Skip to main content
. 2019 Dec 9;7:e8207. doi: 10.7717/peerj.8207

Table 1. Selection frequency and test accuracy, precision and recall of best model out of the three classifiers and best model of each classifier, obtained with and without FSS application over the individual features of each activity.

Selected Selected
k-NN
Selected
LR
Selected
SVM
Endurance
task
Without FSS Accuracy 0.563 0.646 0.667 0.542
Precision 0.579 0.706 0.667 0.533
Recall 0.458 0.500 0.667 0.667
Sel. Frequency 6/48 42/48 0/48
With BB Accuracy 0.688 0.458 0.688 0.646
Precision 0.645 0.458 0.655 0.629
Recall 0.833 0.458 0.792 0.708
Sel. Frequency 5/48 42/48 1/48
With RFE Accuracy 0.542 0.563 0.583 0.583
Precision 0.550 0.579 0.571 0.571
Recall 0.458 0.458 0.667 0.667
Sel. Frequency 36/48 6/48 6/48
Valsava
Maneuver
Without FSS Accuracy 0.583 0.417 0.583 0.542
Precision 0.583 0.389 0.583 0.545
Recall 0.583 0.292 0.583 0.500
Sel. Frequency 0/48 43/48 5/48
With BB Accuracy 0.500 0.438 0.583 0.521
Precision 0.500 0.421 0.611 0.533
Recall 0.333 0.333 0.458 0.333
Sel. Frequency 8/48 28/48 12/48
With RFE Accuracy 0.563 0.563 0.708 0.604
Precision 0.579 0.579 0.778 0.647
Recall 0.458 0.458 0.583 0.458
Sel. Frequency 40/48 5/48 3/48
Maximum
Contraction
Without FSS Accuracy 0.604 0.542 0.604 0.604
Precision 0.593 0.542 0.593 0.600
Recall 0.667 0.542 0.667 0.625
Sel. Frequency 0/48 48/48 0/48
With BB Accuracy 0.500 0.500 0.562 0.562
Precision 0.500 0.500 0.560 0.556
Recall 0.500 0.500 0.583 0.625
Sel. Frequency 40/48 6/48 2/48
With RFE Accuracy 0.563 0.521 0.604 0.563
Precision 0.565 0.522 0.593 0.556
Recall 0.542 0.500 0.667 0.625
Sel. Frequency 38/48 10/48 0
Wave
Task
Without FSS Accuracy 0.625 0.521 0.667 0.562
Precision 0.625 0.533 0.667 0.565
Recall 0.625 0.333 0.667 0.542
Sel. Frequency 0/48 41/48 7/48
With BB Accuracy 0.708 0.667 0.688 0.729
Precision 0.708 0.700 0.680 0.762
Recall 0.708 0.583 0.708 0.667
Sel. Frequency 6/48 37/48 5/48
With RFE Accuracy 0.771 0.792 0.729 0.667
Precision 0.842 0.889 0.704 0.654
Recall 0.667 0.667 0.792 0.704
Sel. Frequency 43/48 4/48 1/48

Notes.

k-NN
k-nearest neighbors
LR
logistic regression
SVM
support vector machine
FSS
feature subset search
BB
branch and bound
RFE
recursive feature elimination