Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 26;75(Pt 12):1930–1933. doi: 10.1107/S2056989019015718

(E)-3-{[(2-Bromo-3-methyl­phen­yl)imino]­meth­yl}benzene-1,2-diol: crystal structure and Hirshfeld surface analysis

Onur Erman Doğan a,*, Necmi Dege b,*, Erbil Ağar a, Igor O Fritsky c,*
PMCID: PMC6895958  PMID: 31871760

In the title Schiff base derivative carrying a 2-bromo-3-methyl­phenyl group, the conformation about the C=N bond is E. In the crystal, O—H⋯O hydrogen-bond inter­actions consolidate the crystal packing. A Hirshfeld surface analysis and fingerprint plots were used to further investigate the inter­molecular inter­actions in the solid state.

Keywords: crystal structure, Schiff base, O⋯O inter­action, Hirshfeld surface analysis, hydrogen bonds

Abstract

The title compound, C14H12BrNO2, was synthesized by the condensation reaction of 2,3-di­hydroxy­benzaldehyde and 2-bromo-3-methyl­aniline. It crystallizes in the centrosymmetric triclinic space group P Inline graphic. The configuration about the C=N bond is E. The dihedral angle between the planes of the 5-(2-bromo-3-methyl­phenyl ring and the catechol ring is 2.80 (17)°. In the crystal, O—H⋯O hydrogen-bond inter­actions consolidate the crystal packing.

Chemical context  

Schiff bases containing an azomethine or imine (–C=N–) unit are condensation products of primary amines and carbonyl compounds that were first reported by Hugo Schiff (1864). Schiff bases have a wide variety of applications in many areas of biological, organic and inorganic chemistry. The medicinal uses and applications of Schiff bases and their metal complexes are of increasing clinical and commercial importance and are increasingly significant in the medicinal and pharmaceutical fields because of their extensive range of biological activities (Karthikeyan et al., 2006).graphic file with name e-75-01930-scheme1.jpg

Structural commentary  

The structure of the title compound is shown in Fig. 1. It crystallizes in the centrosymmetric P Inline graphic space group with Z = 4 (Z′ = 2). The two crystallographically independent mol­ecules have nearly the same geometrical parameters and the primary difference between them is the rotational orientation of H2 and H4A. The discussion will therefore be limited to that of the mol­ecule containing O1. The mol­ecular structure is constructed from two individually planar rings. The whole mol­ecule is approximately planar, with a maximum deviation of 0.117 (3) Å from planarity for the hydroxyl O1 atom of the catechol ring. The dihedral angle between the two benzene ring planes is 2.80 (17)°. The methyl C1 atom deviates from the plane of the C2–C7 benzene ring by 0.039 (2) Å while C9 deviates from the plane of the C9–C14 benzene ring by 0.024 (3) Å. The C8—N1—C7—C6 and C14— C9—C8—N1 torsion angles are −1.6 (5) and −1.1 (5)°, respectively. The planar mol­ecular conformation of each molecule is stabilized by an intra­molecular O—H⋯N hydrogen bond (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atomic numbering scheme. The dashed lines indicate the intra­molecular O—H⋯N hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.571 (3) 146
O3—H3⋯N2 0.82 1.85 2.560 (3) 145
O4—H4A⋯O1 0.82 2.02 2.790 (4) 157
O2—H2⋯O3 0.82 2.11 2.875 (3) 156
C8—H8⋯O4i 0.93 2.54 3.383 (4) 151

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, the Schiff base units are linked by O—H⋯O and C—H⋯O hydrogen bonds (O4—H4A⋯O1, O2—H2⋯O3 and C8—H8⋯O4i; symmetry code as in Table 1), forming a tape structure along the a-axis direction (Fig. 2). The tapes are stacked into layers parallel to the benzene plane via π–π inter­actions (Fig. 2) with centroid–centroid distances of 3.750 (2) and 3.783 (2) Å, respectively, for Cg1⋯Cg2(1 − x, 1 − y, 1 − z) and Cg3⋯Cg4(−x, 1 − y, −z), where Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, C9–C14, C16–C21 and C23–C28 rings, respectively.

