Aspergillus fischeri is a common food spoilage fungus and a close relative of the opportunistic human pathogen Aspergillus fumigatus. Here, we sequenced the genomes of two isolates of A. fischeri to build resources for comparative genomics and to aid in differentiation between A. fischeri subspecies.
ABSTRACT
Aspergillus fischeri is a common food spoilage fungus and a close relative of the opportunistic human pathogen Aspergillus fumigatus. Here, we sequenced the genomes of two isolates of A. fischeri to build resources for comparative genomics and to aid in differentiation between A. fischeri subspecies.
ANNOUNCEMENT
Aspergillus fischeri is a filamentous fungus that is naturally found in soil and other decaying organic matter (1, 2), a common agent of food spoilage (1–3), and a rare opportunistic pathogen in humans (4–6). In contrast, Aspergillus fumigatus is a closely related species but is responsible for hundreds of thousands of infections and deaths each year (7, 8). A. fischeri and A. fumigatus diverged as recently as ∼4 million years ago (mya) (9) and share several phenotypic similarities (e.g., thermotolerance, hypoxia tolerance, ascospore formation and morphology, and the production of certain secondary metabolites) (4, 10–12). To date, the genomes of more than 100 A. fumigatus isolates have been fully sequenced (13–17), while only one A. fischeri genome has been sequenced (16).
We sequenced the genomes of A. fischeri IBT 3003 and IBT 3007, which are part of a collection in the Department of Biotechnology at Technical University of Denmark (Lyngby, Denmark) and were originally isolated from soil in Denmark (10). For each isolate, 1 × 106 spores were inoculated onto potato dextrose agar (PDA) plates at 37°C for 72 hours. DNA was isolated directly from spores using the MasterPure yeast DNA purification kit following the manufacturer’s instructions, with several minor modifications.
The 150-bp paired-end libraries were constructed and sequenced by Novogene on an Illumina NovaSeq 6000 sequencer. Raw sequence reads were first deduplicated using Tally (version 15-065) with “–with-quality” and “–pair-by-offset” options to remove potential PCR duplicates (18). Next, we used Trim Galore (version 0.4.2; http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove residual adaptor sequences and trim reads at low-quality sites using the parameters “–paired,” “–stringency 1,” “–quality 30,” and “–length 50.” The preassembly-improved data sets consisted of 14,619,651 and 15,944,684 read pairs for A. fischeri IBT 3003 and IBT 3007, respectively. These data sets were error corrected and assembled using SPAdes (version 3.9.1) with the “–careful” parameter and k-mer sizes of 31, 43, 73, and 93 (19). The cumulative assembly sizes for A. fischeri IBT 3003 and IBT 3007 were 31.61 Mb and 31.25 Mb and the G+C contents were 49.5% and 49.5%, respectively. We extracted the internal transcribed spacer (ITS) region from the A. fischeri IBT 3003 and IBT 3007 genomes, and they were subjected to a BLAST search against the NCBI nonredundant database (20). Both ITS sequences shared 100% sequence identity to the reference A. fischeri NRRL 181 genome (16). We then used QUAST (version 5.0.2) to assess the quality of the assemblies (21). A. fischeri IBT 3003 and IBT 3007 were assembled into 1,037 and 1,193 scaffolds, with N50 values of 365 kb and 377 kb, respectively. BUSCO (version 3) was used to evaluate the completeness of the genome assemblies, using the “ascomycota_odb9” gene set (22). Totals of 98.4% and 98.5% of BUSCO genes were recovered from the A. fischeri IBT 3003 and IBT 3007 assemblies, respectively.
Data availability.
The whole-genome shotgun projects for A. fischeri IBT 3003 and IBT 3007 have been deposited in GenBank under the accession numbers VWYB00000000 and VWYA00000000, respectively. Raw Illumina data have been deposited to the NCBI Sequence Read Archive under the project accession number PRJNA564742.
ACKNOWLEDGMENT
This work was supported by the National Institutes of Health, National Institute of Allergy and Infectious Diseases (1R21AI137485-01).
