Skip to main content
PLOS ONE logoLink to PLOS ONE
. 2019 Dec 11;14(12):e0226243. doi: 10.1371/journal.pone.0226243

Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different—A modelling approach

Rafael Muñoz-Tamayo 1,*,#, Milka Popova 2,#, Maxence Tillier 2, Diego P Morgavi 2, Jean-Pierre Morel 3, Gérard Fonty 3, Nicole Morel-Desrosiers 3
Editor: James E Wells4
PMCID: PMC6905546  PMID: 31826000

Abstract

Methanogenic archaea occupy a functionally important niche in the gut microbial ecosystem of mammals. Our purpose was to quantitatively characterize the dynamics of methanogenesis by integrating microbiology, thermodynamics and mathematical modelling. For that, in vitro growth experiments were performed with pure cultures of key methanogens from the human and ruminant gut, namely Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanobacterium formicium. Microcalorimetric experiments were performed to quantify the methanogenesis heat flux. We constructed an energetic-based mathematical model of methanogenesis. Our model captured efficiently the dynamics of methanogenesis with average concordance correlation coefficients of 0.95 for CO2, 0.98 for H2 and 0.97 for CH4. Together, experimental data and model enabled us to quantify metabolism kinetics and energetic patterns that were specific and distinct for each species despite their use of analogous methane-producing pathways. Then, we tested in silico the interactions between these methanogens under an in vivo simulation scenario using a theoretical modelling exercise. In silico simulations suggest that the classical competitive exclusion principle is inapplicable to gut ecosystems and that kinetic information alone cannot explain gut ecological aspects such as microbial coexistence. We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts. Our work provides novel information on the thermodynamics and dynamics of methanogens. This understanding will be useful to construct new gut models with enhanced prediction capabilities and could have practical applications for promoting gut health in mammals and mitigating ruminant methane emissions.

Introduction

Methanogenic archaea inhabit the gastro-intestinal tract of mammals where they have established syntrophic interactions within the microbial community [13] playing a critical role in the energy balance of the host [4,5]. In the human gut microbiota, the implication of methanogens in host homeostasis or diseases is poorly studied, but of growing interest [6]. Methanobrevibacter smithii (accounting for 94% of the methanogen population) and Methanosphaera stadtmanae are specifically recognized by the human innate immune system and contribute to the activation of the adaptive immune response [7]. Decreased abundance of M. smithii was reported in inflammatory bowel disease patients [8], and it has been suggested that methanogens may contribute to obesity [9]. In the rumen, the methanogens community is more diverse though still dominated by Methanobrevibacter spp., followed by Methanomicrobium spp., Methanobacterium spp. [10] and Methanomassillicoccus spp [11]. However, the proportion of these taxa could vary largely, with Methanomicrobium mobile and Methanobacterium formicium being reported as major methanogens in grazing cattle [12]. Though methanogens in the rumen are essential for the optimal functioning of the ecosystem (by providing final electron acceptors), the methane they produce is emitted by the host animal, contributing to global greenhouse gas (GHG) emissions. In the gastrointestinal tract of mammals, major rumen methanogens [13] and the dominant human archaeon M. smithii [14], are hydrogenotrophic archaea without cytochrome (membrane-associated electron transfer proteins). Cytochrome-lacking methanogens exhibit lower growth yields than archaea with cytochromes [15]. However, this apparent energetic disadvantage has been counterbalanced by a greater adaptation to the environmental conditions prevailing in the gastrointestinal tract [16], and by the establishment of syntrophic interactions with feed fermenting microbes. This syntrophic cooperation centred on hydrogen allows the anaerobic reactions of substrate conversion to proceed close to the thermodynamic equilibrium [17,18] (that is with Gibbs free energy change close to zero).

To our knowledge, thermodynamic considerations on human gut metabolism have been poorly addressed in existing mathematical models [1922], although ttheoretical frameworks have been developed in other domains to calculate stoichiometric and energetic balances of microbial growth from the specification of the anabolic and catabolic reactions of microbial metabolism [23,24], and advances have been done to link thermodynamics to kinetics [2527]. For the rumen, thermodynamic principles have been incorporated already into mathematical research frameworks because of their important role in feed fermentation. Thermodynamic studies have been performed to investigate theoretically (i) the profile of fermentation [28], (ii) alternative routes for hydrogen utilization [29], and (iii) the effect of hydrogen partial pressure on glucose fermentation and methanogenesis [30,31]. However, studies assessing quantitative comparisons between experimental data and model predictions using thermodynamic-based approaches have been of limited success in providing accurate predictions [32,33], probably due to missing controlling factors such as NADH oxidation and the dynamics of hydrogen partial pressure [31]. Another key factor explaining inaccurate predictions in existing rumen models is the lack of a dynamic representation of the microbial methanogens group. In this respect, new knowledge on the extent of methanogenesis and metabolic differences between the microbial members of this group could help to improve existing gut models. To our knowledge, none of the existing gut models integrates thermodynamics aspects to describe microbial growth of methanogens. Accordingly, our objective in this work was to develop a dynamic model with thermodynamic basis to quantify metabolism kinetics and energetic patterns that could inform on metabolic specificities between gut methanogenic archaea. Additionally, this model development aimed at providing tools for the analysis of ecological aspects (e.g., competitive exclusion principle) of the methanogenic community that can be instrumental when designing, for example, nutritional strategies for methane mitigation in ruminants. The model was built upon quantitative data characterizing the in vitro dynamics of hydrogen utilization, methane production, growth and heat flux of three hydrogenotrophic methanogenic species representing major human and ruminant genera: Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanobacterium formicium.

Material and methods

In vitro growth experiments

Archaeal strains and growth media

Archaeal strains used in the study were M. ruminantium M1 (DSM 1093), M. smithii PS (type strain DSM 861), and M. formicium MF (type strain DSM 1535). All archaeal strains were purchased from DSM previously. The strains were frozen at -80°C, thawed and grown to get actively growing population before the beginning of the study. Balch growth media was prepared as previously described [34] and composition is summarized in S1 Table. Before autoclaving, 6 ml of media were distributed in Balch tubes (26 ml total volume) under CO2 atmosphere.

Experimental design and measures

Starter cultures were grown until reaching optical density at 660 nm (OD660) of 0.400 ± 0.030. Optical density was measured on a Jenway spectrophotometer (Bibby Scientific). Then, 0.6 ml were used to inoculate one experimental tube. Commercially prepared high purity H2/CO2 (80%/20%) gas mix was added to inoculated tubes by flushing for 1 min at 2.5 Pa. Mean initial OD660 and pressure values are summarized in S2 Table. Growth kinetics for each strain were followed over 72 h. The experiment was repeated twice. Each kinetics study started with 40 tubes inoculated at the same time. At a given time point, two tubes with similar OD660 values were sampled. The tubes were used for measuring gas parameters: pressure was measured using a manometer and composition of the gas phase was analysed by gas chromatography on a Micro GC 3000A (Agilent Technologies, France). The GC was equipped with two columns, MS-5A using argon as carrier gas and set to 100°C and PPU using helium and set to 75°C. The GC was calibrated using a certified gas standard mixture (Messer, France) containing methane, oxygen, hydrogen, carbon dioxide, and nitrogen. Approximately 2 ml of the sampled gas was injected in the GC for analysis. After gas sampling, one of the tubes was centrifuged 10 min at 13 000 g. The microbial pellet was weighed and stored at -20°C in 2 ml screw-cap tubes containing 0.4 g of sterile zirconia beads (0.3 g of 1 mm and 0.1 g of 0.5 mm).

DNA extraction and qPCR quantification of 16S rRNA genes

One ml of lysis buffer (50mM NaCl, 50 mM TrisHCl pH 7.6, 50 mM EDTA, 5% SDS) was added directly to the frozen microbial pellet before homogenizing for 2 × 30 s at 5100 tours/min in a Precellys bead-beater (Bertin Instruments). Samples were centrifuged for 3 min at 14 000 g and the liquid phase transferred to a new tube before adding 600 μl of phenol–chloroform–3-methyl-1-butanol (25:24:1) solution. After centrifugation at 14 000 g for 3 min, the aqueous phase was transferred to a fresh tube and 500 μl of chloroform were added. The chloroform-washing step was repeated twice with centrifugation at 14000 g for 3 min between steps. The final volume of the aqueous phase was measured and DNA precipitation was initiated by adding 70% of the volume of isopropanol 100% and 10% of the volume of sodium acetate 3M. Sedimentation at 14 000 g for 30 min was again performed and the resulting DNA pellet was washed with 500 μl of ethanol 70% and dissolved in 50μl of molecular biology quality water. The extraction yield was checked on a Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, France) and extracts run on a FlashGel System (Lonza, Rockland, Inc) to check integrity.

Copies of 16S rRNA genes were quantified using a qPCR approach. Primers used are those of Ohene-Adjei et al [35]; reaction assay and temperature cycles were as described previously [36]. Triplicate qPCR quantification was performed on 20 ng of extracted DNA. Amplifications were carried out using SYBR Premix Ex Taq (TaKaRa Bio Inc., Otsu, Japan) on a StepOne system (Applied Biosystems, Courtabeuf, France). Absolute quantification involved the use of standard curves that had been prepared with gDNA of Methanobrevibacter ruminantium DSM 1093. PCR efficiency was of 103%. Results were expressed as copy numbers per ng of extracted DNA per g of microbial pellet. M. smithii and M. ruminantium strains used in this study possess two copies of 16S rRNA genes in their genomes. The number of cells was computed by dividing 16S copy numbers by 2.

Microcalorimetry

Microcalorimetric experiments were performed to determine the heat flux pattern of each methanogen. Metabolic activity and microbial growth were monitored by using isothermal calorimeters of the heat-conduction type (A TAM III, TA Instruments, France) equipped with two multicalorimeters, each holding six independent minicalorimeters, allowed continuous and simultaneous recording as a function of time of the heat flux produced by 12 samples. The bath temperature was set at 39°C; its long-term stability was better than ± 1x10-4°C over 24h. Each minicalorimeter was electrically calibrated. The specific disposable 4 mL microcalorimetric glass ampoules capped with butyl rubber stoppers and sealed with aluminium crimps were filled with 1.75 mL of Balch growth media and overpressed with 2.5 Pa of H2/CO2 80%/20% gas mixture for 30 s. There was no significant difference in pressure at the beginning of the study. They were sterilized by autoclave and stored at 39°C until the beginning of the microcalorimetric measurements. Actively growing cultures of methanogens (OD660 of 0.280±0.030 for M. smithii, 0.271±0.078 for M. ruminantium and 0.142±0.042 for M. formicium) were stored at -20°C in order to diminish microbial activity before inoculation. Cultures were thawed for 30 min at ambient temperature and inoculation was carried out by injecting 0.25 mL of the culture through the septum of the overpressed microcalorimetric ampoules just before inserting them into the minicalorimeters. Samples took about two hours to reach the bath temperature and yield a stable zero baseline. Blank experiments were also carried out by inserting ampoules that were not inoculated and, as expected, no heat flux was observed confirming the medium sterility. Each experiment was repeated thrice.

The heat flux (dQdt), also called thermal power output P, was measured for each methanogen and blank samples with a precision ≥ 0.2 μW. The heat flux data of each sample were collected every 5 minutes during more than 10 days. The total heat Q was obtained by integrating the overall heat flux time curve using the TAM Assistant Software and its integrating function (TA Instruments, France).

Classically, the heat flux-time curve for a growing culture starts like the S-shaped biomass curve (a lag phase followed by an exponential growth phase) but differs beyond the growth phase, the heat flux being then modulated by transition periods [37]. Heat flux data can be used to infer the microbial growth rate constant provided the existence of a correlation between isothermal microcalorimetry data and microbiological data (e.g., cell counts) at early growth [38]. During the exponential growth phase, microbial growth follows a first-order kinetics defined by the specific growth rate constant μc (h-1). Analogously, the heat flux follows an exponential behaviour determined by the parameter μc as described by [37,38].

dQdt=μc·Q (1)

The growth rate constant μc can be determined by fitting the exponential part of the heat flux-time curve using the fitting function of the TAM Assistant Software. In our case study, careful selection of the exponential phase of heat flux dynamics was performed to provide a reliable estimation of the maximum growth rate constant from calorimetric data.

Mathematical model development

Modelling in vitro methanogenesis

The process of in vitro methanogenesis is depicted in Fig 1. The H2/CO2 mixture in the gas phase diffuses to the liquid phase. The H2 and CO2 in the liquid phase are further utilized by the pure culture to produce CH4. Methane in the liquid phase diffuses to the gas phase.

Fig 1. Schematics of the in vitro methanogenesis process by hydrogenotrophic methanogens.

Fig 1

Double arrows represent fluxes due to liquid-gas transfer, simple arrows represent metabolic fluxes.

Model construction was inspired by our previous dynamic models of human gut [19] and rumen in vitro fermentation [39] followed by certain simplifications. The model considers the liquid-gas transfer of carbon dioxide. Due to the low solubility of hydrogen and methane [40], the concentration of these two gases in the liquid phase was not modelled. We assumed that the dynamics of concentrations in the gas phase are determined by kinetic rate of the methanogenesis. To incorporate thermodynamic information, instead of using the Monod equation in the original formulation, we used the kinetic rate function proposed by Desmond-Le Quéméner and Bouchez [26]. The resulting model is described by the following ordinary differential equations

dxH2dt=μmax·exp(Ks·Vgng,H2)·xH2kd·xH2 (2)
dsCO2dt=--YCO2·μmaxY·exp(-Ks·Vgng,H2)·xH2-kLa·(sCO2-KH,CO2·R·T·ng,CO2/Vg) (3)
dng,H2dt=-μmaxY·exp(-Ks·Vgng,H2)·VL·xH2 (4)
dng,CO2dt=VL·kLa·(sCO2-KH,CO2·R·T·ng,CO2/Vg) (5)
dng,CH4dt=YCH4·μmaxY·exp(-Ks·Vgng,H2)·VL·xH2 (6)

where sCO2 is the concentration (mol/L) of carbon dioxide in the liquid phase and xH2 is the biomass concentration (mol/L) of hydrogenotrophic methanogens. The numbers of moles in the gas phase are represented by the variables ng,H2, ng,CO2, ng,CH4. The gas phase volume Vg = 20 mL and the liquid phase volume VL = 6 mL. Liquid-gas transfer for carbon dioxide is described by a non-equilibria transfer rate which is driven by the gradient of the concentration of the gases in the liquid and gas phase. The transfer rate is determined by the mass transfer coefficient kLa (h-1) and the Henry’s law coefficients KH,CO2 (M/bar). R (bar·(M · K)-1) is the ideal gas law constant and T is the temperature (K). Microbial decay is represented by a first-order kinetic rate with kd (h-1) the death cell rate constant. Microbial growth was represented by the rate function proposed by Desmond-Le Quéméner and Bouchez [26] using hydrogen as single substrate

μ=μmax·exp(-Ks·Vgng,H2) (7)

where μ is the growth rate (h-1), μmax (h-1) is the maximum specific growth rate constant and Ks(mol/L) the affinity constant. Eq (7) is derived from energetic principles following Boltzmann statistics and uses the concept of exergy (maximum work available for a microorganism during a chemical transformation). The affinity constant has an energetic interpretation since it is defined as

Ks=EM+Edisvharv·Ecat (8)

where Edis (kJ/mol) and EM (kJ/mol) are the dissipated exergy and stored exergy during growth respectively. Ecat (kJ/mol) is the catabolic exergy of one molecule of energy-limiting substrate, and vharv is the volume at which the microbe can harvest the chemical energy in the form of substrate molecules [26]. Ecat is the absolute value of the Gibbs energy of catabolism (ΔGr,c) when the reaction is exergonic (ΔGr,c<0) or zero otherwise. The stored exergy EM is calculated from a reaction (destock) representing the situation where the microbe gets the energy by consuming its own biomass. EM is the absolute value of the Gibbs energy of biomass consuming reaction (ΔGr,destock) when the reaction is exergonic (ΔGr,destock<0) or zero otherwise. Finally, the dissipated exergy Edis is the opposite of the Gibbs energy of the overall metabolic reaction, which is a linear combination of the catabolic and destock reactions. This calculation follows the Gibbs energy dissipation detailed in Kleerebezem and Van Loosdrecht [24].

In our model, the stoichiometry of methanogenesis is represented macroscopically by one catabolic reaction (R1) for methane production and one anabolic reaction (R2) for microbial formation. We assumed that ammonia is the only nitrogen source for microbial formation. The molecular formula of microbial biomass was assumed to be C5H7O2N [40].

R1:4H2+CO2CH4+2H2O
R2:10H2+5CO2+NH3C5H7O2N+8H2O

In the model, the stoichiometry of the reactions is taken into account via the parameters Y, YCO2, YCH4, which are the yield factors (mol/mol) of microbial biomass, CO2 and CH4. The microbial yield factor Y was extracted from literature. We assumed that M. smithii and M. ruminantium have the same yield (being both Methanobrevibacter). This yield factor was set to 0.006 mol biomass/mol H2, using the methane-based molar growth yield of 2.8 g biomass/mol CH4 estimated for M. smithii [41] and the Eqs (9) and (11). Similarly, the yield factor for M. formicium was set to 0.007 mol biomass/mol H2 using the methane-based molar growth yield of 3.5 g biomass/mol CH4 reported by Schauer and Ferry [42]. The fraction of H2 utilized for microbial growth (reaction R2) is defined by the yield factor Y (mol of microbial biomass/mol of H2). Now, let f be the fraction of H2 used for the catabolic reaction R1. Reaction R2 tells us that for every 10 moles of H2 used in R2, we get 1 mol of microbial biomass. Hence, it follows that

Y=110·(1-f) (9)

If Y is known, the fraction f can be computed from Eq (9).

The yield factors of CO2 and CH4 can be expressed as functions of the the fraction f:

YCO2=(14)·f+(510)·(1-f) (10)
YCH4=(14)·f (11)

The model has two physicochemical parameters (kLa, KH,CO2) and four biological parameters (μmax, Ks, Y, kd). The initial condition for sCO2 is unknown and was also included in the parameter vector for estimation. The Henry’s law coefficients are known values calculated at 39°C using the equations provided by Batstone et al. [40]. An implementation of the model in the Open Source software Scilab (https://www.scilab.org/) is available at https://doi.org/10.5281/zenodo.3271611.

Theoretical model to study interactions among methanogens

The experimental study of microbial interactions requires sophisticated in vitro systems under continuous operation such as the one developed by Haydock et al. [43]. In our work, we explored by means of mathematical modelling how the methanogens can interact under in vivo conditions. For this theoretical study, we elaborated a toy model based on the previous model for in vitro methanogenesis. Let us consider the following simple model for representing the consumption of hydrogen by the methanogenic species i under an in vivo scenario of continuous flow

dxH2,idt=μmax,i·exp(-Ks,i·Vgng,H2)·xH2;i-Di·xH2,i (12)
dng,H2dt=qH2-μmax,iYi·exp(-Ks,i·Vgng,H2)·VL·xH2,i-b·ng,H2 (13)

where qH2(mol/h) is the flux of hydrogen produced from the fermentation of carbohydrates. The kinetic parameters are specific to the species i (xH2,i). The parameter Di (h-1) is the dilution rate of the methanogens and b (h-1) is an output substrate rate constant. Extending the model to n species with a common yield factor Y, the dynamics of hydrogen is given by

dng,H2dt=qH2-VLYi=1nμmax,i·exp(-Ks,i·Vgng,H2)·xH2,i-b·ng,H2 (14)

where the sub index i indicates the species. In our case study, n = 3.

Parameter identification

Before performing the numerical estimation of the model parameters, we addressed the question of whether it was theoretically possible to determine uniquely the model parameters given the available measurements from the experimental setup. This question is referred to as structural identifiability [44]. Structural identifiability analysis is of particular relevance for model whose parameters are biologically meaningful, since knowing the actual value of the parameter is useful for providing biological insight on the system under study [45]. Moreover, in our case, we are interested in finding accurate estimates that can be further used as priors in an extended model describing the in vivo system.

We used the freely available software DAISY [46] to assess the structural identifiability of our model. Physical parameters (kLa, KH,CO2) were set to be known. The model was found to be structurally globally identifiable. In practice, however, to facilitate the actual identification of parameters and reduce practical identifiability problems such as high correlation between the parameters [47], we fixed some model parameters to values reported in the literature. The transport coefficient kLa, the Henry’s law coefficient KH,CO2, and the dead cell rate constant kd were set to be known and were extracted from Batstone et al. [40]. Therefore, only the parameters μmax, Ks and initial condition of sCO2 were set to be estimated. To capitalize on the calorimetric data, we further assumed that μmax was equal to the specific rate constant μc estimated from the heat flux-time curve. By this, only the affinity constant for each strain and the initial condition of sCO2 were left to be estimated.

The parameter identification for each methanogen was performed with the IDEAS Matlab® toolbox [48] (freely available at http://genome.jouy.inra.fr/logiciels/IDEAS). The parameter identification was performed with the data of the in vitro growth experiments. The measured variables are the number of moles in the gas phase (H2, CH4, CO2). The Lin’s concordance correlation coefficient (CCC) [49] was computed to quantify the agreement between the observations and model predictions.

Results

Methanogens biomass

Archaea-specific primers targeting the 16S rRNA gene were used to enumerate microbial cells in each pure culture. Three hours post inoculation microbial numbers varied from 7.62×107 to 2.81×108 and reached 109 after 72 hours of incubation. S3 Table summarizes microbial numbers at different sampling times.

Calorimetric pattern of methanogens

Fig 2 displays a representative isothermal calorimetric curve for each methanogen. The three measured heat flux dynamics of each methanogen were found to follow similar energetic patterns. M. smithii and M. formicium exhibited a lag phase of a few hours, while M. ruminantium was already metabolically active when introduced into the minicalorimeter though several attempts were made to obtain a lag phase by changing storage conditions and thawing the culture just before inoculating the microcalorimetric ampoules. The pattern of heat flux for all tested methanogens is characterized by one predominant peak which was observed at different times for each methanogen. M. smithii exhibited a second metabolic event occurring at 60 h with an increase of heat flux. The same phenomenon was observed for M. formicium but at a lower intensity that started at 140 h. The process was considered completed when the heat flux ceased marking the end of the metabolic activity. It is noted that M. formicium produced a small peak at 14 h (Fig 2). A similar peak, but of much smaller size, was observed on the other curves obtained with this methanogen. M. smithii also exhibits a small peak (occurrence of 3 out of 3) at 7.4 h shown in the inset of Fig 2.

Fig 2. Example of isothermal calorimetric curves for M. ruminantium (dashed blue line), M. smithii (solid red line) and M. formicium (dotted black line).

Fig 2

The dominant metabolic phase is represented by one peak (shown with the arrows). The magnitude of the peak differs between the methanogens and also the slope of the heat flux trajectories. The return of the heat flux to the zero baseline also differs between the three methanogens. The inset zoom displays the peak exhibited by M. smithii at 7.4 h.

The total heat (Qm) produced during the methanogenesis process that took place under the present experimental conditions was, on average, -5.5 ± 0.5 J for the three methanogens (for M. ruminantium, the missing initial part of the heat flux-time curve was approximately estimated by extrapolating the exponential fit). As we shall see below, this experimental value is consistent with the theoretically expected value.

Estimation of thermodynamic properties

We defined two macroscopic reactions to represent the catabolism (R1) and anabolism (R2) of the methanogenesis (see Modelling in vitro methanogenesis section). All thermodynamic properties result from the contribution of both catabolic and anabolic reactions. The calculations of total heat (Qm), enthalpy (ΔHm), Gibbs energy (ΔGm) and entropy (ΔSm) of the methanogenesis are detailed in S4 Table. The estimated overall heat produced during the methanogenesis process under our experimental conditions was in average Qm = −5.66J. This heat results from the sum of the heat of the catabolic reaction (Qc) and the heat of the anabolic reaction (Qa). From the total heat of the methanogenesis, the anabolic reaction contributes to 7% of the metabolic heat for M. smithii and M. ruminantium. For M. formicium, the contribution of the anabolic reaction to the metabolic heat is 9%. It is also interesting to note that there is a very good agreement between the theoretical value calculated above and the overall heat experimentally determined by microcalorimetry (-5.5 ± 0.5 J).

Table 1 shows the thermodynamic properties per mole of biomass formed during methanogenesis of M. ruminantium, M. smithii and M. formicium on H2/CO2. These properties are compared with values found in the literature for other methanogens grown on different substrates.

Table 1. Gibbs energies, enthalpies and entropies of metabolic processes involving some methanogens growing on different energy sources.

Microorganism Energy substrate Growth conditions ΔGm
kJ / C-mol
ΔHm
kJ / C-mol
TΔSm
kJ / K-1 C-mol
Driving force Reference
M. ruminantium, M. smithii, H2/CO2 anaerobic -1073 -2132 -1059 Enthalpy-driven but Entropy-retarded this work
M. formicium H2/CO2 anaerobic -801 -1605 -804 Enthalpy-driven but Entropy-retarded this work
M. thermo-autotrophicum H2/CO2 anaerobic -802 -3730 -2928 Enthalpy-driven but Entropy-retarded [50]
M. formicium formate anaerobic -880 -613 +267 Enthalpy-driven [23]
M. barkeri methanol anaerobic -570 -420 +150 Enthalpy-driven [23]
M. barkeri acetate anaerobic -366 +145 +511 Entropy-driven but enthalpy-retarded [51]

Dynamic description of in vitro kinetics

The developed mathematical model was calibrated with the experimental data from in vitro growth experiments in Balch tubes. Table 2 shows the parameters of the dynamic kinetic model described in Eqs 26. The reported value of μmax for each methanogen corresponds to the average value obtained from three heat flux-time curves. From Table 2, it is concluded that M. smithii exhibited the highest growth rate constant, followed by M. ruminantium and finally M. formicium. In terms of the affinity constant Ks, while M. smithii and M. ruminantium are of the same order, the affinity constant for M. formicium is lower in one order of magnitude.

Table 2. Parameters of the model of in vitro methanogenesis.

The value reported μmax for each methanogen is the mean value obtained from three heat flux-time curves.

Parameter Definition Value
kLa (h-1) Liquid–gas transfer constant 8.33
KH,CO2(M/bar) Henry’s law coefficient of carbon dioxide 0.0246
kd (h-1) Death cell rate constant 8.33x10-4
M. smithii M. ruminantium M. formicium
Ks (mol/L) Affinity constant 0.028 0.042 0.011
μmax (h-1) Maximum specific growth rate constant 0.12 0.07 0.046
Y (mol biomass /mol H2) Microbial biomass yield factor 0.006 0.006 0.007

Fig 3 displays the dynamics of the compounds in the methanogenesis for the three methanogens. The data of the figure is available at https://doi.org/10.5281/zenodo.3469655. Experimental data are compared against the model responses. Table 3 shows standard statistics for model evaluation. The model captures efficiently the overall dynamics of the methanogenesis. Hydrogen and methane are very well described by the model with average concordance correlation coefficients (CCC) of 0.98 and 0.97 respectively. For carbon dioxide, CCC = 0.95.

Fig 3. Assessment of model performance.

Fig 3

Top plots: dynamics of methanogenesis by M. ruminantium (*), M. smithii (○) and M. formicium (□). Experimental data (*,○,□) are compared against model predicted responses: dotted blue lines (M. ruminantium), solid red lines (M. smithii) and dashed black lines (M. formicium). Bottom plots: summary observed vs predicted variables. The solid red line is the isocline.

Table 3. Statistical indicators for model evaluation.

Hydrogen Methane Carbon dioxide
CCC* r2 CVRMSE** CCC* r2 CVRMSE** CCC* r2 CVRMSE**
M. smithii 0.99 0.98 16 0.96 0.94 18 0.93 0.84 6
M. ruminantium 0.97 0.95 11 0.96 0.93 20 0.99 0.98 2
M. formicium 0.99 0.98 13 0.98 0.96 17 0.92 0.86 8
Mean 0.98 0.97 13 0.97 0.94 18 0.95 0.89 5

* CCC: Lin’s concordance correlation coefficient.

** CVRMSE: coefficient of variation of the root mean squared error.

Fig 4 displays the dynamics for the methanogens as measured by the 16S rRNA gene, as well as the dynamics of biomass as predicted for the model. As observed, the microbes follow a typical Monod-like trajectory.

Fig 4. Dynamics of methanogens as measured by 16S rRNA gene copies (circles) and biomass concentrations (solid line) predicted by the model.

Fig 4

Discussion

Our objective in this work was to quantitatively characterize the dynamics of hydrogen utilization, methane production, growth and heat flux of three hydrogenotrophic methanogens by integrating microbiology, thermodynamics and mathematical modelling. Our model developments were instrumental to quantify energetic and kinetic differences between the three methanogens studied, strengthening the potentiality of microcalorimetry as a tool for characterizing the metabolism of microorganisms [52]. This modelling work provides estimated parameters that can be used as prior values for other modelling developments of gut microbiota.

Energetic and kinetic differences between methanogens

Methanogenesis appears as a simple reaction described by a single substrate kinetic rate on H2. The microcalorimetry approach we applied revealed that this simplicity is only apparent and that hydrogenotrophic methanogens exhibit energetic and kinetic differences. Methanogenesis is indeed a complex process that can be broken down in several stages. The dominant metabolic phase is represented by one peak that occurs at different times. The magnitude of the peak differs between the methanogens and also the slope of the heat flux trajectories. For M. smithii and M. formicium the main peak was preceded by a small increase in heat flux which translates in a metabolic activity that remains to be elucidated. For M. ruminantium, we do not know whether the small peak exists since the initial part of the curve is missing. For M. smithii and M. formicium, it was observed a metabolic event after the main peak around 60 h for M. smithii and 140h M. formicium. This peak could be representing cell lysis process [38]. The return time of the heat flux to the zero baseline was also different. The energetic difference is associated with kinetic differences that translate into specific kinetic parameters, namely affinity constant (Ks) and maximum growth rate constant (μmax). Previously, energetic differences between methanogens have been ascribed to the presence or absence of cytochromes [15]. These differences are translated into different yield factors, H2 thresholds, and doubling times. The kinetic differences revealed in this study for three cytochrome-lacking methanogens indicate that factors other than the presence of cytochromes might play a role in the energetics of methanogenesis. Interestingly, calorimetric experiments showed that M. ruminantium was metabolically active faster than the other methanogens, characteristic that could explain the predominance of M. ruminantium in the rumen [53]. Looking at the expression of the affinity constant (Eq (8)), the differences between the affinity constants among the methanogens can be explained by the differences between the by the harvest volume vharv and the yield factors. Note that in the kinetic function developed by Desmond-Le Quéméner and Bouchez [26], the maximum growth rate did not have any dependency on the energetics of the reaction. Our experimental study revealed that μmax is species-specific and reflects the dynamics of the heat flux of the reaction at the exponential phase. This finding suggests that a further extension of the kinetic model developed by Desmond-Le Quéméner and Bouchez [26] should include the impact of energetics on μmax. Since our study is limited to three species, it is important to conduct further research on other methanogens to validate our findings. In this same line, to enhance the evaluation of the predictive capabilities of our model, a further model validation is required with independent data set under different experimental conditions (e.g. continuous mode operation) to those used in this study.

Energetic analysis

Regarding the energetic information for different methanogens summarized in Table 1, it is observed that the thermodynamic behaviour of the three methanogens is analogous to that observed for Methanobacterium thermoautotrophicum [50]. The values reported in Table 1 show indeed that the methanogenesis on H2/CO2 is characterized by large heat production. The growth is highly exothermic, with a ΔHm value that largely exceeds the values found when other energy substrates are used. The enthalpy change ΔHm, which is more negative than the Gibbs energy change ΔGm, largely controls the process. Growth on H2/CO2 is also characterized by a negative entropic contribution TΔSm which, at first sight, may look surprising since entropy increases in most cases of anaerobic growth [54]. However, this can be understood if one remembers that TΔSm corresponds in fact to the balance between the final state and the initial state of the process, that is

TΔSm=(1-10Y)4YTΔSc+TΔSa=(1-10Y)4YT(Sfinal-Sinitial)c+T(Sfinal-Sinitial)a

Methanogenesis on H2/CO2 is particular because the final state of its catabolic reaction (1 mol CH4 + 2 mol H2O) involves a smaller number of moles than the initial state (4 mol H2 + 1 mol CO2), which results in a significant loss of entropy during the process. For spontaneous growth in such a case, the ΔHm must not only contribute to the driving force but must also compensate the growth-unfavourable TΔSm, which means that ΔHm must be much more negative than ΔGm [55]. For this reason, methanogenesis on H2/CO2, which is accompanied by a considerable decrease of entropy and a large production of heat, has been designed as an entropy-retarded process [50]. More generally, von Stockar and Liu [55] noticed that when the Gibbs energy of the metabolic process is resolved into its enthalpic and entropic contributions, very different thermodynamic behaviours are observed depending on the growth type. These thermodynamic behaviours are: aerobic respiration is clearly enthalpy-driven (ΔHm ≪ 0 and TΔSm > 0), whereas fermentative metabolism is mainly entropy-driven (ΔHm < 0 and TΔSm ≫ 0). Methanogenesis on H2/CO2 is enthalpy-driven but entropy-retarded (ΔHm ≪ 0 and TΔSm < 0), whereas methanogenesis on acetate is entropy-driven but enthalpy-retarded (ΔHm > 0 and TΔSm ≫ 0). In the present case, the highly exothermic growth of M. ruminantium, M. smithii and M. formicium on H2/CO2 is largely due to the considerable decrease of entropy during the process: in fact, 50% of the heat produced here serves only to compensate the loss of entropy. A proportion of 80% was found for M. thermoautotrophicum [50], which results from the fact that their TΔSm and ΔHm values are, respectively, 2.7 and 1.7 times larger than ours. This difference might be due to the differences in the temperature of the studies, namely 39°C in our study vs 60°C in the study by Schill et al. [50].

Do our results inform on ecological questions such as species coexistence?

The competitive exclusion principle [56] states that coexistence cannot occur between species that occupy the same niche (the same function). Only the most competitive species will survive. Recently, by using thermodynamic principles, Großkopf & Soyer [27] demonstrated theoretically that species utilizing the same substrate and producing different compounds can coexist by the action of thermodynamic driving forces. Since in our study the three methanogens perform the same metabolic reactions, the thermodynamic framework developed Großkopf & Soyer [27] predicts, as the original exclusion principle [56], the survival of only one species. By incorporating thermodynamic control on microbial growth kinetics, Lynch et al [57] showed theoretically that differentiation of ATP yields can explain ecological differentiation of methanogens over a range of liquid turnover rates. This theoretical work predicts that for a fixed liquid turnover rate, only one species survives. For the continuous culture of microorganisms, it has been demonstrated that at the equilibrium (growth rate equals the dilution rate) with constant dilution rates and substrate input rates, the species that has the lowest limiting substrate concentration wins the competition. From Eq (12), the number of moles of hydrogen of the species ng,H2,i* at the steady state is

ng,H2,i*=Ks,i·Vglog(μmax,i/Di)

Using the model parameters of Table 2, we studied in silico three possible competition scenarios, assuming a constant environment (constant dilution rate D). Two dilution rates were evaluated: D = 0.021 h-1 (retention time = 48 h) and D = 0.04 h-1 (retention time = 25 h). A retention time of 48 h corresponds to values measured in small ruminants [58] and to humans as we used in our gut model [19]. For higher retention times, the results obtained for 48 h hold. For D = 0.021 h-1, we obtained that ng,H2,Ms*=0.32mmol,ng,H2,Mr* = 0.68 mmol, ng,H2,Mf*=0.28mmol, where the subindex Ms, Mr, Mf stand for M. smithii, M. ruminantium and M.formicium. From these results, it appears that under a constant environment, M. formicium will win the competition. Since ng,H2,Ms*<ng,H2,Mr*, M. ruminantium will be extinguished before M. smithii. For D = 0.04 h-1, we obtained that ng,H2,Ms*=0.49mmol, ng,H2,Mr*=1.42mmol, ng,H2,Mf*=1.57mmol, and thus M. smithii wins the competition. To win the competition, M. ruminantium requires longer retention times than its competitors. Retention times of digesta longer than 48 h are physiologically uncommon, thus the presence of M. ruminantium in the gut ecosystem can be explained, for example, from known adhesion properties (both M. ruminantium and M. smithii genes encode adhesin-like proteins [59,60]. To illustrate these aspects, we built a multiple-species model with the three methanogens using Eqs (12) and (14). The parameter b was set to 0.5 h-1 and the hydrogen flux production qH2 rate was set to 0.02 mol/min. Fig 5A displays the dynamics of the three methanogens for the first scenario (D = 0.021 h-1). It is observed that at 50 d only M. formicium survives. This result, however, is not representative of what occurs in the rumen where the three methanogens coexist [5,61]. It is intriguing that in our toy model it is M. formicium that wins the competition, bearing in mind that M. ruminantium and M. smithii are more abundant than M. formicium [5,53]. Fig 5 shows that selective conditions favour the survival of one species. Similar results can be obtained for the human gut by including the effect of pH on microbial growth [22] and setting the gut pH to select one of the species.

Fig 5. Possible competition scenarios between M. ruminantium (blue dashed line), M. smithii (red solid line) and M. formicium (black dotted line) in a hypothetical constant environment.

Fig 5

A. At constant dilution rate of 0.021 h-1, M. formicium displaces the other two methanogens. B. With a constant dilution rate of 0.04 h-1, M. smithii wins the competition. At constant environmental conditions, only one species wins and displaces the other methanogens.

On the basis of the competitive exclusion principle, it is thus intriguing that having a very specialized function, methanogens are a diverse group that coexist. Gut ecosystems, therefore, exhibit the paradox of the plankton introduced by Hutchinson (1961) that presents the coexistence of species all competing for the same substrate in a relatively isotropic or unstructured environment [62]. In the case of the rumen, our modelling work suggests that in addition to kinetic and thermodynamic factors, other forces contribute to the ecological shaping of the methanogens community in the rumen favouring the microbial diversity. Indeed, methanogenic diversity in the rumen results from multiple factors that include pH sensitivity, the association with rumen fractions (fluid and particulate material), and the endosymbiosis with rumen protozoa [5,53]. For the human gut, ecological factors enable methanogens to coexist to a competitive environment where hydrogenotrophic microbes (acetogens, methanogenic archaea and sulfate-reducing bacteria) utilize H2 via different pathways [6365]. Both in the human gut and in the rumen, microbes grow in association with biofilms that form a polymer-based matrix that provides nutritional and hydraulic advantages for microbial growth and resistance to shear forces [19,66]. Indeed, in our modelling work of human gut fermentation [19], we suggested that, from the different actions the mucus has on colonic fermentation, the mechanism of promoting conditions for microbial aggregation appears as the most relevant factor for attaining the high microbial density and the high level of fibre degradation characteristic of the human gut. Altogether, these factors result in nonlinear behaviours, spatial and temporal variations that promote coexistence and diversity, that, as discussed in dedicated literature on microbial ecology [6771], render the classical formulation of the competitive exclusion principle [56,72] inapplicable to gut ecosystems.

Finally, mathematical modelling is expected to enhance our understanding of gut ecosystems [66,73]. It is then key that in addition to metabolic aspects, mathematical models of gut fermentation incorporate the multiple aspects that shape microbial dynamics to provide accurate predictions and improve insight on gut metabolism dynamics and its potential modulation. For ruminants, the development of precision livestock technologies provides promising alternatives for integrating real-time data of key animal phenotypes such as feeding behaviour with mathematical models for estimating methane emissions [74] and rumen function indicators at large scale. These tools will be instrumental to support livestock management decisions and guide timely interventions. Similarly, for humans, mathematical models coupled with electronic technologies for online monitoring of gut function [75] might facilitate the diagnosis and the design of personalized therapies for gastrointestinal diseases.

Supporting information

S1 Table. Methanogens growth media composition.

(DOCX)

S2 Table. Summary of initial OD and pressure measured immediately after primary inoculation.

(DOCX)

S3 Table. qPCR quantification of 16S rRNA genes.

(DOCX)

S4 Table. Calculation of thermodynamic properties of the methanogenesis.

(DOCX)

Acknowledgments

We are grateful to Dominique Graviou (UMRH, Inra) for her skilled assistance on the in vitro growth experiments and qPCR assays. We thank the Inra PHASE department and the Inra MEM metaprogramme for financial support. RMT, MP and DPM acknowledge the support of ERA-net gas co-fund for funding the RumenPredict project.

Data Availability

All relevant data are within the manuscript and its Supporting Information files.