Figure 2.

Figure 2

A partial view of the crystal packing of the title compound. Intra- and inter­molecular hydrogen bonds are shown as dotted lines while the π-stacking inter­actions are depicted by dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update Nov 2018; Groom et al., 2016) for the (E)-N-(2-bromo­phen­yl)-1-phenyl­methanimine skeleton yielded nine hits. The N1—C8 bond in the title structure is the same length within standard uncertainties as those in the structures of 2-bromo-N-salicylideneaniline (Burr & Hobson, 1969), N-(2-bromo­phen­yl)-1-(2-fluoro­phen­yl)methanimine (Kaur & Choudhury, 2014), 2-[(E)-(2,4-di­bromo­phenyl­imino)­meth­yl]-4-bromo­phenol (Bharti et al., 2017), N-(2-bromo-4-methyl­phen­yl)naphthaldimine (Elmali et al., 1998), N-(2-methyl­benzyl­idene)-2-bromo­aniline (Ojala et al., 2007), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-4-chloro­phenol (Guo, 2011), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-4-chloro­phenol (Zhao & Zhang, 2012), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-6-methyl­phenol (Karadağ et al., 2010), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (Tanak et al., 2012). The C=N bond lengths in these structures vary from 1.270 (3) to 1.295 (5) Å and the C—O bond lengths from 1.336 (5) to 1.366 (2) Å. The mol­ecular conformations of these structures are also not planar, with dihedral angles between the phenyl rings varying between 5.00 (5) and 47.62 (9)°. It is likely that the intra­molecular O—H⋯N hydrogen bond, where the imine N atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the phenol–imine form. In fact, in all eight structures of the phenol–imine tautomers, hydrogen bonds of this type are observed.

Hirshfeld surface analysis  

Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017). The three-dimensional d norm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions and utilizes the function of the normalized distances d e and d i, where d e and d i are the distances from a given point on the surface to the nearest atom outside and inside, respectively. The blue, white and red colour convention used for the d norm-mapped Hirshfeld surfaces indicates the inter­atomic contacts longer, equal to or shorter than the van der Waals separations. The standard-resolution mol­ecular three-dimensional (d norm) plot with d e and d i for the title compound is shown in Fig. 3. The bright-red spots near the oxygen and hydrogen atoms indicate donors and acceptors of a potential O—H⋯O inter­action. As can be seen from the two-dimensional fingerprint plots (scattering points spread up to d e = d i = 1.5 Å; Fig. 4), the dominant inter­action in the title compound originates from H⋯H contacts, which are the major contributor (42.4%) to the total Hirshfeld surface. The contribution from the O⋯H/H⋯O contacts (13.5%) is represented by a pair of sharp spikes that are characteristic of hydrogen-bonding inter­actions (Fig. 4). Other significant inter­actions are Br⋯H/H⋯Br (12.9%) and C⋯H/H⋯C (15.3%). While it is likely there are other identifiable points of contact that can be highlighted in the crystal, these may be of limited significance and do not require detailed discussion nor illustration. The inter­actions are visualized in Fig. 5.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm, d e and d i.

Figure 4.

Figure 4

Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

Figure 5.

Figure 5

Hirshfeld surface mapped over d norm to visualize the inter­molecular inter­actions.

Synthesis and crystallization  

A mixture of 2,3-di­hydroxy­benzaldehyde (34.5 mg, 0.25 mmol) and 2-bromo-3-methyl­aniline (46.5 mg, 0.25 mmol) was stirred with ethanol (30 mL) at 377 K for 5 h, affording the title compound (49.73 mg, yield 65% m.p. 410–412 K). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy H atom was located in a difference-Fourier map, and the hy­droxy group was allowed to rotate during the refinement procedure (AFIX 147); O—H = 0.82 Å with U iso(H) = 1.5U eq(O). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with U iso(H) = 1.2U eq(C) for aromatic H atoms and C—H = 0.96 Å with U iso(H) = 1.5U eq(C) for methyl H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C14H12BrNO2
M r 306.16
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 8.2301 (5), 10.1593 (6), 15.9428 (9)
α, β, γ (°) 102.496 (5), 90.597 (5), 103.213 (5)
V3) 1264.46 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.24
Crystal size (mm) 0.49 × 0.31 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.441, 0.663
No. of measured, independent and observed [I > 2σ(I)] reflections 13105, 4958, 3352
R int 0.044
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.081, 0.97
No. of reflections 4958
No. of parameters 331
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.26

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019015718/mw2151sup1.cif

e-75-01930-sup1.cif (750.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015718/mw2151Isup2.hkl

e-75-01930-Isup2.hkl (394.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019015718/mw2151Isup3.cml

CCDC reference: 1967023

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C14H12BrNO2 Z = 4
Mr = 306.16 F(000) = 616
Triclinic, P1 Dx = 1.608 Mg m3
a = 8.2301 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.1593 (6) Å Cell parameters from 15203 reflections
c = 15.9428 (9) Å θ = 2.1–32.4°
α = 102.496 (5)° µ = 3.24 mm1
β = 90.597 (5)° T = 296 K
γ = 103.213 (5)° Column, red
V = 1264.46 (13) Å3 0.49 × 0.31 × 0.21 mm

Data collection

Stoe IPDS 2 diffractometer 4958 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3352 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.044
Detector resolution: 6.67 pixels mm-1 θmax = 26.0°, θmin = 2.1°
rotation method scans h = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −12→12
Tmin = 0.441, Tmax = 0.663 l = −19→19
13105 measured reflections

Refinement

Refinement on F2 Primary atom site location: intrinsic phasing
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0365P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.001
4958 reflections Δρmax = 0.38 e Å3
331 parameters Δρmin = −0.26 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.47553 (5) 0.73422 (3) 0.43378 (2) 0.06496 (13)
Br2 0.27549 (6) 0.20843 (4) 0.05124 (2) 0.07628 (15)
O1 0.1481 (3) 0.4451 (2) 0.34610 (15) 0.0653 (7)
H1 0.211056 0.487560 0.388310 0.098*
O3 0.1364 (4) 0.4958 (2) 0.16060 (16) 0.0691 (7)
H3 0.189385 0.466512 0.120398 0.104*
N1 0.2564 (3) 0.5099 (2) 0.50502 (16) 0.0470 (6)
N2 0.2469 (3) 0.4778 (3) 0.01003 (16) 0.0532 (7)
O4 0.0206 (4) 0.6518 (3) 0.29811 (17) 0.0822 (8)
H4A 0.064074 0.586678 0.297637 0.123*
O2 −0.0441 (4) 0.2540 (3) 0.21486 (16) 0.0897 (9)
H2 0.016348 0.330320 0.214834 0.135*
C7 0.3645 (4) 0.6053 (3) 0.57103 (19) 0.0457 (7)
C9 0.0451 (4) 0.3067 (3) 0.4473 (2) 0.0469 (7)
C8 0.1507 (4) 0.4002 (3) 0.5163 (2) 0.0490 (7)
H8 0.143775 0.382141 0.571109 0.059*
C2 0.4759 (4) 0.7195 (3) 0.5508 (2) 0.0458 (7)
C14 0.0503 (4) 0.3320 (3) 0.3637 (2) 0.0500 (8)
C16 0.3400 (4) 0.2699 (3) −0.0509 (2) 0.0531 (8)
C21 0.3160 (4) 0.3988 (3) −0.0583 (2) 0.0525 (8)
C23 0.1469 (4) 0.6720 (3) 0.0803 (2) 0.0538 (8)
C22 0.2142 (4) 0.5943 (4) 0.0084 (2) 0.0584 (9)
H22 0.234551 0.629736 −0.040566 0.070*
C28 0.1130 (4) 0.6197 (3) 0.1544 (2) 0.0525 (8)
C12 −0.1530 (5) 0.1178 (3) 0.3120 (2) 0.0645 (9)
H12 −0.218773 0.053589 0.266809 0.077*
C3 0.5838 (4) 0.8201 (3) 0.6109 (2) 0.0534 (8)
C17 0.4073 (4) 0.1854 (4) −0.1138 (2) 0.0613 (9)
C26 0.0233 (5) 0.8244 (4) 0.2207 (3) 0.0676 (10)
H26 −0.017827 0.875467 0.267836 0.081*
C27 0.0531 (4) 0.6990 (4) 0.2243 (2) 0.0603 (9)
C13 −0.0486 (4) 0.2341 (3) 0.2961 (2) 0.0586 (9)
C10 −0.0661 (4) 0.1862 (3) 0.4616 (2) 0.0593 (9)
H10 −0.073250 0.169793 0.516793 0.071*
C20 0.3657 (5) 0.4421 (4) −0.1328 (2) 0.0656 (10)
H20 0.351806 0.527272 −0.140140 0.079*
C11 −0.1625 (5) 0.0941 (4) 0.3947 (3) 0.0669 (10)
H11 −0.235219 0.014899 0.404432 0.080*
C4 0.5836 (5) 0.8024 (4) 0.6942 (2) 0.0641 (9)
H4 0.656723 0.867053 0.736383 0.077*
C24 0.1153 (5) 0.8017 (4) 0.0781 (3) 0.0666 (10)
H24 0.136398 0.837047 0.029072 0.080*
C6 0.3679 (5) 0.5952 (3) 0.6565 (2) 0.0597 (9)
H6 0.294647 0.522244 0.673039 0.072*
C5 0.4778 (5) 0.6914 (4) 0.7163 (2) 0.0710 (11)
H5 0.481124 0.681646 0.772972 0.085*
C18 0.4550 (5) 0.2344 (4) −0.1862 (2) 0.0675 (10)
H18 0.501793 0.180660 −0.229667 0.081*
C25 0.0539 (5) 0.8763 (4) 0.1473 (3) 0.0710 (10)
H25 0.032795 0.961647 0.145094 0.085*
C19 0.4346 (5) 0.3615 (4) −0.1952 (2) 0.0743 (11)
H19 0.468248 0.392695 −0.244387 0.089*
C1 0.6961 (5) 0.9453 (3) 0.5889 (3) 0.0729 (11)
H1B 0.774499 0.916334 0.549065 0.109*
H1C 0.755569 1.004995 0.640409 0.109*
H1D 0.629921 0.994500 0.563320 0.109*
C15 0.4311 (6) 0.0463 (4) −0.1053 (3) 0.0857 (12)
H15A 0.501966 0.057822 −0.054737 0.129*
H15B 0.482042 0.005655 −0.155138 0.129*
H15C 0.324472 −0.013470 −0.100577 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0871 (3) 0.0575 (2) 0.0514 (2) 0.01015 (18) 0.01253 (18) 0.02160 (16)
Br2 0.1074 (3) 0.0777 (3) 0.0517 (2) 0.0241 (2) 0.0085 (2) 0.02912 (19)
O1 0.0832 (18) 0.0563 (13) 0.0492 (13) −0.0038 (12) −0.0037 (12) 0.0181 (11)
O3 0.095 (2) 0.0653 (14) 0.0560 (15) 0.0260 (13) 0.0267 (13) 0.0235 (12)
N1 0.0517 (16) 0.0429 (13) 0.0485 (15) 0.0138 (12) 0.0063 (12) 0.0120 (11)
N2 0.0559 (17) 0.0566 (15) 0.0434 (15) 0.0037 (13) 0.0064 (12) 0.0133 (12)
O4 0.110 (2) 0.096 (2) 0.0532 (15) 0.0456 (17) 0.0244 (15) 0.0214 (14)
O2 0.115 (2) 0.0826 (18) 0.0498 (15) −0.0168 (16) −0.0007 (14) 0.0115 (13)
C7 0.0526 (19) 0.0452 (15) 0.0429 (16) 0.0179 (14) 0.0054 (14) 0.0107 (13)
C9 0.0467 (19) 0.0469 (16) 0.0495 (18) 0.0145 (14) 0.0074 (14) 0.0123 (14)
C8 0.052 (2) 0.0548 (17) 0.0459 (17) 0.0204 (15) 0.0081 (15) 0.0160 (14)
C2 0.0482 (19) 0.0482 (15) 0.0479 (17) 0.0212 (14) 0.0097 (14) 0.0144 (13)
C14 0.052 (2) 0.0486 (16) 0.0497 (18) 0.0118 (14) 0.0095 (15) 0.0107 (14)
C16 0.050 (2) 0.0652 (19) 0.0398 (17) 0.0051 (16) −0.0037 (14) 0.0126 (15)
C21 0.050 (2) 0.0598 (18) 0.0447 (18) 0.0037 (15) 0.0022 (15) 0.0155 (15)
C23 0.0451 (19) 0.0603 (18) 0.0529 (19) 0.0031 (15) 0.0017 (15) 0.0158 (15)
C22 0.053 (2) 0.068 (2) 0.054 (2) 0.0024 (17) 0.0030 (16) 0.0263 (17)
C28 0.051 (2) 0.0578 (18) 0.0454 (18) 0.0059 (15) 0.0039 (15) 0.0117 (15)
C12 0.062 (2) 0.0557 (19) 0.066 (2) 0.0038 (17) 0.0031 (18) 0.0029 (16)
C3 0.052 (2) 0.0503 (17) 0.059 (2) 0.0159 (15) 0.0051 (16) 0.0100 (15)
C17 0.058 (2) 0.072 (2) 0.050 (2) 0.0108 (18) −0.0099 (17) 0.0095 (17)
C26 0.059 (2) 0.072 (2) 0.067 (2) 0.0160 (19) 0.0002 (18) 0.0036 (18)
C27 0.057 (2) 0.066 (2) 0.054 (2) 0.0095 (17) 0.0022 (16) 0.0113 (16)
C13 0.063 (2) 0.0601 (19) 0.051 (2) 0.0121 (17) 0.0086 (16) 0.0112 (16)
C10 0.056 (2) 0.0600 (19) 0.065 (2) 0.0098 (17) 0.0154 (17) 0.0250 (17)
C20 0.082 (3) 0.070 (2) 0.0445 (19) 0.0119 (19) 0.0161 (18) 0.0191 (17)
C11 0.057 (2) 0.059 (2) 0.081 (3) 0.0024 (17) 0.012 (2) 0.0190 (19)
C4 0.062 (2) 0.067 (2) 0.057 (2) 0.0120 (18) −0.0103 (17) 0.0047 (17)
C24 0.065 (2) 0.065 (2) 0.074 (3) 0.0099 (18) 0.0035 (19) 0.0310 (19)
C6 0.067 (2) 0.0626 (19) 0.0497 (19) 0.0089 (17) 0.0052 (17) 0.0206 (16)
C5 0.085 (3) 0.079 (2) 0.046 (2) 0.008 (2) −0.0057 (19) 0.0187 (18)
C18 0.065 (2) 0.086 (3) 0.046 (2) 0.016 (2) 0.0061 (18) 0.0049 (18)
C25 0.067 (3) 0.059 (2) 0.086 (3) 0.0149 (19) 0.003 (2) 0.014 (2)
C19 0.084 (3) 0.089 (3) 0.052 (2) 0.013 (2) 0.017 (2) 0.026 (2)
C1 0.068 (3) 0.056 (2) 0.089 (3) 0.0034 (18) 0.000 (2) 0.0165 (19)
C15 0.106 (4) 0.092 (3) 0.069 (3) 0.045 (3) 0.002 (2) 0.015 (2)

Geometric parameters (Å, º)

Br1—C2 1.903 (3) C12—C11 1.391 (5)
Br2—C16 1.905 (3) C12—H12 0.9300
O1—C14 1.330 (3) C3—C4 1.379 (5)
O1—H1 0.8200 C3—C1 1.502 (4)
O3—C28 1.340 (4) C17—C18 1.379 (5)
O3—H3 0.8200 C17—C15 1.504 (5)
N1—C8 1.295 (4) C26—C27 1.364 (5)
N1—C7 1.408 (4) C26—C25 1.388 (5)
N2—C22 1.277 (4) C26—H26 0.9300
N2—C21 1.413 (4) C10—C11 1.361 (5)
O4—C27 1.370 (4) C10—H10 0.9300
O4—H4A 0.8200 C20—C19 1.361 (5)
O2—C13 1.354 (4) C20—H20 0.9300
O2—H2 0.8200 C11—H11 0.9300
C7—C6 1.390 (4) C4—C5 1.373 (5)
C7—C2 1.404 (4) C4—H4 0.9300
C9—C14 1.411 (4) C24—C25 1.368 (5)
C9—C10 1.415 (4) C24—H24 0.9300
C9—C8 1.421 (4) C6—C5 1.363 (5)
C8—H8 0.9300 C6—H6 0.9300
C2—C3 1.377 (5) C5—H5 0.9300
C14—C13 1.399 (5) C18—C19 1.377 (5)
C16—C17 1.381 (5) C18—H18 0.9300
C16—C21 1.397 (5) C25—H25 0.9300
C21—C20 1.388 (4) C19—H19 0.9300
C23—C28 1.403 (4) C1—H1B 0.9600
C23—C24 1.408 (5) C1—H1C 0.9600
C23—C22 1.436 (5) C1—H1D 0.9600
C22—H22 0.9300 C15—H15A 0.9600
C28—C27 1.392 (5) C15—H15B 0.9600
C12—C13 1.367 (4) C15—H15C 0.9600
C14—O1—H1 109.5 C26—C27—O4 118.4 (3)
C28—O3—H3 109.5 C26—C27—C28 121.0 (3)
C8—N1—C7 124.1 (3) O4—C27—C28 120.7 (3)
C22—N2—C21 123.9 (3) O2—C13—C12 119.2 (3)
C27—O4—H4A 109.5 O2—C13—C14 120.7 (3)
C13—O2—H2 109.5 C12—C13—C14 120.1 (3)
C6—C7—C2 116.9 (3) C11—C10—C9 120.1 (3)
C6—C7—N1 124.1 (3) C11—C10—H10 120.0
C2—C7—N1 119.0 (3) C9—C10—H10 120.0
C14—C9—C10 119.1 (3) C19—C20—C21 120.8 (4)
C14—C9—C8 120.6 (3) C19—C20—H20 119.6
C10—C9—C8 120.2 (3) C21—C20—H20 119.6
N1—C8—C9 121.8 (3) C10—C11—C12 120.4 (3)
N1—C8—H8 119.1 C10—C11—H11 119.8
C9—C8—H8 119.1 C12—C11—H11 119.8
C3—C2—C7 123.4 (3) C5—C4—C3 121.4 (3)
C3—C2—Br1 119.0 (2) C5—C4—H4 119.3
C7—C2—Br1 117.6 (2) C3—C4—H4 119.3
O1—C14—C13 118.4 (3) C25—C24—C23 120.7 (3)
O1—C14—C9 122.3 (3) C25—C24—H24 119.7
C13—C14—C9 119.3 (3) C23—C24—H24 119.7
C17—C16—C21 123.3 (3) C5—C6—C7 120.4 (3)
C17—C16—Br2 118.8 (3) C5—C6—H6 119.8
C21—C16—Br2 118.0 (3) C7—C6—H6 119.8
C20—C21—C16 116.9 (3) C6—C5—C4 121.0 (3)
C20—C21—N2 124.1 (3) C6—C5—H5 119.5
C16—C21—N2 118.9 (3) C4—C5—H5 119.5
C28—C23—C24 118.9 (3) C19—C18—C17 121.1 (4)
C28—C23—C22 120.2 (3) C19—C18—H18 119.4
C24—C23—C22 121.0 (3) C17—C18—H18 119.4
N2—C22—C23 121.8 (3) C24—C25—C26 119.9 (4)
N2—C22—H22 119.1 C24—C25—H25 120.1
C23—C22—H22 119.1 C26—C25—H25 120.1
O3—C28—C27 118.5 (3) C20—C19—C18 120.7 (3)
O3—C28—C23 122.3 (3) C20—C19—H19 119.6
C27—C28—C23 119.1 (3) C18—C19—H19 119.6
C13—C12—C11 121.0 (3) C3—C1—H1B 109.5
C13—C12—H12 119.5 C3—C1—H1C 109.5
C11—C12—H12 119.5 H1B—C1—H1C 109.5
C2—C3—C4 116.8 (3) C3—C1—H1D 109.5
C2—C3—C1 122.8 (3) H1B—C1—H1D 109.5
C4—C3—C1 120.4 (3) H1C—C1—H1D 109.5
C18—C17—C16 117.1 (3) C17—C15—H15A 109.5
C18—C17—C15 120.2 (4) C17—C15—H15B 109.5
C16—C17—C15 122.7 (3) H15A—C15—H15B 109.5
C27—C26—C25 120.5 (4) C17—C15—H15C 109.5
C27—C26—H26 119.8 H15A—C15—H15C 109.5
C25—C26—H26 119.8 H15B—C15—H15C 109.5
C8—N1—C7—C6 −1.6 (5) Br2—C16—C17—C15 0.3 (5)
C8—N1—C7—C2 179.0 (3) C25—C26—C27—O4 −179.9 (3)
C7—N1—C8—C9 −179.6 (3) C25—C26—C27—C28 −0.7 (5)
C14—C9—C8—N1 −1.1 (5) O3—C28—C27—C26 −178.5 (3)
C10—C9—C8—N1 178.5 (3) C23—C28—C27—C26 1.6 (5)
C6—C7—C2—C3 −0.9 (5) O3—C28—C27—O4 0.8 (5)
N1—C7—C2—C3 178.5 (3) C23—C28—C27—O4 −179.2 (3)
C6—C7—C2—Br1 179.2 (2) C11—C12—C13—O2 −179.4 (4)
N1—C7—C2—Br1 −1.4 (4) C11—C12—C13—C14 −0.4 (6)
C10—C9—C14—O1 178.0 (3) O1—C14—C13—O2 0.2 (5)
C8—C9—C14—O1 −2.4 (5) C9—C14—C13—O2 −178.7 (3)
C10—C9—C14—C13 −3.1 (5) O1—C14—C13—C12 −178.8 (3)
C8—C9—C14—C13 176.5 (3) C9—C14—C13—C12 2.2 (5)
C17—C16—C21—C20 −1.0 (5) C14—C9—C10—C11 2.0 (5)
Br2—C16—C21—C20 179.3 (2) C8—C9—C10—C11 −177.5 (3)
C17—C16—C21—N2 −179.7 (3) C16—C21—C20—C19 0.0 (5)
Br2—C16—C21—N2 0.6 (4) N2—C21—C20—C19 178.6 (3)
C22—N2—C21—C20 4.1 (5) C9—C10—C11—C12 −0.2 (6)
C22—N2—C21—C16 −177.3 (3) C13—C12—C11—C10 −0.7 (6)
C21—N2—C22—C23 −178.8 (3) C2—C3—C4—C5 −1.5 (6)
C28—C23—C22—N2 −0.9 (5) C1—C3—C4—C5 177.7 (4)
C24—C23—C22—N2 178.5 (3) C28—C23—C24—C25 0.6 (5)
C24—C23—C28—O3 178.5 (3) C22—C23—C24—C25 −178.9 (3)
C22—C23—C28—O3 −2.1 (5) C2—C7—C6—C5 −1.3 (5)
C24—C23—C28—C27 −1.5 (5) N1—C7—C6—C5 179.3 (3)
C22—C23—C28—C27 177.9 (3) C7—C6—C5—C4 2.0 (6)
C7—C2—C3—C4 2.3 (5) C3—C4—C5—C6 −0.6 (6)
Br1—C2—C3—C4 −177.8 (3) C16—C17—C18—C19 −0.6 (5)
C7—C2—C3—C1 −176.9 (3) C15—C17—C18—C19 −179.9 (4)
Br1—C2—C3—C1 3.0 (5) C23—C24—C25—C26 0.4 (6)
C21—C16—C17—C18 1.3 (5) C27—C26—C25—C24 −0.4 (6)
Br2—C16—C17—C18 −179.0 (2) C21—C20—C19—C18 0.7 (6)
C21—C16—C17—C15 −179.5 (3) C17—C18—C19—C20 −0.3 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.85 2.571 (3) 146
O3—H3···Br2 0.82 2.86 3.499 (2) 136
O3—H3···N2 0.82 1.85 2.560 (3) 145
O4—H4A···O1 0.82 2.02 2.790 (4) 157
O4—H4A···O3 0.82 2.32 2.731 (4) 112
O2—H2···O1 0.82 2.29 2.724 (3) 114
O2—H2···O3 0.82 2.11 2.875 (3) 156
C8—H8···O4i 0.93 2.54 3.383 (4) 151

Symmetry code: (i) −x, −y+1, −z+1.

References

  1. Bharti, S., Choudhary, M., Mohan, B., Rawat, S., Sharma, S. & Ahmad, K. (2017). J. Mol. Struct. 1149, 846–861.
  2. Burr, A. H. & Hobson, A. D. (1969). Acta Cryst. B25, 2662–2663.
  3. Elmali, A., Elerman, Y. & Kendi, E. (1998). Acta Cryst. C54, 1137–1139.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Guo, Y.-N. (2011). Wuji Huaxue Xuebao, 27, 1875–1880.
  7. Karadağ, A. T., Atalay, Ş. & Genç, H. (2010). Acta Cryst. E66, o2977. [DOI] [PMC free article] [PubMed]
  8. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. [DOI] [PubMed]
  9. Kaur, G. & Choudhury, A. R. (2014). Cryst. Growth Des. 14, 1600–1616.
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  11. Ojala, W. H., Smieja, J. M., Spude, J. M., Arola, T. M., Kuspa, M. K., Herrera, N. & Ojala, C. R. (2007). Acta Cryst. B63, 485–496. [DOI] [PubMed]
  12. Schiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  17. Tanak, H., Ağar, A. A. & Büyükgüngör, O. (2012). Spectrochim. Acta Part A, 87, 15–24. [DOI] [PubMed]
  18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  19. Zhao, F.-W. & Zhang, F. (2012). Z. Kristallogr. New Cryst. Struct. 227, 53–54.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019015718/mw2151sup1.cif

e-75-01930-sup1.cif (750.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015718/mw2151Isup2.hkl

e-75-01930-Isup2.hkl (394.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019015718/mw2151Isup3.cml

CCDC reference: 1967023

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES