt and dibromobutane in a molar ratio of 2:1. The reaction can produce several possible regioisomers and the title compound was separated as the major product. The X-ray crystallographic study confirmed that the title compound crystallizes in the monoclinic P21/c space group and possesses a bridging butylene group that connects two identical phenyl tetrazole moieties. The butylene group is attached not to the first but the second nitrogen atoms of both tetrazole rings. The dihedral angles between the phenyl groups and the adjacent tetrazolyl rings are 5.32 (6) and 15.37 (7)°. In the crystal, the molecules form centrosymmetric dimers through C—H⋯O hydrogen bonds between a C—H group of the butylene linker and the O atom of a methoxy group.
Chemical context
Tetrazole ligands have four nitrogen atoms in their five-membered rings and the lone pairs of these nitrogen atoms are useful for coordination bonds with metal ions (Zhao et al., 2008 ▸). Tetrazole has a variety of binding modes with metal ions, which results in the unusual formation of high-dimensional metal–organic frameworks (MOFs) or coordination polymers (Karaghiosoff et al., 2009 ▸; Liu et al., 2013 ▸). Valuable mono-, bis- and polytetrazole ligands for the formation of MOFs and coordination polymers have been also reported (Boland et al., 2013 ▸; Fan et al., 2016 ▸; Tăbăcaru et al., 2018 ▸; Zhao et al., 2016 ▸). As an extension of a project on the study of self-assembly behaviour in solution, we designed a ditetrazolyl chelate ligand possessing a butane bridge. It is worth noting that tetrazole has two different resonance structures in which the hydrogen atoms are located at either the N1 or N2 positions. In many cases, this results in the formation of several products (Lee et al., 2017 ▸). It is therefore essential to study the molecular structure of synthesized tetrazole complexes by X-ray crystallography.
The title compound was isolated as an intermediate in the middle of the synthetic route for a chelate ligand. The reaction between the sodium salt of tetrazole and 1,4-dibromobutane gave three isomeric products (Fig. 1 ▸). Using column chromatography, the major product was isolated and its molecular structure was determined unambiguously by X-ray crystallography. This compound is a useful precursor for the synthesis of dinuclear metal complexes with the expectation of synergetic effects of two metal centers (Fig. 2 ▸). Herein, we report the synthesis and crystal structure of this compound.
Figure 1.
Synthesis of the title compound (I).
Figure 2.
Synthetic route of the desired dinuclear metal complexes from the title compound (I).
Structural commentary
The reaction yielded three isomeric products as described in Section 5, Synthesis and crystallization, and the structural analysis confirms the formation of the desired major product. The molecular structure of the title compound is shown in Fig. 3 ▸. There are no unusual bond lengths or angles. The title compound possesses two identical phenyl tetrazole fragments, connected by a butyl (C17–C20) bridge. The butyl group is attached to the second N atom of both tetrazole rings (N2 and N6, Fig. 3 ▸). The dihedral angles between the phenyl group and tetrazolyl ring are somewhat different in the two phenyltetrazolyl groups. One phenyltetrazolyl group (N1–N4/C1–C7) is almost planar with an angle of 5.32 (6)° between the mean planes of the rings. However, the other phenyltetrazolyl group (N5–N8/C9–C15) is tilted with a dihedral angle of 15.37 (7)°.
Figure 3.
A view of the molecular structure of the title compound, with the atom labelling and 30% probability displacement ellipsoids.
Two intramolecular C—H⋯N hydrogen bonds (Table 1 ▸) occur, which are shown as yellow dashed lines in Fig. 4 ▸. These interactions may contribute to the planarity of the phenyltetrazolyl units.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C7—H7⋯N4 | 0.95 | 2.48 | 2.8371 (16) | 102 |
| C15—H15⋯N8 | 0.95 | 2.53 | 2.8586 (17) | 101 |
| C17—H17A⋯O1i | 0.99 | 2.58 | 3.4337 (15) | 144 |
Symmetry code: (i)
.
Figure 4.
A plot showing the intramolecular C—H⋯N hydrogen bonding (dashed yellow lines) and short contacts between molecules (dashed pink, sky-blue and blue lines).
Supramolecular features
The two phenyltetrazolyl fragments exhibit different intermolecular interactions. The tilted fragment (N5–N8/C9–C15) interacts with the butyl bridge of a glide-related molecule through C19—H19A⋯C14ii [H⋯A = 2.812 (2) Å; symmetry code: (ii) x, −y +
, z +
], C19—H19A⋯C15ii [H⋯A = 2.895 (2) Å] and C17—H17B⋯N8ii [H⋯A = 2.729 (2) Å] contacts (Fig. 4 ▸, pink dashed lines). There is an additional weak C14ii—H14ii⋯O2 interaction [H⋯A = 2.624 (2) Å] between the same pair of molecules, which is indicated by a sky-blue dashed line in Fig. 4 ▸. The bridging butyl group forms a further C18—H18B⋯C5iii [H⋯C = 2.738 (2) Å; symmetry code: (iii) x, −y +
, z −
] close contact (Fig. 4 ▸, red dashed line) with a molecule generated by an adjacent glide plane. The planar fragments of screw-related molecules form C4—H4⋯C1iv [H⋯A = 2.692 (2) Å; symmetry code: (iv) −x + 2, y −
, −z +
] and C8—H8C⋯C7iv [H⋯A = 2.828 (2) Å] close contacts, which are indicated by blue dashed lines in the right-hand side of Fig. 4 ▸ (for clarity a different reference molecule was used for the illustration of this contact). It is interesting that the C1 atom has another close C—H⋯C contact from the opposite side of the aromatic plane (Fig. 4 ▸, purple dashed lines), C16—H16A⋯C1v [H⋯C = 2.798 (2) Å; symmetry code: (v) −x + 1, y +
, −z −
]. There is one notable close contact, C17—H17A⋯O1i that can be considered a weak hydrogen bond, which is indicated by green dashed line in Fig. 5 ▸. This contact forms a dimeric rectangle between two molecules. This rectangle extends in the c-axis direction by the short interactions described above.
Figure 5.
A plot showing the short contacts between molecules (dashed green and blue lines).
To provide an overall view of the weak interactions between the molecules, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) was performed with CrystalExplorer17 (Turner et al., 2017 ▸). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) d norm surface plotted over a fixed colour scale of −0.1339 (red) to 1.4773 a.u. (blue). The 3D d norm surface of the title complex is shown in Fig. 6 ▸ a and 6b. The red spots indicate short contacts, i.e., negative d norm values on the surface, which highlight the most important weak interactions: C17—H17A⋯O1i hydrogen bond (green dashed line), C4—H4⋯C1iv contact (blue in Fig. 6 ▸ a), C18—H18B⋯C5iii (pink in Fig. 6 ▸ a, red in Fig. 6 ▸ b) and C16—H16A⋯C1v (blue in Fig. 6 ▸ b).
Figure 6.
d norm mapped on the Hirshfeld surface for visualizing the intermolecular interactions.(a) front side, (b) back side.
Database survey
A search of the Cambridge Structural Database (CSD Version 5.40, November 2018; Groom et al., 2016 ▸) for bis(tetrazolyl)alkane fragments provided four hits with a methylene bridge [SAVPAJ, SAVPIR (Freis et al., 2017 ▸), OYIWOK02 (Feng, Qiu et al., 2016 ▸) and UMOJEN (Feng, Bi et al., 2016 ▸)] and two with a propylene bridge (SIBFIV, SIBFUH; Wurzenberger et al., 2018 ▸). The butylene-bridged examples include a bistetrazolyl copper complex (SIBGIW; Wurzenberger et al., 2018 ▸) and three bis(pyridyltetrazolyl)silver complexes (QOKBAV, QOKBEZ, QOKBID; Wang et al., 2014 ▸). All of the above bis(tetrazolyl)alkane structures are metal complexes. It is worth noting that interesting metal-free cyclic bistetrazolyl compounds have been reported (VELPUZ, VELPOT; Voitekhovich et al., 2012 ▸) in which the bis(tetrazolyl)butane fragment is part of a ring.