Funding Statement

This work received funding from Inra PHASE department and the Inra MEM metaprogramme to MP, RMT. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Miller TL, Wolin MJ, Hongxue Z, Bryant MP. Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol. 1986;51: 201–202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62: 1902–1907. 10.1099/ijs.0.033712-0 [DOI] [PubMed] [Google Scholar]
  • 3.Paul K, Nonoh JO, Mikulski L, Brune A. “Methanoplasmatales,” thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol. 2012;78: 8245–8253. 10.1128/AEM.02193-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Dridi B, Raoult D, Drancourt M. Archaea as emerging organisms in complex human microbiomes. Anaerobe. 2011;17: 56–63. 10.1016/j.anaerobe.2011.03.001 [DOI] [PubMed] [Google Scholar]
  • 5.Carberry CA, Waters SM, Kenny DA, Creevey CJ. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Env Microbiol. 2014;80: 586–594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Borrel G, McCann A, Deane J, Neto MC, Lynch DB, Brugère JF, et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 2017;11: 2059–2074. 10.1038/ismej.2017.72 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA. The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS One. 2014;9: e99411 10.1371/journal.pone.0099411 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Ghavami SB, Rostami E, Sephay AA, Shahrokh S, Balaii H, Aghdaei HA, et al. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb Pathog. 2018;117: 285–289. 10.1016/j.micpath.2018.01.029 [DOI] [PubMed] [Google Scholar]
  • 9.Mathur R, Barlow GM. Obesity and the microbiome Expert Review of Gastroenterology and Hepatology. 2015. pp. 1087–1099. 10.1586/17474124.2015.1051029 [DOI] [PubMed] [Google Scholar]
  • 10.Hook SE, Wright A-DG, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. 2010; 945785 10.1155/2010/945785 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun. 2013;4: 1428 10.1038/ncomms2432 [DOI] [PubMed] [Google Scholar]
  • 12.Jarvis GN, Strömpl C, Burgess DM, Skillman LC, Moore ERB, Joblin KN. Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol. 2000;40: 327–332. 10.1007/s002849910065 [DOI] [PubMed] [Google Scholar]
  • 13.Friedman N, Jami E, Mizrahi I. Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages. Environ Microbiol. 2017;19: 3365–3373. 10.1111/1462-2920.13846 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, et al. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci. 2011;108: 4599–4606. 10.1073/pnas.1000071108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6: 579–591. 10.1038/nrmicro1931 [DOI] [PubMed] [Google Scholar]
  • 16.Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal. 2010;4: 1024–1036. 10.1017/S1751731110000546 [DOI] [PubMed] [Google Scholar]
  • 17.Jackson BE, McInerney MJ. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature. 2002;415: 454–456. 10.1038/415454a [DOI] [PubMed] [Google Scholar]
  • 18.Gonzalez-Cabaleiro R, Lema JM, Rodriguez J, Kleerebezem R. Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy Environ Sci. 2013;6: 3780–3789. [Google Scholar]
  • 19.Muñoz-Tamayo R, Laroche B, Walter E, Doré J, Leclerc M. Mathematical modelling of carbohydrate degradation by human colonic microbiota. J Theor Biol. 2010;266: 189–201. 10.1016/j.jtbi.2010.05.040 [DOI] [PubMed] [Google Scholar]
  • 20.Van Wey AS, Lovatt SJ, Roy NC, Shorten PR. Determination of potential metabolic pathways of human intestinal bacteria by modeling growth kinetics from cross-feeding dynamics. Food Res Int. 2016;88: 207–216. [Google Scholar]
  • 21.Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, Pujos-Guillot E, et al. Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metab. 2015;22: 320–331. 10.1016/j.cmet.2015.07.001 [DOI] [PubMed] [Google Scholar]
  • 22.Kettle H, Louis P, Holtrop G, Duncan SH, Flint HJ. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ Microbiol. 2015;17: 1615–1630. 10.1111/1462-2920.12599 [DOI] [PubMed] [Google Scholar]
  • 23.Heijnen JJ, Dijken JP. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorgansims. Biotechnol Bioengeneering. 1992;39: 833–852. [DOI] [PubMed] [Google Scholar]
  • 24.Kleerebezem R, Van Loosdrecht MCM. A Generalized Method for Thermodynamic State Analysis of Environmental Systems. Crit Rev Environ Sci Technol. 2010;40: 1–54. [Google Scholar]
  • 25.Hoh CY, Cord-Ruwisch R. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Biotechnol Bioeng. 1996;51: 597–604. [DOI] [PubMed] [Google Scholar]
  • 26.Desmond-Le Quemener E, Bouchez T. A thermodynamic theory of microbial growth. Isme J. 2014;8: 1747–1751. 10.1038/ismej.2014.7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Großkopf T, Soyer OS. Microbial diversity arising from thermodynamic constraints. ISME J. 2016;10: 2725–2733. 10.1038/ismej.2016.49 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kohn R a, Boston RC. The Role of Thermodynamics in Controlling Rumen Metabolism. Model Nutr Util Farm Anim. 2000; 11–24. [Google Scholar]
  • 29.Ungerfeld EM. A theoretical comparison between two ruminal electron sinks. Front Microbiol. 2013;4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol. 2010;160: 1–22. [Google Scholar]
  • 31.Van Lingen HJ, Plugge CM, Fadel JG, Kebreab E, Bannink A, Dijkstra J. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS One. 2016;11: e0161362 10.1371/journal.pone.0161362 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Offner A, Sauvant D. Thermodynamic modeling of ruminal fermentations. 2006;55: 343–365. [Google Scholar]
  • 33.Ghimire S, Gregorini P, Hanigan MD. Evaluation of predictions of volatile fatty acid production rates by the Molly cow model. J Dairy Sci. 2014;97: 354–362. 10.3168/jds.2012-6199 [DOI] [PubMed] [Google Scholar]
  • 34.Wolfe RS. Techniques for cultivating methanogens. Methods Enzymol. 2011;494: 1–22. 10.1016/B978-0-12-385112-3.00001-9 [DOI] [PubMed] [Google Scholar]
  • 35.Ohene-Adjei S, Teather RM, Ivan M, Forster RJ. Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl Environ Microbiol. 2007;73: 4609–4618. 10.1128/AEM.02687-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Popova M, Martin C, Eugene M, Mialon MM, Doreau M, Morgavi DP. Effect of fibre- and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls. Anim Feed Sci Technol. 2011;166–67: 113–121. [Google Scholar]
  • 37.Bricheux G, Bonnet JL, Bohatier J, Morel JP, Morel-Desrosiers N. Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis. Ecotoxicol Env Saf. 2013;98: 88–94. [DOI] [PubMed] [Google Scholar]
  • 38.Braissant O, Bonkat G, Wirz D, Bachmann A. Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data. Thermochim Acta. 2013;555: 64–71. [Google Scholar]
  • 39.Muñoz-Tamayo R, Giger-Reverdin S, Sauvant D. Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota. Anim Feed Sci Technol. 2016;220: 1–21. [Google Scholar]
  • 40.Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis SG, Rozzi A, et al. Anaerobic Digestion Model No.1 (ADM1) IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes. IWA Publishing, London; 2002. [Google Scholar]
  • 41.Pavlostathis SG, Miller TL, Wolin MJ. Cellulose Fermentation by Continuous Cultures of Ruminococcus-Albus and Methanobrevibacter-Smithii. Appl Microbiol Biotechnol. 1990;33: 109–116. [Google Scholar]
  • 42.Schauer NL, Ferry JG. Metabolism of formate in Methanobacterium formicicum. J Bacteriol. 1980;142: 800–807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Haydock AK, Porat I, Whitman WB, Leigh JA. Continuous culture of Methanococcus maripaludis under defined nutrient conditions. FEMS Microbiol Lett. 2004. [DOI] [PubMed]
  • 44.Walter E, Pronzato L. Identification of Parametric Models from Experimental Data. Springer, London; 1997. [Google Scholar]
  • 45.Muñoz-Tamayo R, Puillet L, Daniel JB, Sauvant D, Martin O, Taghipoor M, et al. Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling? Animal. 2018;12: 701–712. 10.1017/S1751731117002774 [DOI] [PubMed] [Google Scholar]
  • 46.Bellu G, Saccomani MP, Audoly S, D’Angio L. DAISY: A new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed. 2007;88: 52–61. 10.1016/j.cmpb.2007.07.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Vanrolleghem PA, Vandaele M, Dochain D. Practical identifiability of a biokinetic model of activated-sludge respiration. Water Res. 1995;29: 2561–2570. [Google Scholar]
  • 48.Muñoz-Tamayo R, Laroche B, Leclerc M, Walter E. IDEAS: A parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling. IFAC Proceedings Volumes. 2009. pp. 1271–1276.
  • 49.Lin LI. A concordance correlation-coefficient to evaluate reproducibility. Biometrics. 1989;45: 255–268. [PubMed] [Google Scholar]
  • 50.Schill NA, Liu JS, von Stockar U. Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum. Biotechnol Bioeng. 1999;64: 74–81. [DOI] [PubMed] [Google Scholar]
  • 51.Liu JS, Marison IW, von Stockar U. Microbial growth by a net heat up-take: A calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng. 2001;75: 170–180. 10.1002/bit.1176 [DOI] [PubMed] [Google Scholar]
  • 52.Ruiz T, Bec A, Danger M, Koussoroplis A, Aguer J, Morel J, et al. A microcalorimetric approach for investigating stoichiometric constraints on the standard metabolic rate of a small invertebrate. Ecol Lett. 2018;21: 1714–1722. 10.1111/ele.13137 [DOI] [PubMed] [Google Scholar]
  • 53.Janssen PH, Kirs M. Structure of the archaeal community of the rumen. Appl Environ Microbiol. 2008;74: 3619–3625. 10.1128/AEM.02812-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.von Stockar U, Larsson C, Marison IW. Calorimetry and energetic efficiencies in aerobic and anaerobic microbial growth. Pure Appl Chem. 1993;65: 1889–1892. [Google Scholar]
  • 55.Von Stockar U, Liu JS. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim Biophys Acta—Bioenerg. 1999;1412: 191–211. [DOI] [PubMed] [Google Scholar]
  • 56.Hardin G. The competitive exclusion principle. Science (80-). 1960;131: 1292–1297. [DOI] [PubMed] [Google Scholar]
  • 57.Lynch TA, Wang Y, van Brunt B, Pacheco D, Janssen PH. Modelling thermodynamic feedback on the metabolism of hydrogenotrophic methanogens. J Theor Biol. 2019;477: 14–23. 10.1016/j.jtbi.2019.05.018 [DOI] [PubMed] [Google Scholar]
  • 58.Udén P, Rounsaville TR, Wiggans GR, Van Soest PJ. The measurement of liquid and solid digesta retention in ruminants, equines and rabbits given timothy (Phleum pratense) hay. Br J Nutr. 1982;48: 329–339. 10.1079/bjn19820117 [DOI] [PubMed] [Google Scholar]
  • 59.Ng F, Kittelmann S, Patchett ML, Attwood GT, Janssen PH, Rakonjac J, et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Env Microbiol. 2016;18: 3010–3021. [DOI] [PubMed] [Google Scholar]
  • 60.Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci. 2007;104: 10643–10648. 10.1073/pnas.0704189104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, et al. The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9. Stand Genomic Sci. 2014;9: 15 10.1186/1944-3277-9-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hutchinson GE. The paradox of the plankton. Am Nat. 1961;95: 137–145. [Google Scholar]
  • 63.Bernalier A, Lelait M, Rochet V, Grivet JP, Gibson GR, Durand M. Acetogenesis from H2 and CO2 by methane- and non-methane-producing human colonic bacterial communities. FEMS Microbiol Ecol. 1996;19: 193–202. [Google Scholar]
  • 64.Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 2012;6: 57–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Flint HJ, Duncan SH, Scott KP. Interactions and competition within the microbial community of the human colon : links between diet and health. Environ Microbiol. 2007;9: 1101–1111. 10.1111/j.1462-2920.2007.01281.x [DOI] [PubMed] [Google Scholar]
  • 66.Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol. 2018;9: 2161 10.3389/fmicb.2018.02161 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing Pathways. Science (80-). 2001;292: 50–507. [DOI] [PubMed] [Google Scholar]
  • 68.Vandermeer J, Evans MA, Foster P, Höök T, Reiskind M, Wund M. Increased competition may promote species coexistence. Proc Natl Acad Sci. 2002;99: 8731–8736. 10.1073/pnas.142073599 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.MacLean RC, Gudelj I. Resource competition and social conflict in experimental populations of yeast. Nature. 2006;441: 498–501. 10.1038/nature04624 [DOI] [PubMed] [Google Scholar]
  • 70.Rapaport A, Dochain D, Harmand J. Long run coexistence in the chemostat with multiple species. J Theor Biol. 2009;257: 252–259. 10.1016/j.jtbi.2008.11.015 [DOI] [PubMed] [Google Scholar]
  • 71.Grognard F, Masci P, Benoît E, Bernard O. Competition between phytoplankton and bacteria: exclusion and coexistence. J Math Biol. 2015;70: 959–1006. 10.1007/s00285-014-0783-x [DOI] [PubMed] [Google Scholar]
  • 72.Hsu SB, Hubbell S, Waltman P. A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J Appl Math. 1977;32: 366–383. [Google Scholar]
  • 73.Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in microbial ecology: Building predictive understanding of community function and dynamics. ISME J. 2016;10: 2557–2568. 10.1038/ismej.2016.45 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Muñoz-Tamayo R, Ramirez Agudelo JF, Dewhurst RJ, Miller G, Vernon T, Kettle H. A parsimonious software sensor for estimating the individual dynamic pattern of methane emissions from cattle. Animal. 2019;13: 1180–1187. 10.1017/S1751731118002550 [DOI] [PubMed] [Google Scholar]
  • 75.Ou JZ, Yao CK, Rotbart A, Muir JG, Gibson PR, Kalantar-zadeh K. Human intestinal gas measurement systems: In vitro fermentation and gas capsules. Trends Biotechnol. 2015;33: 208–213. 10.1016/j.tibtech.2015.02.002 [DOI] [PubMed] [Google Scholar]

Decision Letter 0

James E Wells

26 Sep 2019

PONE-D-19-19604

Hydrogenotrophic methanogens of the mammalian gut: functionally similar, thermodynamically different - A modelling approach

PLOS ONE

Dear Dr. Muñoz-Tamayo,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

We would appreciate receiving your revised manuscript by Nov 10 2019 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

James E. Wells, PhD

Academic Editor

PLOS ONE

Journal Requirements:

1. When submitting your revision, we need you to address these additional requirements.

Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

http://www.journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and http://www.journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. Please include captions for your Supporting Information files at the end of your manuscript, and update any in-text citations to match accordingly. Please see our Supporting Information guidelines for more information: http://journals.plos.org/plosone/s/supporting-information.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: N/A

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: No

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: Manuscript Number: PONE-D-19-19604

Full Title: Hydrogenotrophic methanogens of the mammalian gut: functionally similar,

thermodynamically different - A modelling approach

General Comments:

The manuscript describes construction of a computer modelling analysis of the growth of three methanogenic archaea. A calorimetric approach was used along with more standard growth measurements. The manuscript was clearly written and logically organized. The growth conditions were quite standard in vitro batch cultures, but the measurements were inventive and the analyses thorough. There are caveats to extrapolating conclusions from batch growth to the continuous, or fed-batch, type of growth in the animal gut. However, the conclusions do not cross that line. The primary conclusion is that the model can be used to inform other models, which is quite reasonable. The vast majority of studies currently published on the gut microbiota are just 16S microbiome sequences. It is refreshing to see another approach. The specific comments below are minor in nature. I hope that they are useful.

Specific Comments:

L33: “We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts.” That makes sense.

L93: Please provide the chain of custody for each archaeon. Were each of them acquired directly from the DSM or were they maintained by other investigators or culture collections?

L101: What type of tubes were used? Was the pressure in the tubes 2.5 Pa at the start of the growth experiment? Please include liquid and gas headspace volumes. These types of appropriate details are included in the Microcalorimetry section.

L107: Briefly describe the gas chromatography method.

L142: Is this the media described in the supplemental table? If so, define it as Balch growth media in the media section of the materials and methods.

L202: It seems reasonable that H2 would be the limiting substrate due to poor solubility, as mentioned on L182. That is the reason that the headspace is initially 80% H2. I wonder how the rate of diffusion into the liquid phase compares to the rate of H2 production by bacteria and other microbiota in vivo. Please comment here or elsewhere.

L222: Do the physiologies of the organisms support the assumption that ammonia is the only nitrogen source? Do they obligately synthesize all of their amino acids?

L267: “Tackling” is a colloquialism. “Before initiating the numerical estimation…” or “Before numerically estimating…”

L291: Elsewhere the manuscript states that log-phase cultures were used. The cultures were frozen at -20 degrees C. Three hours post inoculation there was about 50% variation in the viable number among the three species. That seems reasonable. There is no question or correction here. The reviewer notes that there were no problems with cell viability at the start of the experiment.

L303, L308 and elsewhere – The Results reads like a combined Results and Discussion section. It is recommended that interpretation be reserved for the Discussion section.

L358 – Check the markers in the figure legend. The manuscript handling system might have translated them incorrectly when the manuscript was changed to a PDF.

L370 – What are the black arrows on the figure panels? Please expand in the figure legend.

L388 – Based on figure 4, it looks like maximum specific growth rates were observed. That is, they look like ordinary batch growth curves in substrate-excess conditions. If the maximum specific growth rate for each organism was observed, then the initial H2 concentration must not have been limiting. Please discuss this point.

L400 – This is interesting discussion. In saccharolytic bacteria, the rate limiting factor is sometimes the rate substrate transport across the membrane. Once again, however, if the substrate was truly limiting, then the methanogens did not achieve their maximum specific growth rates. If the substrate were a sugar, I would want to know the sugar concentration throughout the curve. The diffusion of the H2 makes the question more complicated.

Reviewer #2: Authors assessed archaeal growth with cell count analysis based on OD660 and qPCR analysis, and measured gas pressure and composition. In addition, microcalorimetric measurements were performed for quantifying enthalpy, entropy and Gibbs energy change. Furthermore, in vitro and in silico mathematical modeling was applied to simulate dynamics of archaeal growth.

In the first paragraph of the introduction, which lacks a clear structure that smoothly narrows down to the objective of the paper, the authors mention gut archaea in relation to: 1) energy balance of the host 2) immune system of the host 3) methane as a terminal electron acceptor 4) methane as a greenhouse gas 5) cytochromes that they do or do not contain. In the second paragraph the authors report thermodynamics to be an important concept for dynamically predicting metabolic dynamics in the gut and state despite previously developed modeling frameworks, new knowledge could improve the predictive accuracy of these frameworks. It is not mentioned in the paper to what extent these previously developed models are inaccurate and what specific aspects of these models require improvement. The authors then aim to quantitatively characterize metabolic dynamics of three hydrogenotrophic gut methanogens. I would like the authors to state very clearly what problem they intend to tackle with the present work and to identify shortcomings of published studies. Also, it is insufficiently clear why the authors performed the microcalorimetry. What was done by the authors was already known for M. thermoautotrophicum, which employs exactly the same hydrogenotrophic methanogenic reaction.

It might be very valid that a model for three methanogenic species is defined in Eq 14 and that in the discussion of the paper the coexistence of the three methanogenic species is discussed. Please clarify why this is in line with the aim of the paper. The discussion regarding species coexistence is very interesting, but it is questionable if the classical competitive exclusion principle does actually not apply. Is the approach given by Eq 14 fully accurate? Archaea may be subject to different passage rates (values of ‘b’) for various reasons. They may transition back and forth between fluid and particulate matter, or either or not adhere to protozoa, live in syntrophy etc.

Is ‘energetic and kinetic differences between methanogens’ a proper name for the first subsection of the discussion? In the literature, energetic often refers to thermodynamics, which is in the name of the next subsection.

The authors refer to the gas phase and liquid phase of the rumen throughout the paper. Would it not be more clear to refer to liquid fraction and gas layer, because phase commonly refers to the state of a chemical substance? For example, carbon dioxide may transition from the gas to fluid phase a very low temperatures. In addition, hydrogen, carbon dioxide and methane are not in the liquid phase, but dissolved in aqueous solution.

It is somewhat difficult to understand how the reader should interpret Fig 2. Could you please revise the manuscript text such that most readers will interpret this figure as it should be interpreted?

I suspect the results from the in vitro work were used for parameter estimation of the model(s), but this is not stated in the paper. Could you please make this explicit?

The reported CCC and R^2 in Table 3 seem unrealistically high. Were the model predictions evaluated independently? If not, what is the value of this model evaluation?

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2019 Dec 11;14(12):e0226243. doi: 10.1371/journal.pone.0226243.r002

Author response to Decision Letter 0


8 Oct 2019

Dear Dr. James E. Wells Academic Editor PlOS ONE,

We would like to thank the reviewers for their assessment of our work and their constructive comments.

We have decided to submit a revised version of the article. In the following, we address the comments of each reviewer.

We believe that the current version improves in clarity. We hope that you will find the revised version suitable for publication in PLOS ONE. In the modified version, we provided the links to get access to the code of the model and the experimental data.

Sincerely

On behalf of the authors

Rafael Muñoz-Tamayo

Reviewer #1:

General Comments:

The manuscript describes construction of a computer modelling analysis of the growth of three methanogenic archaea. A calorimetric approach was used along with more standard growth measurements. The manuscript was clearly written and logically organized. The growth conditions were quite standard in vitro batch cultures, but the measurements were inventive and the analyses thorough. There are caveats to extrapolating conclusions from batch growth to the continuous, or fed-batch, type of growth in the animal gut. However, the conclusions do not cross that line. The primary conclusion is that the model can be used to inform other models, which is quite reasonable. The vast majority of studies currently published on the gut microbiota are just 16S microbiome sequences. It is refreshing to see another approach. The specific comments below are minor in nature. I hope that they are useful.

Response: we thank the reviewer for her/his assessment and the usefulness of the comments

Specific Comments:

L33: “We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts.” That makes sense.

Response: thanks.

L93: Please provide the chain of custody for each archaeon. Were each of them acquired directly from the DSM or were they maintained by other investigators or culture collections?

Response: we added the requested information, lines 91-95.

L101: What type of tubes were used? Was the pressure in the tubes 2.5 Pa at the start of the growth experiment? Please include liquid and gas headspace volumes. These types of appropriate details are included in the Microcalorimetry section.

Response: the tubes are now described on line 95. The initial pressure is shown in Supplementary Table 2. For the liquid and gas headspace volumes, the information was added in lines 94-95. Thank you for pointing out this missing information.

L107: Briefly describe the gas chromatography method.

Response: done, lines 106-109

L142: Is this the media described in the supplemental table? If so, define it as Balch growth media in the media section of the materials and methods.

Response: done, line 93

L202: It seems reasonable that H2 would be the limiting substrate due to poor solubility, as mentioned on L182. That is the reason that the headspace is initially 80% H2. I wonder how the rate of diffusion into the liquid phase compares to the rate of H2 production by bacteria and other microbiota in vivo. Please comment here or elsewhere.

Response: this is a very relevant comment. We do not know of any studies reporting data on the rate of diffusion in the liquid phase in vivo. In the gut, after its production by fermenting microbes, hydrogen diffuses through the cell membrane in a dissolved form. The diffusion rate is dependent on the cell physiology (size and form), but also on hydrogen concentration in the cell’s environment. It has been suggested that dissolved H2 is supersaturated indicating lack of equilibrium between gas and liquid phases (1). The dissolved H2 concentration is about 0.1–50 µM. Dedicated experiments are needed to quantify the diffusion rate under in vivo conditions where H2 production is also influenced by interspecies H2 transfer from bacteria and protozoa to hydrogenotrophic archaea.

L222: Do the physiologies of the organisms support the assumption that ammonia is the only nitrogen source? Do they obligately synthesize all of their amino acids?

Response: the reviewer is right in pointing out that microbes can utilize different sources of nitrogen. We used the simplified assumption that NH3 is the sole nitrogen source, following the model developments in anaerobic digestion (4) and the thermodynamic study on Methanobacterium thermoautotrophicum (5).

L267: “Tackling” is a colloquialism. “Before initiating the numerical estimation…” or “Before numerically estimating…”

Response: corrected L267

L291: Elsewhere the manuscript states that log-phase cultures were used. The cultures were frozen at -20 degrees C. Three hours post inoculation there was about 50% variation in the viable number among the three species. That seems reasonable. There is no question or correction here. The reviewer notes that there were no problems with cell viability at the start of the experiment.

Response: Thank you for your comment, really appreciated

L303, L308 and elsewhere – The Results reads like a combined Results and Discussion section. It is recommended that interpretation be reserved for the Discussion section.

Response: we follow the advice of the reviewer L389-394.

L358 – Check the markers in the figure legend. The manuscript handling system might have translated them incorrectly when the manuscript was changed to a PDF.

Response: the markers are correct

L370 – What are the black arrows on the figure panels? Please expand in the figure legend.

Response: the arrows were put to indicate the unit axis of each biomass. We realized the arrows are unnecessary so we deleted them from the figure.

L388 – Based on figure 4, it looks like maximum specific growth rates were observed. That is, they look like ordinary batch growth curves in substrate-excess conditions. If the maximum specific growth rate for each organism was observed, then the initial H2 concentration must not have been limiting. Please discuss this point.

Response: the reviewer is right. In the experiments we overpressed tubes with hydrogen to ensure substrate availability in excess. We used wrongly the term limiting substrate. What we wanted to express is that we used a single substrate kinetic rate that is function of the hydrogen concentration only (rather than a kinetic rate equation with two substrates). Corrections were done L204, 384.

L400 – This is interesting discussion. In saccharolytic bacteria, the rate limiting factor is sometimes the rate substrate transport across the membrane. Once again, however, if the substrate was truly limiting, then the methanogens did not achieve their maximum specific growth rates. If the substrate were a sugar, I would want to know the sugar concentration throughout the curve. The diffusion of the H2 makes the question more complicated.

Response: in the previous response we confirmed the observation of the reviewer that our conditions were not under substrate limitation. It is true that the diffusion of H2 complicates the analysis. Given the closeness between the measured total heat and the expected theoretical value calculated from the methanogenesis reaction, we might think that diffusion process does not contribute significantly to the heat of the complete process. However, further studies will be required to provide evidence.

Reviewer #2:

Authors assessed archaeal growth with cell count analysis based on OD660 and qPCR analysis, and measured gas pressure and composition. In addition, microcalorimetric measurements were performed for quantifying enthalpy, entropy and Gibbs energy change. Furthermore, in vitro and in silico mathematical modeling was applied to simulate dynamics of archaeal growth.

In the first paragraph of the introduction, which lacks a clear structure that smoothly narrows down to the objective of the paper, the authors mention gut archaea in relation to: 1) energy balance of the host 2) immune system of the host 3) methane as a terminal electron acceptor 4) methane as a greenhouse gas 5) cytochromes that they do or do not contain. In the second paragraph the authors report thermodynamics to be an important concept for dynamically predicting metabolic dynamics in the gut and state despite previously developed modeling frameworks, new knowledge could improve the predictive accuracy of these frameworks. It is not mentioned in the paper to what extent these previously developed models are inaccurate and what specific aspects of these models require improvement. The authors then aim to quantitatively characterize metabolic dynamics of three hydrogenotrophic gut methanogens. I would like the authors to state very clearly what problem they intend to tackle with the present work and to identify shortcomings of published studies. Also, it is insufficiently clear why the authors performed the microcalorimetry. What was done by the authors was already known for M. thermoautotrophicum, which employs exactly the same hydrogenotrophic methanogenic reaction.

Response: the Introduction was modified to improve clarity L61-86. We stated clearly the objective of our work. Microcalorimetric experiments were performed to identify differences in the dynamic energetic pattern of the three methanogens. These experiments were instrumental to estimate the specific growth rates of the microbes.

It might be very valid that a model for three methanogenic species is defined in Eq 14 and that in the discussion of the paper the coexistence of the three methanogenic species is discussed. Please clarify why this is in line with the aim of the paper. The discussion regarding species coexistence is very interesting, but it is questionable if the classical competitive exclusion principle does actually not apply. Is the approach given by Eq 14 fully accurate? Archaea may be subject to different passage rates (values of ‘b’) for various reasons. They may transition back and forth between fluid and particulate matter, or either or not adhere to protozoa, live in syntrophy etc.

Response: The interest of addressing the competition exclusion principle is defined in the Introduction section L80-83

We acknowledge that our model is a very simplified representation. It is why we used the term “toy model” to express the model limitation. The remarks of the reviewer about the different passages of the microbes (values of Di) and variable output substrate rate (parameter b) align with our conclusion that the classical competitive exclusion principle does not apply, since the original form of the exclusion principle considers a constant output substrate rate and the same passage rate for the microbes. A theoretical development will be needed to explain methanogens coexistence in the gut.

Is ‘energetic and kinetic differences between methanogens’ a proper name for the first subsection of the discussion? In the literature, energetic often refers to thermodynamics, which is in the name of the next subsection.

Response: we changed the name of the second subsection to be consistent L413

The authors refer to the gas phase and liquid phase of the rumen throughout the paper. Would it not be more clear to refer to liquid fraction and gas layer, because phase commonly refers to the state of a chemical substance? For example, carbon dioxide may transition from the gas to fluid phase a very low temperatures. In addition, hydrogen, carbon dioxide and methane are not in the liquid phase, but dissolved in aqueous solution.

Response: the reviewer is right. However, we prefer to use the term phase because it is widely used in the literature of anaerobic digestion modelling that inspired our model developments (2,4).

It is somewhat difficult to understand how the reader should interpret Fig 2. Could you please revise the manuscript text such that most readers will interpret this figure as it should be interpreted?

Response: the Figure and the legend were modified L311.

I suspect the results from the in vitro work were used for parameter estimation of the model(s), but this is not stated in the paper. Could you please make this explicit?

Response: the information was added in L285-286

The reported CCC and R^2 in Table 3 seem unrealistically high. Were the model predictions evaluated independently? If not, what is the value of this model evaluation?

Response: if we understood correctly, the reviewer suggests to report the statistics of model performance for each methanogen. We followed this advice and modified the Table 3 accordingly as well as the values in the manuscript L23,24, L356-357. In addition, we made the data available L352-353. The reviewer can check our calculations.

References

1. Wang M, Ungerfeld EM, Wang R, Zhou CS, Basang ZZ, Ao SM, et al. Supersaturation of dissolved hydrogen and methane in rumen of Tibetan sheep. Front Microbiol. 2016;

2. Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol. 2010;160:1–22.

3. Muñoz-Tamayo R, Giger-Reverdin S, Sauvant D. Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota. Anim Feed Sci Technol. 2016;220:1–21.

4. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis SG, Rozzi A, et al. Anaerobic Digestion Model No.1 (ADM1). IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes. IWA Publishing, London; 2002.

5. Schill NA, Liu JS, von Stockar U. Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum. Biotechnol Bioeng. 1999;64:74–81.