REFERENCES
- 1.Pitt JI, Hocking AD. 2009. Fungi and food spoilage, vol 519 Springer, New York, NY. [Google Scholar]
- 2.Evelyn KHJ, Silva FVM. 2016. Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing. Food Control 59:530–537. doi: 10.1016/j.foodcont.2015.06.033. [DOI] [Google Scholar]
- 3.Kavanagh J, Larchet N, Stuart M. 1963. Occurrence of a heat-resistant species of Aspergillus in canned strawberries. Nature 198:1322. doi: 10.1038/1981322a0. [DOI] [Google Scholar]
- 4.Mead ME, Knowles SL, Raja HA, Beattie SR, Kowalski CH, Steenwyk JL, Silva LP, Chiaratto J, Ries LNA, Goldman GH, Cramer RA, Oberlies NH, Rokas A. 2019. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. mSphere 4:e00018-19. doi: 10.1128/mSphere.00018-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Lamoth F. 2016. Aspergillus fumigatus-related species in clinical practice. Front Microbiol 7:683. doi: 10.3389/fmicb.2016.00683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller T. 2009. Molecular identification of Aspergillus species collected for the transplant-associated infection surveillance network. J Clin Microbiol 47:3138–3141. doi: 10.1128/JCM.01070-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13. doi: 10.1126/scitranslmed.3004404. [DOI] [PubMed] [Google Scholar]
- 8.Bongomin F, Gago S, Oladele RO, Denning DW. 2017. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel) 3:E57. doi: 10.3390/jof3040057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Steenwyk JL, Shen XX, Lind AL, Goldman GH, Rokas A. 2019. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio 10:e00925-19. doi: 10.1128/mBio.00925-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Girardin H, Monod M, Latgé JP. 1995. Molecular characterization of the food-borne fungus Neosartorya fischeri (Malloch and Cain). Appl Environ Microbiol 61:1378–1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Dagenais TRT, Keller NP. 2009. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22:447–465. doi: 10.1128/CMR.00055-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Latgé JP. 1999. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350. doi: 10.1128/CMR.12.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Lafton A, Latgé J-P, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O'Neil S, Paulsen I, Peñalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream M-A, Reichard U, Renauld H, Robson GD, Rodriguez de Córdoba S, Rodríguez-Peña JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sánchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu J-H, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. doi: 10.1038/nature04332. [DOI] [PubMed] [Google Scholar]
- 14.Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, Meis JF, Armstrong-James D, Fisher MC. 2015. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. mBio 6:e00536-15. doi: 10.1128/mBio.00536-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Takahashi-Nakaguchi A, Muraosa Y, Hagiwara D, Sakai K, Toyotome T, Watanabe A, Kawamoto S, Kamei K, Gonoi T, Takahashi H. 2015. Genome sequence comparison of Aspergillus fumigatus strains isolated from patients with pulmonary aspergilloma and chronic necrotizing pulmonary aspergillosis. Med Mycol 53:353–360. doi: 10.1093/mmy/myv003. [DOI] [PubMed] [Google Scholar]
- 16.Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC. 2008. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4:e1000046. doi: 10.1371/journal.pgen.1000046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Garcia-Rubio R, Monzon S, Alcazar-Fuoli L, Cuesta I, Mellado E. 2018. Genome-wide comparative analysis of Aspergillus fumigatus strains: the reference genome as a matter of concern. Genes (Basel) 9:E363. doi: 10.3390/genes9070363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. 2013. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63:41–49. doi: 10.1016/j.ymeth.2013.06.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better Web interface. Nucleic Acids Res 36:W5–W9. doi: 10.1093/nar/gkn201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. doi: 10.1093/bioinformatics/btv351. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The whole-genome shotgun projects for A. fischeri IBT 3003 and IBT 3007 have been deposited in GenBank under the accession numbers VWYB00000000 and VWYA00000000, respectively. Raw Illumina data have been deposited to the NCBI Sequence Read Archive under the project accession number PRJNA564742.