Synthesis and crystallization
The synthesis scheme for the title compound is represented in Fig. 1 ▸. The sodium salt of 5-(2-methoxyphenyl)-1H-tetrazole (495 mg, 2.5 mmol) and dibromobutane (150 µl, 1.25 mmol) were dissolved in acetonitrile and refluxed for 2 d. The resulting white solid was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using hexane:acetone (1:1) as eluent. Three isomeric compounds were obtained, as shown in Fig. 1 ▸. The major product (I) (yield = 35%) was recrystallized in ethanol by the slow evaporation method and yielded colourless crystals of the title compound.
Spectroscopic data: 1H NMR (DMSO, 400 MHz): δ = 7.62 (t, 2H, Ph), 7.36 (d, 2H, Ph), 7.22 (d, 2H, Ph), 7.12 (t, 2H, Ph), 4.13 (s, 4H, CH2), 3.71 (s, 6H, OCH3), 1.66 (s, 4H, CH2). 13C NMR (125 MHz, DMSO): 156.56, 152.18, 133.10, 131.20, 120.80, 112.26, 111.91, 55.50, 46.63, 25.57 ppm.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were included in calculated positions using a riding model, with C—H = 0.95–1.00 Å and U iso(H) = 1.5U eq(C) for methyl H atoms and U iso(H) = 1.2U eq(C) for all others. Two reflections (100 and 110) were omitted because of truncation by the beamstop.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C20H22N8O2 |
| M r | 406.45 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 100 |
| a, b, c (Å) | 13.2904 (2), 10.2785 (2), 14.4968 (3) |
| β (°) | 100.2538 (9) |
| V (Å3) | 1948.71 (6) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.10 |
| Crystal size (mm) | 0.1 × 0.1 × 0.08 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.706, 0.745 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 26494, 4008, 3516 |
| R int | 0.021 |
| (sin θ/λ)max (Å−1) | 0.627 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.037, 0.098, 1.05 |
| No. of reflections | 4008 |
| No. of parameters | 273 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.25, −0.37 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup4.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C20H22N8O2 | F(000) = 856 |
| Mr = 406.45 | Dx = 1.385 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 13.2904 (2) Å | Cell parameters from 9933 reflections |
| b = 10.2785 (2) Å | θ = 2.5–26.4° |
| c = 14.4968 (3) Å | µ = 0.10 mm−1 |
| β = 100.2538 (9)° | T = 100 K |
| V = 1948.71 (6) Å3 | Block, colorless |
| Z = 4 | 0.1 × 0.1 × 0.08 mm |
Data collection
| Bruker APEXII CCD diffractometer | 3516 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.021 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.5°, θmin = 2.4° |
| Tmin = 0.706, Tmax = 0.745 | h = −16→16 |
| 26494 measured reflections | k = −12→12 |
| 4008 independent reflections | l = −18→18 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.098 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.7236P] where P = (Fo2 + 2Fc2)/3 |
| 4008 reflections | (Δ/σ)max = 0.001 |
| 273 parameters | Δρmax = 0.25 e Å−3 |
| 0 restraints | Δρmin = −0.37 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C18(H18A,H18B), C19(H19A,H19B), C17(H17A,H17B), C20(H20A,H20B) 2.b Aromatic/amide H refined with riding coordinates: C7(H7), C13(H13), C15(H15), C4(H4), C6(H6), C12(H12), C5(H5), C14(H14) 2.c Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C16(H16A,H16B,H16C) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.95431 (7) | 0.24652 (8) | 0.11811 (6) | 0.0258 (2) | |
| N1 | 0.86468 (7) | 0.47789 (10) | 0.06134 (7) | 0.0217 (2) | |
| N2 | 0.81869 (8) | 0.58734 (10) | 0.02753 (7) | 0.0217 (2) | |
| N5 | 0.60298 (7) | 0.58496 (10) | −0.44500 (7) | 0.0226 (2) | |
| N6 | 0.68182 (8) | 0.51604 (10) | −0.40215 (7) | 0.0247 (2) | |
| N4 | 0.77518 (8) | 0.57102 (11) | 0.15994 (7) | 0.0269 (2) | |
| C3 | 0.92713 (9) | 0.26068 (12) | 0.20399 (8) | 0.0220 (3) | |
| C1 | 0.83621 (8) | 0.46963 (11) | 0.14486 (8) | 0.0198 (2) | |
| N3 | 0.76475 (8) | 0.64445 (11) | 0.08397 (7) | 0.0278 (2) | |
| C9 | 0.62616 (9) | 0.59998 (12) | −0.52995 (8) | 0.0220 (2) | |
| O2 | 0.46627 (8) | 0.77149 (12) | −0.51135 (6) | 0.0463 (3) | |
| C10 | 0.56607 (9) | 0.67077 (12) | −0.60922 (8) | 0.0215 (2) | |
| N8 | 0.71619 (9) | 0.54247 (13) | −0.53723 (8) | 0.0348 (3) | |
| C7 | 0.83412 (9) | 0.38359 (12) | 0.30302 (8) | 0.0238 (3) | |
| H7 | 0.7911 | 0.4547 | 0.3117 | 0.029* | |
| C2 | 0.86647 (9) | 0.36911 (12) | 0.21675 (8) | 0.0207 (2) | |
| C13 | 0.46290 (10) | 0.80750 (13) | −0.76430 (9) | 0.0284 (3) | |
| H13 | 0.4280 | 0.8544 | −0.8169 | 0.034* | |
| C18 | 0.74738 (9) | 0.55296 (12) | −0.13870 (8) | 0.0232 (3) | |
| H18A | 0.6763 | 0.5728 | −0.1314 | 0.028* | |
| H18B | 0.7596 | 0.4593 | −0.1251 | 0.028* | |
| C19 | 0.75877 (9) | 0.57977 (12) | −0.23988 (8) | 0.0242 (3) | |
| H19A | 0.7355 | 0.6692 | −0.2580 | 0.029* | |
| H19B | 0.8314 | 0.5718 | −0.2464 | 0.029* | |
| C15 | 0.59024 (9) | 0.65380 (12) | −0.69829 (8) | 0.0237 (3) | |
| H15 | 0.6431 | 0.5947 | −0.7061 | 0.028* | |
| C4 | 0.95664 (9) | 0.17429 (12) | 0.27783 (9) | 0.0268 (3) | |
| H4 | 0.9983 | 0.1016 | 0.2696 | 0.032* | |
| C6 | 0.86318 (10) | 0.29699 (13) | 0.37594 (9) | 0.0282 (3) | |
| H6 | 0.8405 | 0.3085 | 0.4339 | 0.034* | |
| N7 | 0.75068 (9) | 0.48940 (13) | −0.45441 (8) | 0.0366 (3) | |
| C17 | 0.82070 (9) | 0.63252 (12) | −0.06795 (8) | 0.0240 (3) | |
| H17A | 0.8909 | 0.6243 | −0.0814 | 0.029* | |
| H17B | 0.8010 | 0.7255 | −0.0736 | 0.029* | |
| C12 | 0.43688 (10) | 0.82663 (13) | −0.67683 (9) | 0.0299 (3) | |
| H12 | 0.3844 | 0.8866 | −0.6698 | 0.036* | |
| C11 | 0.48755 (10) | 0.75822 (13) | −0.59921 (8) | 0.0276 (3) | |
| C8 | 1.00848 (10) | 0.13020 (13) | 0.10279 (10) | 0.0302 (3) | |
| H8A | 1.0215 | 0.1294 | 0.0383 | 0.045* | |
| H8B | 0.9673 | 0.0541 | 0.1129 | 0.045* | |
| H8C | 1.0737 | 0.1275 | 0.1467 | 0.045* | |
| C5 | 0.92583 (10) | 0.19321 (13) | 0.36327 (9) | 0.0289 (3) | |
| H5 | 0.9478 | 0.1346 | 0.4135 | 0.035* | |
| C20 | 0.69416 (10) | 0.48127 (13) | −0.30300 (8) | 0.0259 (3) | |
| H20A | 0.7268 | 0.3946 | −0.2934 | 0.031* | |
| H20B | 0.6259 | 0.4753 | −0.2849 | 0.031* | |
| C14 | 0.53931 (10) | 0.72068 (13) | −0.77559 (8) | 0.0265 (3) | |
| H14 | 0.5566 | 0.7071 | −0.8357 | 0.032* | |
| C16 | 0.38052 (17) | 0.8497 (2) | −0.50095 (12) | 0.0780 (8) | |
| H16A | 0.3195 | 0.8174 | −0.5428 | 0.117* | |
| H16B | 0.3934 | 0.9400 | −0.5170 | 0.117* | |
| H16C | 0.3697 | 0.8453 | −0.4359 | 0.117* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0290 (5) | 0.0251 (4) | 0.0246 (4) | 0.0063 (4) | 0.0083 (4) | 0.0012 (3) |
| N1 | 0.0245 (5) | 0.0214 (5) | 0.0190 (5) | 0.0009 (4) | 0.0038 (4) | 0.0011 (4) |
| N2 | 0.0242 (5) | 0.0221 (5) | 0.0186 (5) | 0.0009 (4) | 0.0035 (4) | 0.0003 (4) |
| N5 | 0.0233 (5) | 0.0256 (5) | 0.0184 (5) | 0.0025 (4) | 0.0024 (4) | 0.0011 (4) |
| N6 | 0.0260 (5) | 0.0293 (6) | 0.0184 (5) | 0.0058 (4) | 0.0030 (4) | 0.0014 (4) |
| N4 | 0.0316 (6) | 0.0290 (6) | 0.0208 (5) | 0.0073 (4) | 0.0070 (4) | 0.0029 (4) |
| C3 | 0.0189 (5) | 0.0251 (6) | 0.0217 (6) | −0.0028 (4) | 0.0029 (4) | 0.0003 (5) |
| C1 | 0.0183 (5) | 0.0222 (6) | 0.0186 (5) | −0.0020 (4) | 0.0024 (4) | −0.0023 (4) |
| N3 | 0.0332 (6) | 0.0288 (6) | 0.0227 (5) | 0.0071 (5) | 0.0082 (4) | 0.0018 (4) |
| C9 | 0.0234 (6) | 0.0241 (6) | 0.0185 (6) | 0.0016 (5) | 0.0037 (4) | −0.0030 (5) |
| O2 | 0.0503 (6) | 0.0703 (8) | 0.0190 (5) | 0.0395 (6) | 0.0080 (4) | 0.0032 (5) |
| C10 | 0.0227 (6) | 0.0234 (6) | 0.0181 (6) | −0.0002 (5) | 0.0024 (4) | −0.0010 (5) |
| N8 | 0.0351 (6) | 0.0489 (7) | 0.0212 (5) | 0.0174 (5) | 0.0067 (5) | 0.0042 (5) |
| C7 | 0.0229 (6) | 0.0275 (6) | 0.0208 (6) | −0.0020 (5) | 0.0032 (5) | −0.0014 (5) |
| C2 | 0.0192 (5) | 0.0233 (6) | 0.0188 (6) | −0.0028 (4) | 0.0015 (4) | 0.0004 (5) |
| C13 | 0.0335 (7) | 0.0285 (6) | 0.0214 (6) | −0.0001 (5) | 0.0000 (5) | 0.0046 (5) |
| C18 | 0.0253 (6) | 0.0254 (6) | 0.0188 (6) | 0.0001 (5) | 0.0040 (5) | 0.0036 (5) |
| C19 | 0.0268 (6) | 0.0267 (6) | 0.0193 (6) | 0.0018 (5) | 0.0047 (5) | 0.0038 (5) |
| C15 | 0.0265 (6) | 0.0242 (6) | 0.0213 (6) | −0.0004 (5) | 0.0067 (5) | −0.0012 (5) |
| C4 | 0.0221 (6) | 0.0264 (6) | 0.0313 (7) | 0.0007 (5) | 0.0030 (5) | 0.0052 (5) |
| C6 | 0.0283 (6) | 0.0363 (7) | 0.0200 (6) | −0.0044 (5) | 0.0047 (5) | 0.0025 (5) |
| N7 | 0.0370 (6) | 0.0523 (8) | 0.0214 (5) | 0.0202 (6) | 0.0075 (5) | 0.0051 (5) |
| C17 | 0.0292 (6) | 0.0245 (6) | 0.0189 (6) | −0.0004 (5) | 0.0062 (5) | 0.0041 (5) |
| C12 | 0.0311 (7) | 0.0320 (7) | 0.0254 (6) | 0.0100 (5) | 0.0019 (5) | 0.0018 (5) |
| C11 | 0.0293 (6) | 0.0345 (7) | 0.0187 (6) | 0.0067 (5) | 0.0035 (5) | −0.0008 (5) |
| C8 | 0.0318 (7) | 0.0250 (6) | 0.0356 (7) | 0.0057 (5) | 0.0107 (6) | −0.0010 (5) |
| C5 | 0.0259 (6) | 0.0338 (7) | 0.0256 (6) | −0.0028 (5) | 0.0008 (5) | 0.0098 (5) |
| C20 | 0.0304 (6) | 0.0292 (7) | 0.0174 (6) | 0.0015 (5) | 0.0026 (5) | 0.0046 (5) |
| C14 | 0.0335 (7) | 0.0288 (6) | 0.0177 (6) | −0.0033 (5) | 0.0060 (5) | 0.0005 (5) |
| C16 | 0.0869 (14) | 0.1223 (19) | 0.0290 (8) | 0.0798 (14) | 0.0218 (9) | 0.0134 (10) |
Geometric parameters (Å, º)
| O1—C3 | 1.3644 (14) | C18—H18A | 0.9900 |
| O1—C8 | 1.4331 (15) | C18—H18B | 0.9900 |
| N1—N2 | 1.3315 (14) | C18—C19 | 1.5262 (16) |
| N1—C1 | 1.3339 (15) | C18—C17 | 1.5214 (17) |
| N2—N3 | 1.3179 (14) | C19—H19A | 0.9900 |
| N2—C17 | 1.4647 (14) | C19—H19B | 0.9900 |
| N5—N6 | 1.3243 (14) | C19—C20 | 1.5232 (17) |
| N5—C9 | 1.3306 (15) | C15—H15 | 0.9500 |
| N6—N7 | 1.3166 (15) | C15—C14 | 1.3843 (17) |
| N6—C20 | 1.4618 (15) | C4—H4 | 0.9500 |
| N4—C1 | 1.3619 (15) | C4—C5 | 1.3858 (18) |
| N4—N3 | 1.3218 (15) | C6—H6 | 0.9500 |
| C3—C2 | 1.4069 (17) | C6—C5 | 1.3854 (19) |
| C3—C4 | 1.3924 (17) | C17—H17A | 0.9900 |
| C1—C2 | 1.4719 (16) | C17—H17B | 0.9900 |
| C9—C10 | 1.4700 (16) | C12—H12 | 0.9500 |
| C9—N8 | 1.3555 (16) | C12—C11 | 1.3945 (18) |
| O2—C11 | 1.3597 (15) | C8—H8A | 0.9800 |
| O2—C16 | 1.4242 (18) | C8—H8B | 0.9800 |
| C10—C15 | 1.3959 (16) | C8—H8C | 0.9800 |
| C10—C11 | 1.4043 (17) | C5—H5 | 0.9500 |
| N8—N7 | 1.3240 (16) | C20—H20A | 0.9900 |
| C7—H7 | 0.9500 | C20—H20B | 0.9900 |
| C7—C2 | 1.4009 (16) | C14—H14 | 0.9500 |
| C7—C6 | 1.3833 (18) | C16—H16A | 0.9800 |
| C13—H13 | 0.9500 | C16—H16B | 0.9800 |
| C13—C12 | 1.3864 (18) | C16—H16C | 0.9800 |
| C13—C14 | 1.3834 (18) | ||
| C3—O1—C8 | 116.89 (10) | C10—C15—H15 | 119.1 |
| N2—N1—C1 | 101.66 (9) | C14—C15—C10 | 121.79 (11) |
| N1—N2—C17 | 122.10 (10) | C14—C15—H15 | 119.1 |
| N3—N2—N1 | 114.36 (9) | C3—C4—H4 | 119.7 |
| N3—N2—C17 | 123.30 (10) | C5—C4—C3 | 120.67 (12) |
| N6—N5—C9 | 101.65 (9) | C5—C4—H4 | 119.7 |
| N5—N6—C20 | 122.20 (10) | C7—C6—H6 | 120.4 |
| N7—N6—N5 | 114.48 (10) | C7—C6—C5 | 119.12 (11) |
| N7—N6—C20 | 123.17 (10) | C5—C6—H6 | 120.4 |
| N3—N4—C1 | 106.28 (10) | N6—N7—N8 | 105.79 (10) |
| O1—C3—C2 | 117.10 (10) | N2—C17—C18 | 110.45 (9) |
| O1—C3—C4 | 123.32 (11) | N2—C17—H17A | 109.6 |
| C4—C3—C2 | 119.58 (11) | N2—C17—H17B | 109.6 |
| N1—C1—N4 | 111.73 (10) | C18—C17—H17A | 109.6 |
| N1—C1—C2 | 126.98 (10) | C18—C17—H17B | 109.6 |
| N4—C1—C2 | 121.26 (10) | H17A—C17—H17B | 108.1 |
| N2—N3—N4 | 105.96 (10) | C13—C12—H12 | 119.9 |
| N5—C9—C10 | 126.72 (10) | C13—C12—C11 | 120.22 (12) |
| N5—C9—N8 | 111.99 (10) | C11—C12—H12 | 119.9 |
| N8—C9—C10 | 121.28 (10) | O2—C11—C10 | 116.32 (11) |
| C11—O2—C16 | 117.36 (11) | O2—C11—C12 | 123.66 (11) |
| C15—C10—C9 | 118.61 (11) | C12—C11—C10 | 120.02 (11) |
| C15—C10—C11 | 118.25 (11) | O1—C8—H8A | 109.5 |
| C11—C10—C9 | 123.11 (10) | O1—C8—H8B | 109.5 |
| N7—N8—C9 | 106.08 (10) | O1—C8—H8C | 109.5 |
| C2—C7—H7 | 119.1 | H8A—C8—H8B | 109.5 |
| C6—C7—H7 | 119.1 | H8A—C8—H8C | 109.5 |
| C6—C7—C2 | 121.70 (12) | H8B—C8—H8C | 109.5 |
| C3—C2—C1 | 123.62 (10) | C4—C5—H5 | 119.8 |
| C7—C2—C3 | 118.41 (11) | C6—C5—C4 | 120.45 (12) |
| C7—C2—C1 | 117.97 (11) | C6—C5—H5 | 119.8 |
| C12—C13—H13 | 119.7 | N6—C20—C19 | 112.38 (10) |
| C14—C13—H13 | 119.7 | N6—C20—H20A | 109.1 |
| C14—C13—C12 | 120.50 (12) | N6—C20—H20B | 109.1 |
| H18A—C18—H18B | 107.8 | C19—C20—H20A | 109.1 |
| C19—C18—H18A | 109.0 | C19—C20—H20B | 109.1 |
| C19—C18—H18B | 109.0 | H20A—C20—H20B | 107.9 |
| C17—C18—H18A | 109.0 | C13—C14—C15 | 119.21 (11) |
| C17—C18—H18B | 109.0 | C13—C14—H14 | 120.4 |
| C17—C18—C19 | 112.93 (10) | C15—C14—H14 | 120.4 |
| C18—C19—H19A | 110.0 | O2—C16—H16A | 109.5 |
| C18—C19—H19B | 110.0 | O2—C16—H16B | 109.5 |
| H19A—C19—H19B | 108.4 | O2—C16—H16C | 109.5 |
| C20—C19—C18 | 108.39 (10) | H16A—C16—H16B | 109.5 |
| C20—C19—H19A | 110.0 | H16A—C16—H16C | 109.5 |
| C20—C19—H19B | 110.0 | H16B—C16—H16C | 109.5 |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C7—H7···N4 | 0.95 | 2.48 | 2.8371 (16) | 102 |
| C15—H15···N8 | 0.95 | 2.53 | 2.8586 (17) | 101 |
| C17—H17A···O1i | 0.99 | 2.58 | 3.4337 (15) | 144 |
Symmetry code: (i) −x+2, −y+1, −z.
Funding Statement
This work was funded by National Research Foundation of Korea grants 2016R1D1A1B03930507, 2019R1A2C1001989, and 2015R1A4A1041036.
References
- Boland, Y., Safin, D. A., Tinant, B., Babashkina, M. G., Marchand-Brynaert, J. & Garcia, Y. (2013). New J. Chem. 37, 1174–1179.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fan, J.-Z., Du, C.-C. & Wang, D.-Z. (2016). Polyhedron, 117, 487–495.
- Feng, Y.-A., Qiu, H., Yang, S.-A., Du, J. & Zhang, T.-L. (2016). Dalton Trans. 45, 17117–17122. [DOI] [PubMed]
- Feng, Y., Bi, Y., Zhao, W. & Zhang, T. (2016). J. Mater. Chem. A, 4, 7596–7600.
- Freis, M., Klapötke, T. M., Stierstorfer, J. & Szimhardt, N. (2017). Inorg. Chem. 56, 7936–7947. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176. [DOI] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Lee, S. G., Ryu, J. Y. & Lee, J. (2017). Acta Cryst. E73, 1971–1973. [DOI] [PMC free article] [PubMed]
- Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Tăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1–30.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
- Voitekhovich, S. V., Lyakhov, A. S., Ivashkevich, L. S. & Gaponik, P. N. (2012). Tetrahedron Lett. 53, 6111–6114.
- Wang, X.-L., Li, N., Tian, A.-X., Ying, J., Li, T.-J., Lin, X.-L., Luan, J. & Yang, Y. (2014). Inorg. Chem. 53, 7118–7129. [DOI] [PubMed]
- Wurzenberger, M. H. H., Szimhardt, N. & Stierstorfer, J. (2018). J. Am. Chem. Soc. 140, 3206–3209. [DOI] [PubMed]
- Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. [DOI] [PubMed]
- Zhao, Y.-P., Li, Y., Cui, C.-Y., Xiao, Y., Li, R., Wang, S.-H., Zheng, F.-K. & Guo, G.-C. (2016). Inorg. Chem. 55, 7335–7340. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019014877/fy2138Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989019014877/fy2138Isup4.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report