Attachment

Submitted filename: 20191008_Response to Reviewers.docx

Decision Letter 1

James E Wells

18 Nov 2019

PONE-D-19-19604R1

Hydrogenotrophic methanogens of the mammalian gut: functionally similar, thermodynamically different - A modelling approach

PLOS ONE

Dear Dr. Muñoz-Tamayo,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

We would appreciate receiving your revised manuscript by Jan 02 2020 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

James E. Wells, PhD

Academic Editor

PLOS ONE

Additional Editor Comments (if provided):

Reviewer 2 has one concern that needs to be addressed.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

Reviewer #2: (No Response)

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: No

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: (No Response)

Reviewer #2: I appreciate the rewrite of the introduction by the authors, which definitely made the paper improve in clarity. However, I feel the authors can still make the very final step regarding the added value of the paper to the existing literature. I suggest that the authors add a last piece of information to the discussion section to discuss why the present model development would contribute to increased understanding of the immune system of humans and the prediction of greenhouse gases from the rumen. Or how suggested further model development dealing with nonlinear behaviour related to spatial and temporal variation in mammalian gut systems contributes to this? Do we need to be able to model coexistence to answer these questions?

I apologise for unclarity from my side regarding the reported CCC and R^2 in Table 3 that seemed unrealistically high. What I meant is that it appears to me that the model parameters were fitted to the data that was available. Using those fitted parameters, predicted values were obtained from model simulations and compared with observed values. This comparison resulted in CCC and R^2 values. My point is that the same data should not be used for model parameter fitting and model evaluation to ensure that model predictions are evaluated independently. If a model is not evaluated independently, observed vs. predicted plots could serve as valid diagnostic plots, but CCC and R^2 values are trivial. Independent data is needed for a solid model evaluation. The authors may split the data that is available if they are able to do so.

I wonder why the x-axes of Figures 3 and 4 run over 75 and 100 h, respectively, instead of 75 h for both Figures.

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2019 Dec 11;14(12):e0226243. doi: 10.1371/journal.pone.0226243.r004

Author response to Decision Letter 1


21 Nov 2019

Dear Dr. James E. Wells Academic Editor PlOS ONE,

We have decided to submit a revised version of the article. Below, we addressed the comments of reviewer 2.

We hope that you will find the revised version suitable for publication in PLOS ONE.

Sincerely

On behalf of the authors

Rafael Muñoz-Tamayo

Reviewer #2:

I appreciate the rewrite of the introduction by the authors, which definitely made the paper improve in clarity. However, I feel the authors can still make the very final step regarding the added value of the paper to the existing literature. I suggest that the authors add a last piece of information to the discussion section to discuss why the present model development would contribute to increased understanding of the immune system of humans and the prediction of greenhouse gases from the rumen. Or how suggested further model development dealing with nonlinear behaviour related to spatial and temporal variation in mammalian gut systems contributes to this? Do we need to be able to model coexistence to answer these questions?

Response: characterising the dynamics of rumen methanogens (and other rumen microbes) is essential to the enhanced understanding of the microbial community functioning and thus holobiont’s phenotype. In particular, the efficiency of methane mitigation strategies are strongly dependent of dynamic properties such as the rumen ecosystem resilience and also by the functional redundancy of microbes (Weimer, 2015). This functional redundancy is related to the aspects discussed in our article. Our modelling work aimed to characterise methanogen dynamics. We prefer in the paper to avoid being speculative about the impact of our model on the prediction of in vivo systems and focus on our actual outcomes avoiding the risk of overselling our findings. On-going and future work will aim at expanding the model to the gut ecosystem, but we are aware that we have a long way.

In regard to the relevance of incorporating nonlinear behaviour related to spatial and temporal variation in mammalian ecosystems, these aspects have been already discussed in our previous developments (Muñoz-Tamayo et al., 2010) and by other authors (Widder et al., 2016). Spatio-temporal mechanisms are determining for the functioning and colonization of the human gut (Labarthe et al., 2019). An experimental work indicated the importance of temporal dynamics to enhance the understanding on rumen function (Huws et al., 2016).

The level of detail of the model is an open question for the modeller and depends of the question the model is intended to help to answer. For example, as demonstrated in our modelling works, we do not need information of the rumen microbiota to predict accurately enteric methane production (Muñoz-Tamayo et al., 2019). However, microbial information is needed into models to inform on manipulation strategies and improving understanding of rumen microbial function as discussed in our recent review (Huws et al., 2018). For the human gut, analysing competition and syntrophy between gut microbes allows to identify assembling rules of the microbial community. “Notably, elucidating the assembly rules of the microbiome goes beyond gaining a better understanding of basic ecological processes and has profound clinical implications.”(Levy and Borenstein, 2013)

These interesting questions should be addressed integrating new models and data from those used in our work.

I apologise for unclarity from my side regarding the reported CCC and R^2 in Table 3 that seemed unrealistically high. What I meant is that it appears to me that the model parameters were fitted to the data that was available. Using those fitted parameters, predicted values were obtained from model simulations and compared with observed values. This comparison resulted in CCC and R^2 values. My point is that the same data should not be used for model parameter fitting and model evaluation to ensure that model predictions are evaluated independently. If a model is not evaluated independently, observed vs. predicted plots could serve as valid diagnostic plots, but CCC and R^2 values are trivial. Independent data is needed for a solid model evaluation. The authors may split the data that is available if they are able to do so.

Response: we recognize the importance of model validation (falsification). However, model validation is not an exclusive criterion for model evaluation. The lack of the model validation step does not preclude a rigour analysis of model evaluation. The implementation of a model validation requires a large data set. In our study, the number of sampling times for each microbe is limited. Accordingly, splitting the data for calibration and validation is not a good strategy. Reducing the number of data for model calibration will reduce the informative content of the process dynamics and thus will have a detrimental effect in the accuracy of the parameter estimates. Model validation is desired when data is available under other experimental conditions (e.g. operation under continuous mode), which is not the case in our study. We disagree with the analysis the reviewer performs with respect to the statistic indicators for model evaluation. The values of R2 and CCC calculated under the calibration context are not trivial since a model with structural problems will lead to unsatisfactory R2 and CCC. The high values that we obtained for R2 and CCC demonstrated that the model is well structured and that captures the dynamic of the methanogenesis. Our satisfactory calibration outcomes are the result of an adequate model construction that includes the theoretical identifiability property of the model as discussed in the article and also from the fact that we addressed practical identifiability issues. The sampling times were actually determined using an optimal experiment design (OED) strategy to facilitate accurate estimation of the parameters. This OED strategy was based using estimates from preliminary data and implementing an optimization problem that maximizes the determinant of the Fisher Information Matrix (Muñoz-Tamayo et al., 2014). This information is not detailed in the article to avoid the reader to get lost in mathematical technicalities. It should be said that our calibration strategy follows a validation-like principle since the maximum specific growth rate constants were obtained from the calorimetric experiments data and injected further into the dynamic model challenged with the data from the growth kinetics experiments. This procedure strengthens the quality of our model.

In lines 410-413, we recognized the limitation of our work with respect to model validation.

I wonder why the x-axes of Figures 3 and 4 run over 75 and 100 h, respectively, instead of 75 h for both Figures.

Response: Figure 4 was modified to get the axes homogenous

References

Huws, S.A., Creevey, C.J., Oyama, L.B., Mizrahi, I., Denman, S.E., Popova, M., et al. (2018) Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol 9: 2161.

Huws, S.A., Edwards, J.E., Creevey, C.J., Stevens, P.R., Lin, W., Girdwood, S.E., et al. (2016) Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol Ecol 92:.

Labarthe, S., Polizzi, B., Phan, T., Goudon, T., Ribot, M., and Laroche, B. (2019) A mathematical model to investigate the key drivers of the biogeography of the colon microbiota. J Theor Biol 462: 552–581.

Levy, R. and Borenstein, E. (2013) Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proceeding Natl Acad Sci United States Am 110: 12804–12809.

Muñoz-Tamayo, R., Laroche, B., Walter, E., Doré, J., and Leclerc, M. (2010) Mathematical modelling of carbohydrate degradation by human colonic microbiota. J Theor Biol 266: 189–201.

Muñoz-Tamayo, R., Martinon, P., Bougaran, G., Mairet, F., and Bernard, O. (2014) Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models. J Process Control 24:.

Muñoz-Tamayo, R., Ramírez Agudelo, J.F., Dewhurst, R.J., Miller, G., Vernon, T., and Kettle, H. (2019) A parsimonious software sensor for estimating the individual dynamic pattern of methane emissions from cattle. Animal 13: 1180–1187.

Weimer, P.J. (2015) Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 6: 296.

Widder, S., Allen, R.J., Pfeiffer, T., Curtis, T.P., Wiuf, C., Sloan, W.T., et al. (2016) Challenges in microbial ecology: Building predictive understanding of community function and dynamics. ISME J 10: 2557–2568.

Attachment

Submitted filename: 20191121_Response to Reviewers_final.docx

Decision Letter 2

James E Wells

25 Nov 2019

Hydrogenotrophic methanogens of the mammalian gut: functionally similar, thermodynamically different - A modelling approach

PONE-D-19-19604R2

Dear Dr. Muñoz-Tamayo,

We are pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it complies with all outstanding technical requirements.

Within one week, you will receive an e-mail containing information on the amendments required prior to publication. When all required modifications have been addressed, you will receive a formal acceptance letter and your manuscript will proceed to our production department and be scheduled for publication.

Shortly after the formal acceptance letter is sent, an invoice for payment will follow. To ensure an efficient production and billing process, please log into Editorial Manager at https://www.editorialmanager.com/pone/, click the "Update My Information" link at the top of the page, and update your user information. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, you must inform our press team as soon as possible and no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

With kind regards,

James E. Wells, PhD

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Acceptance letter

James E Wells

3 Dec 2019

PONE-D-19-19604R2

Hydrogenotrophic methanogens of the mammalian gut: functionally similar, thermodynamically different - A modelling approach

Dear Dr. Muñoz-Tamayo:

I am pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

For any other questions or concerns, please email plosone@plos.org.

Thank you for submitting your work to PLOS ONE.

With kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. James E. Wells

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Table. Methanogens growth media composition.

    (DOCX)

    S2 Table. Summary of initial OD and pressure measured immediately after primary inoculation.

    (DOCX)

    S3 Table. qPCR quantification of 16S rRNA genes.

    (DOCX)

    S4 Table. Calculation of thermodynamic properties of the methanogenesis.

    (DOCX)

    Attachment

    Submitted filename: 20191008_Response to Reviewers.docx

    Attachment

    Submitted filename: 20191121_Response to Reviewers_final.docx

    Data Availability Statement

    All relevant data are within the manuscript and its Supporting Information files.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES