Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2020 Dec 1.
Published in final edited form as: Curr Sex Health Rep. 2019 Oct 26;11(4):331–341. doi: 10.1007/s11930-019-00225-8

Recent advances and future opportunities to diagnose male infertility

Samantha L P Schilit 1,2,3,4,*
PMCID: PMC6919557  NIHMSID: NIHMS1541555  PMID: 31853232

Abstract

Purpose of Review

Infertility affects 10–15% of couples, making it one of the most frequent health disorders for individuals of reproductive age. The state of childlessness and efforts to restore fertility cause substantial emotional, social, and financial stress on couples. Male factors contribute to about half of all infertility cases, and yet are understudied relative to female factors. The result is that the majority of men with infertility lack specific causal diagnoses, which serves as a missed opportunity to inform therapies for these couples.

Recent Findings

In this review, we describe current standards for diagnosing male infertility and the various interventions offered to men in response to differential diagnoses. We then discuss recent advances in the field of genetics to identify novel etiologies for formerly unexplained infertility.

Summary

With a specific genetic diagnosis, male factors can be addressed with appropriate reproductive counseling and with potential access to assisted reproductive technologies to improve chances of a healthy pregnancy.

Keywords: Male infertility, unexplained infertility, diagnosis, azoospermia, monogenic disorder

Introduction

According to the American Society for Reproductive Medicine, infertility is a disorder “defined by the failure to achieve a successful pregnancy after 12 months or more of appropriate, timed, unprotected intercourse or therapeutic donor insemination[1].” It affects 10–15% of couples, making it one of the most common disorders for individuals between the ages of 20 and 45 years[2].

Infertility can cause substantial emotional, social, and financial stress on couples. The majority of young Americans view parenthood as a future desired state[3]. The inability to meet this expectation leads to a variety of reactions including negative identity, a sense of inadequacy, a feeling of lack of personal control, grief and sense of loss, anger and resentment, anxiety and stress, low life satisfaction, depression, isolation and shame[47].

These negative consequences extend beyond the individual. Within a couple, infertility-related stress can lead to marital distress and dissatisfaction[8]. Infertility in heterosexual couples affects each partner differently: more women have concerns about a loss of emotional intimacy in their relationship, while men more frequently experience a lack of sexual satisfaction due to pressure to perform for conception over pleasure[9]. Infertility may also cause challenges to the couple within the context of their society. In some pronatalist cultures including those from Israel, Pakistan, and southern Africa, adult status is obtained by bearing children[6]. Childlessness leads to ostracism from the community, including grounds for divorce in some Bangladeshi settlements[6].

There is also a tremendous financial burden to accessing fertility care and assisted reproductive technologies (ART), such as intrauterine insemination (IUI) and in vitro fertilization (IVF). In the United States, most patients pay out-of-pocket for treatments, as only six states mandate insurance coverage for infertility treatments[10]. The median out-of-pocket price for infertility treatments including couples receiving either non-cycle-based treatment, medication only, IUI, or IVF is $5,338[11]. The most expensive intervention is IVF, which has an average expense of $12,513 for one cycle, representing about half of an individual’s annual disposable income (as calculated by average labor costs after taxes)[12]. In addition to treatment costs, time spent on office visits adds up to an average of two work weeks a year[13]. The problem worsens when considering that ART interventions may take a long time to be successful; at least six cycles with timed intercourse are necessary to cover the period in which 90% of conceptions will occur[14]. IUI and IVF are also used for couples with unexplained infertility, where the likelihood of achieving pregnancy is lower[15].

The high cost for treatment serves as a barrier for access to care. In the United States, couples earning a cumulative income of less than $100,000 are more likely to be dissuaded from choosing IVF intervention[11]. This leads to the ethical concern that the high out-of-pocket costs for infertility treatment discriminate against groups of lower socioeconomic status[10]. Moreover, disparities exist between the outcomes of infertility treatment; women of African American, Asian, and Hispanic backgrounds experience longer time to conception, lower implantation and clinical pregnancy rates, and higher miscarriage from ART than their Caucasian counterparts[1618].

Men comprise the largest understudied group in infertility research and treatment, even though 40–50% of infertile couples have male factor infertility[19, 20]. While intracytoplasmic sperm injection (ICSI) and IVF now provide a more direct role for men in infertility treatment, women’s bodies have been the focus of most medical interventions. The clinical file is sometimes linked with the woman’s medical record and not her partner’s, and men aren’t always a part of an infertility consultation[20, 21]. The disproportionate focus on the role of the woman in fertility is hypothesized to result from male dominant cultures which blame women for fertility challenges as a way of deflecting a threat to male masculinity, potency and virility[22, 21, 23]. Like most women, the majority of men desire parenthood and expect to be fathers[24, 25]. Facing an infertility diagnosis results in profound grief, loss of control, a sense of inadequacy, and isolation[26]. The exclusion of men from most scientific and psychosocial literature in the context of infertility means that less is known about the mechanisms underlying and consequences of male infertility[20]. This highlights an unmet need to understand male infertility.

An overview of the adult male reproductive system

Male fertility relies on the successful production of healthy gametes called spermatozoa. The male reproductive system can be broken into three distinct modules responsible for sperm development: pre-testicular, testicular, and post-testicular[2]. Pre-testicular contributions to gametogenesis rely on a properly functioning hypothalamic-pituitary-gonadal (HPG) axis, which uses hormones to signal initiation of gametogenesis in the testes[27]. The HPG axis begins with the hypothalamic secretion of gonadotropin-releasing hormone (GnRH), which promotes production of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the anterior pituitary. LH stimulates Leydig cells in the testes to release testosterone, which together with FSH communicate with Sertoli cells in the testes to support sperm production[28]. Testosterone, along with inhibin B, facilitates negative feedback of the HPG axis by controlling activity from the hypothalamus and pituitary[2729].

Spermatogenesis occurs in the seminiferous tubules of the testes. Germ cells develop in a spatially organized fashion from the basal membrane to the lumen[30]. Spermatogenesis involves the differentiation of primordial germs cells (spermatogonia) to mature sperm (spermatozoa) in a process that takes approximately 70 days[28]. Spermatogonia undergo several rounds of mitosis to renew the germ cell population while creating cells capable of differentiating. Some of these daughter cells develop into diploid primary spermatocytes, which become haploid secondary spermatocytes after the first meiotic division. Secondary spermatocytes differentiate into spermatids after a second meiotic division, which then mature into spermatozoa through a process called spermiogenesis[30]. Finally, mature sperm are released from the seminiferous epithelium through a process called spermiation[31].

The post-testicular phase involves final processing of semen for export out of the body through ejaculation. First, sperm in the seminiferous tubules are transported to the epididymis to undergo functional development through a process called epididymal maturation[31]. Next, semen enters the vas deferens and travels to the ejaculatory ducts, where it is combined with secretory products of male accessory glands including the seminal vesicle and the prostate[27]. The final ejaculate, which is composed of 10% sperm by volume, exits through the urethra[28, 27]. Sperm undergo a final maturation step called capacitation, which occurs in the female reproductive tract and enables sperm to develop a hyperactivated form of forward progressive motility, acrosome reaction, and the ability to penetrate and fertilize the egg[31].

Diagnostic work-up for male infertility

A systematic diagnostic work-up is necessary to identify the best treatment options for infertile couples with male factor infertility. The World Health Organization’s (WHO) current recommendation involves an initial evaluation including medical history, physical exam and semen analysis followed by referral to a urologist, an andrologist, or another male reproduction specialist in cases of abnormal findings[32]. The medical history in the initial evaluation first collects information about the reproductive history such as coital frequency, previous fertility, information about the partner’s fertility, and sexual history including sexually transmitted infections[32]. Patients are then asked about lifestyle factors, including BMI, smoking, and exposure to heat, which have been shown to influence semen parameters although diagnosing infertility by these factors is still controversial[33, 32]. An understanding of medications taken can also inform a diagnosis as different drugs can reduce fertility by cytotoxicity from radiation with chemotherapy or inhibition of the HPG axis through exogenous testosterone[2]. Finally, questions are asked relating to anatomical dysfunction including proximal trauma, surgeries including vasectomies, torsion, cryptorchidism, erectile and ejaculatory dysfunction, and genitourinary infections[34].

After obtaining a medical history, signs of endocrine-related disorders, scrotal pathologies, and penile pathologies are investigated by physical exam[2]. A look at secondary sexual characteristics including musculature, hair distribution, and breast tissue can suggest a pre-testicular etiology including testosterone deficiency or hormonal imbalance[34]. A genital exam explores scrotal pathologies including varicoceles, abnormal testicular location, and small testicular size, which when atrophied below 12 ml may indicate primary testicular failure[2, 34]. Palpation of other structures can indicate forms of post-testicular obstruction including absence of the vas deferens[2, 34, 35]. Finally, examination of the penis may reveal pathologies such as hypospadias that may indicate potential challenges with sperm placement into the vagina[34].

The final part of an initial evaluation is a semen analysis, as multiple semen parameters can be predictive of testicular production, function, and maturation[36, 32, 37]. The work-up includes a single collection of ejaculate after two to seven days of abstinence and assesses parameters including volume, pH, and sperm concentration, count, motility, morphology, and vitality[38]. A deviation from normal parameters can provide insight into a diagnosis (Table 1). Normozoospermia is described when the routine spermatozoa evaluation shows values above the lower reference value limits. Alternatively, results below the lower reference values for sperm volume, concentration, motility, and morphology describe hypospermia, oligozoospermia, asthenozoospermia, and teratozoospermia, respectively. Low sperm counts can further be delineated further based upon sperm concentrations less than five million/ml ejaculate (severe oligozoospermia), spermatozoa absent from fresh semen but visible in a pellet after centrifugation (cryptozoospermia), and the complete absence of sperm in the ejaculate (azoospermia)[39].

Table 1. Lower reference limits of semen parameters.

Semen parameter reference limits are adapted from[39, 38, 2].

Parameter Lower reference limit values
Macroscopic appearance
      Semen volume ≥ 1.5 ml
      pH ≥ 7.2
Routine spermatozoa evaluation
      Total sperm count ≥ 39 million/ejaculate
      Sperm concentration ≥ 15 million/ml
      Total motility ≥ 40% progressive and nonprogressive
      Progressive motility ≥ 32% fast and slow
      Sperm morphology ≥ 4% normal
Follow-up testing
      White blood cells (used if round cells are found on initial microscopic evaluation) < 1 million/ml peroxidase-positive leukocytes
      Mixed agglutination reaction (MAR) test or immunobead test (used if agglutination is found on initial microscopic evaluation) < 50%
      Vitality (used if total motility is < 40%) ≥ 58% live spermatozoa
Biochemical analysis of seminal fluids
      Zinc ≥ 2.4 μmol/ejaculate
      Fructose ≥ 13 μmol/ejaculate
      α-glucosidase ≥ 20 mU/ejaculate

Parameters can also help explain the etiology of infertility. For example, after ruling out collection error, a low ejaculate volume may suggest potential retrograde ejaculation, ejaculatory duct obstruction, prostatitis, inflammation of the seminal vesicles, or androgen deficiency[35, 40, 41]. A high concentration of white blood cells and very basic pH measurements can indicate infections[2]. Alternatively, agglutination of motile spermatozoa and confirmation of anti-sperm antibodies by mixed agglutination reaction (MAR) or immunobead testing support immunologic infertility[39]. Finally, low concentrations of seminal fluid markers including α-glucosidase, fructose, and zinc reflect potential obstruction in the epididymis, seminal vesicles, and prostate, respectively[2].

If an abnormality in sperm count or concentration is detected by initial evaluation and confirmed by a second semen analysis, then hormone analysis may be warranted to pinpoint further the etiology[32]. The measurement of total testosterone concentration and serum FSH can help distinguish pre-testicular from testicular and post-testicular etiologies[42, 43]. Low levels of testosterone (reference range >12 nmol/l) and associated low serum FSH levels (reference range 1–7 IU/l) suggest hypogonadotropic hypogonadism, which can be treated with human chorionic gonadotropin (hCG) or FSH[2, 34, 44]. Testosterone can also be abnormally high in pre-testicular etiologies if the patient uses exogenous testosterone or illicit anabolic androgenic steroids, in which case cessation of use can sometimes restore sperm production[35, 45, 44]. Alternatively, high FSH often indicates primary testicular failure, with more severe defects including Sertoli cell-only syndrome (SCOS) correlating with more elevated FSH[35, 2]. However, FSH may also be normal with testicular pathologies that occur later in spermatogenesis such as meiotic arrest[2, 43]. This may be hard to distinguish from post-testicular etiologies, which often show normal hormone levels[2, 35]. To distinguish further the etiologies as a way of identifying proper treatments for a patient, a genetic work-up is then recommended[43].

Diagnostic genetic testing for male infertility

Currently, the most common genetic testing for male infertility involves sequencing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, assessing Y chromosome microdeletions (YCMD), and karyotype analysis[4648, 2, 34, 35, 49, 50, 32].

Variants in CFTR are found in 80–90% of cases of congenital bilateral absence of the vas deferens (CBAVD), a condition that occurs in 1–2% of infertile males and 25% of men with obstructive azoospermia (OA)[51, 46]. While men harboring two variant CFTR alleles with severe functional defects have symptomatic cystic fibrosis, compound heterozygotes with less severe functional defects in CFTR or men with a single pathogenic allele may have only the CBAVD phenotype[51]. Absence of the vas deferens may be detected by physical exam, but a genetic understanding of the etiology is critical for proper treatment of a male with CFTR variants. While males with CBAVD resulting from CTFR pathogenic variants can have children with the assistance of ART such as testicular sperm extraction (TESE) followed by ICSI and IVF, genetic testing of CFTR is recommended for the biological mother. Carrier screening resulting in positive findings for the couple offers the subsequent option of preimplantation genetic diagnosis (PGD) to eliminate the risk of transmitting cystic fibrosis to offspring[46, 51, 32]. While ADGRG2 (encoding the epididymal- and efferent-ducts-specific adhesion G protein-coupled receptor G2) was identified recently as a second gene with variants causal for CBAVD when mutated, testing for this gene is not yet a routine part of diagnostic genetic testing for OA[52].

Males with nonobstructive azoospermia (NOA) or severe oligozoospermia should be tested for 0.8–7.7 Mb deletions in the azoospermia factor (AZF) region of the Y chromosome (or YCMD), which are found in 5–15% of these patients[53, 32, 49]. The AZF region resides in Yq11 and is subdivided into AZFa (0.8 Mb), AZFb (6.2 Mb) and AZFc (3.5 Mb)[47, 54, 49]. The AZF region is critical for fertility because several genes responsible for spermatogenesis map therein including DEAD box polypeptide 3 (DDX3Y) in AZFa, lysine-specific demethylase 5D (KDM5D) in AZFb and deleted in azoospermia (DAZ) in AZFc[55, 56]. These genes play a variety of roles in sperm development including RNA metabolism in pre-meiotic germ cells, chromatin remodeling in meiosis, and translation regulation, respectively[55, 56]. To identify which if any YCMDs are present, polymerase chain reaction (PCR) assays are performed for markers inside the region and flanking the borders of each AZF subregion[57, 49]. The diagnosis is critical because treatment options vary based upon the deletion. No spermatozoa will be found from TESE performed on men with complete AZFa, AZFb, or AZFb/c microdeletions, so treatment alternatives including donor sperm and adoption might be considered[58, 49, 32]. Alternatively, males with complete AZFc deletions may have some residual spermatogenesis, with a 50% success rate from TESE[46, 59]. Sperm cryopreservation is also warranted as sperm production decreases with age in men with AZFc deletions[59]. This knowledge is also important for genetic counseling, as any male offspring conceived from a male with an AZFc deletion will inherit the same Y chromosome. Thinking ahead, sperm cryopreservation in young adulthood for male offspring might be recommended in anticipation of decreasing spermatogenesis with age[32].

Finally, karyotyping, which assesses the number and structure of chromosomes, is also recommended for all men with NOA or severe oligozoospermia, as 15% of men with NOA and 4% of men with moderate to severe oligozoospermia have chromosomal abnormalities[32, 49, 42]. The most common finding for men with NOA is Klinefelter syndrome (47,XXY and variants such as 48,XXXY and 46,XY/47,XXY), which is found in 14% of their karyotypes[60, 49, 61]. This diagnosis is helpful for predicting the prognosis of TESE, as sperm retrieval has been successful in 40–50% of men with Klinefelter syndrome[62, 63]. Another sex chromosome abnormality that may be found is 46,XX testicular disorder of sex development (DSD), or de la Chapelle syndrome, which has a rarer frequency of 1 in 20,000[49, 64, 65]. In most cases, the male phenotype results from a paternal translocation of the gene SRY (sex-determining region on the Y chromosome) from the short arm of the Y chromosome to the short arm of the X chromosome[64]. 46,XX testicular DSD males lack germinal cells, so TESE is not advisable[65, 64, 49].

Balanced chromosomal aberrations (BCAs), which have an abnormal order of the chromosomes without any cytologically detectable gain or loss of genetic material, are found five to 10 times more frequently in infertile men than in the general population[57, 66]. BCAs can be categorized into Robertsonian translocations, reciprocal translocations involving a sex chromosome, reciprocal translocations with autosomes, insertions, and inversions[66]. Of these types of BCAs, reciprocal translocations involving sex chromosomes often result in more severe phenotypes with a higher incidence in azoospermic men than in oligozoospermic men[66]. Y;autosome (Y;A) translocations identified in azoospermic men often involve a breakpoint in Yq11, which disrupts the AZF region critical for spermatogenesis[66]. X;autosome (X;A) translocations are thought to impact fertility severely because they may lead to X-reactivation during meiotic prophase, disrupting critical meiotic sex chromosome inactivation (MSCI)[67, 47, 68].

The mechanism is less clear for other classes of BCAs, which have extremely variable outcomes ranging from azoospermia to normal semen parameters[46]. There is a general assumption that individuals with BCAs produce unbalanced gametes as a product of meiosis, which are selected against during spermatogenesis resulting in a lower sperm count and subsequent infertility[57, 47]. However, this is not wholly true. While carriers of BCAs are more likely to have low sperm counts than karyotypically normal men, there is no significant relationship between fertility and sperm counts above 20 million/ml, so slight decreases in sperm count above that level do not imply a decrease in fertility[37]. In one cohort from the Czech Republic, the average sperm count of men with reciprocal translocations was 66.5 million/ml compared to 72.7 million/ml in controls, and less than 3% of reciprocal translocation carriers had a sperm count of <5 million/ml[69]. In a Japanese cohort that used a cutoff of <5 million/ml, there was no significant enrichment of BCA carriers in the NOA or severe oligozoospermia groups compared to controls[70]. It is also true that men with BCAs have more signs of spermatocyte apoptosis, such as externalized phosphatidylserine and DNA fragmentation[71], but this is not necessarily due to selection against unbalanced gametes. In male BCA carriers, the distributions of meiotic segregation products at different spermatogenic stages show concordance, suggesting that there is no cellular selection based on chromosomal imbalances from post-meiotic spermatocytes to mature spermatozoa[72].

Despite the common misinterpretation that carriers of BCAs have reduced fertility due to unbalanced gametes decreasing sperm count, it is true that unbalanced gametes double the risk of miscarriages[73, 61]. In 3–5% of couples with recurrent miscarriages, at least one partner is found by karyotype analysis to have a balanced reciprocal translocation[73]. In addition, unbalanced gametes can lead to congenital malformations in surviving offspring[61]. As a result, identification of a BCA can alter treatment options, as PGD with IVF provides identification of balanced or normal embryos prior to transfer[32, 49].

Unexplained infertility: challenges and opportunities

While many factors contribute to infertility, at least 20 percent of infertility cases are unexplained[47]. For male infertility, it is estimated that 40–72% of men lack a specific causal diagnosis beyond a descriptive category of male factor infertility[46, 50, 19]. Genetic defects may be responsible for many of these idiopathic cases, as mutations in over 600 genes have been shown to decrease fertility in animal models[74, 75]. Most of these genes have not yet been linked to male infertility in humans, likely because of the decreased reproductive fitness of infertile individuals that reduces the number of large families available for human genetic analysis as well as the genetic heterogeneity of the disorder[50, 76]. As a result, identifying genes involved in unexplained infertility could be a rich area of study[46, 50].

While not currently a routine diagnostic for male infertility, the application of array-based comparative genomic hybridization (aCGH) to investigate copy number variants (CNVs) in subjects with male infertility has revealed novel variants on both sex chromosomes and autosomes that are risk factors or causative for spermatogenic failure[77, 78]. Analysis of sperm DNA fragmentation, by methods such as DNA breakage detection fluorescence in situ hybridization (DBD-FISH) and in situ nick translation (ISNT), may also help predict a male infertility diagnosis[79, 80]. In addition, with the development of large scale sequencing approaches through next-generation sequencing (NGS) and subsequent genome-wide approaches in both small case studies and large consortia including the Genetics of Male Infertility Initiative (GEMINI) and the International Male Infertility Genomics Consortium (IMIGC), progress has been made in identifying monogenic forms of male infertility (Table 2)[50, 57, 81, 82, 49, 83, 84, 76, 85].

Table 2. Monogenic causes of non-syndromic male infertility in humans.

This list of genes has been self-curated for evidence of gene-disease association according to the Clinical Genome Resource (ClinGen) framework[106]. OMIM numbers are written in parentheses next to the gene symbol. A review of genes implicated in other forms of male infertility, including syndromic and endocrine disorder-based infertility, may be found in Oud, 2019[75].

Nonobstructive azoospermia (NOA) or severe oligozoospermia

CCDC155 (618125)[76]
DBY (400010)[107]
DNAH6 (603336)[108]
FANCM (609644)[109]
HIWI (605571)[110]
KLHL10 (608778)[111]
MCM8 (608187)[112]
MEIOB (617670)[108]
NANOS2 (608228)[76]
PLK4 (605031)[113]
SPINK2 (605753)[114]
SPO11 (605114)[76]
SYCE1 (611486)[115]
SYCP2 (604105)[96]
SYCP3 (604759)[116]
TAF4B (601689)[117]
TDRD7 (611258)[118]
TDRD9 (617963)[119]
TEX11 (300311)[120, 121]
TEX14 (605792)[76, 108]
TEX15 (605795)[122]
WNK3 (300358)[76]
XRCC2 (600375)[123, 124]
ZMYND15 (614312)[117]

Morphological and/or functional anomalies

Acephalic spermatozoa
PMFBP1 (618085)[125]
SUN5 (613942)[126]
Asthenozoospermia
CATSPER1 (606389)[127]
SLC26A8 (608480)[128]
Globozoospermia
DPY19L2 (613893)[99, 129]
SPATA16 (609856)[100]
Macrozoospermia
AURKC (603495)[98]
Multiple morphological abnormalities of the sperm flagella (MMAF)
ARMC2 (618424)[130]
CFAP43 (617558)[103]
CFAP44 (617559)[103]
CFAP69 (617949)[104]
DNAH1 (603332)[131, 105]
Oligoasthenoteratozoospermia (OAT)
CDC14A (603504)[132]
SEPT12 (611562)[133, 134]
Oocyte activation failure
PLCZ1 (608075)[135]

Additionally, recent research from the Developmental Genome Anatomy Project (DGAP) has revealed another explanation for how BCAs reduce fertility. DGAP is an NIH-funded research study that identifies genes disrupted or dysregulated by chromosomal rearrangements in subjects with a BCA and a clinical finding presumed to have a genetic etiology. Genes disrupted or dysregulated by such rearrangements are a well-recognized paradigm in human genetics for underlying abnormal phenotypes[8695]. By using this well-established DGAP infrastructure to investigate the phenotype of male infertility, our group recently uncovered dysregulation of SYCP2 in a male with severe oligozoospermia and karyotype with a balanced translocation, 46,XY,t(20;22)(q13.3;q11.2)[96]. Further exploration has demonstrated that dysregulation of SYCP2, which encodes a component of the lateral element substructure of the synaptonemal complex, is etiologic in the subject’s phenotype. This suggests that genes disrupted or potentially dysregulated by rearrangement breakpoints should be evaluated for causality in infertile males with BCAs.

While mostly confined to the research realm, these discoveries will hopefully be employed clinically as they may be informative for predicting therapeutic outcomes in patients[46, 97]. For example, men with AURKC mutations have sperm that are often polyploid[98]. Due to the high risk of aneuploidies from even normal-appearing spermatozoa, ICSI is not recommended for these patients[97]. Alternatively, men with DPY19L2 or SPATA16 pathogenic variants have globozoospermia characterized by acrosome-deficient sperm[99, 100]. Because of their inability to activate oocytes, artificial oocyte activation can improve outcomes for fertilization rate, embryo formation and clinical pregnancy with ICSI and IVF[101, 102]. This is in contrast to men who have multiple morphological abnormalities of the sperm flagella (MMAF) with mutations from ARMC2, CFAP43, CFAP44, CFAP69, or DNAH1, where ICSI without any additional activation procedure is expected to have a high rate of success[46, 103105].

Conclusions

Infertility is a common disorder with widespread emotional, social, and financial consequences. To identify the best treatment for male infertility, a systematic diagnostic work-up is used to pinpoint the etiology. However, many infertile males still lack a specific causal diagnosis after this evaluation. Advances in genetic testing show promise in identifying new etiologies for male infertility. Future use of aCGH, NGS, gene panels, or investigation of rearrangement breakpoints in the case of BCA carriers, may establish a definitive causal diagnosis, offer prognostic value for TESE and clinical pregnancy, and assess risks for potential offspring.

Acknowledgments

This study was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (F31HD090780–01) and the National Science Foundation (DGE1144152). Any opinion, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the funding institutions.

Footnotes

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of a an unedited peer-reviewed manuscript that has been accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept up to date and so may therefore differ from this version.

Disclosure of potential conflicts of interest

The author declares that she has no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human or animal subjects performed by the author.

References

  • 1.Practice Committee of American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013;99(1):63. doi: 10.1016/j.fertnstert.2012.09.023. [DOI] [PubMed] [Google Scholar]
  • 2.Kliesch S. Diagnosis of male infertility: diagnostic work-up of the infertile man. European Urology Supplements. 2014;13(4):73–82. doi: 10.1016/j.eursup.2014.08.002. [DOI] [Google Scholar]
  • 3.Thornton A, Young-DeMarco L. Four decades of trends in attitudes toward family issues in the United States: the 1960s through the 1990s. Journal of Marriage and Family. 2001;63(4):1009–37. doi:doi: 10.1111/j.1741-3737.2001.01009.x. [DOI] [Google Scholar]
  • 4.Williams ME. Toward greater understanding of the psychological effects of infertility on women. Psychotherapy in Private Practice. 1997;16(3):7–26. [Google Scholar]
  • 5.Hadley R, Hanley T. Involuntarily childless men and the desire for fatherhood. J Reprod Infant Psyc 2011;29(1):56–68. [Google Scholar]
  • 6.Greil AL, Slauson-Blevins K, McQuillan J. The experience of infertility: a review of recent literature. Sociol Health Illn. 2010;32(1):140–62. doi: 10.1111/j.1467-9566.2009.01213.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Luk BH, Loke AY. The impact of infertility on the psychological well-being, marital relationships, sexual relationships, and quality of life of couples: a systematic review. J Sex Marital Ther. 2015;41(6):610–25. doi: 10.1080/0092623X.2014.958789. [DOI] [PubMed] [Google Scholar]
  • 8.Gana K, Jakubowska S. Relationship between infertility-related stress and emotional distress and marital satisfaction. J Health Psychol. 2016;21(6):1043–54. doi: 10.1177/1359105314544990. [DOI] [PubMed] [Google Scholar]
  • 9.Luk BHK, Loke AY. Sexual satisfaction, intimacy and relationship of couples undergoing infertility treatment. J Reprod Infant Psychol. 2018:1–15. doi: 10.1080/02646838.2018.1529407. [DOI] [PubMed] [Google Scholar]
  • 10.Ethics Committee of the American Society for Reproductive Medicine. Disparities in access to effective treatment for infertility in the United States: an Ethics Committee opinion. Fertil Steril. 2015;104(5):1104–10. doi: 10.1016/j.fertnstert.2015.07.1139. [DOI] [PubMed] [Google Scholar]
  • 11.Wu AK, Odisho AY, Washington SL 3rd, Katz PP, Smith JF. Out-of-pocket fertility patient expense: data from a multicenter prospective infertility cohort. J Urol. 2014;191(2):427–32. doi: 10.1016/j.juro.2013.08.083. [DOI] [PubMed] [Google Scholar]
  • 12.Chambers GM, Sullivan EA, Ishihara O, Chapman MG, Adamson GD. The economic impact of assisted reproductive technology: a review of selected developed countries. Fertil Steril. 2009;91(6):2281–94. doi: 10.1016/j.fertnstert.2009.04.029. [DOI] [PubMed] [Google Scholar]
  • 13.Wu AK, Elliott P, Katz PP, Smith JF. Time costs of fertility care: the hidden hardship of building a family. Fertil Steril. 2013;99(7):2025–30. doi: 10.1016/j.fertnstert.2013.01.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gnoth C, Godehardt D, Godehardt E, Frank-Herrmann P, Freundl G. Time to pregnancy: results of the German prospective study and impact on the management of infertility. Hum Reprod. 2003;18(9):1959–66. [DOI] [PubMed] [Google Scholar]
  • 15.Mol BW, Tjon-Kon-Fat R, Kamphuis E, van Wely M. Unexplained infertility: Is it over-diagnosed and over-treated? Best Pract Res Clin Obstet Gynaecol. 2018;53:20–9. doi: 10.1016/j.bpobgyn.2018.09.006. [DOI] [PubMed] [Google Scholar]
  • 16.Armstrong A, Plowden TC. Ethnicity and assisted reproductive technologies. Clin Pract (Lond). 2012;9(6):651–8. doi: 10.2217/cpr.12.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Missmer SA, Seifer DB, Jain T. Cultural factors contributing to health care disparities among patients with infertility in Midwestern United States. Fertil Steril. 2011;95(6):1943–9. doi: 10.1016/j.fertnstert.2011.02.039. [DOI] [PubMed] [Google Scholar]
  • 18.Seifer DB, Frazier LM, Grainger DA. Disparity in assisted reproductive technologies outcomes in black women compared with white women. Fertil Steril. 2008;90(5):1701–10. doi: 10.1016/j.fertnstert.2007.08.024. [DOI] [PubMed] [Google Scholar]
  • 19.Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci. 2015;8(4):191–6. doi: 10.4103/0974-1208.170370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Culley L, Hudson N, Lohan M. Where are all the men? The marginalization of men in social scientific research on infertility. Reprod Biomed Online. 2013;27(3):225–35. doi: 10.1016/j.rbmo.2013.06.009. [DOI] [PubMed] [Google Scholar]
  • 21.Meerabeau L Husbands’ participation in fertility treatment: they also serve who only stand and wait. Sociol Health Illn. 1991;13(3):396–410. doi:doi: 10.1111/1467-9566.ep10492399. [DOI] [Google Scholar]
  • 22.Throsby K, Gill R. “It’s different for men”: masculinity and IVF. Men and Masculinities. 2004;6(4):330–48. doi: 10.1177/1097184x03260958. [DOI] [Google Scholar]
  • 23.Nachtigall RD, Becker G, Wozny M. The effects of gender-specific diagnosis on men’s and women’s response to infertility. Fertil Steril. 1992;57(1):113–21. [PubMed] [Google Scholar]
  • 24.Tichenor V, McQuillan J, Greil AL, Contrepas R, Shreffler KM. The importance of fatherhood to U.S. married and cohabiting men. Fathering. 2011;9(3):232–51. [Google Scholar]
  • 25.Marsiglio W, Hutchinson S, Cohan M. Young men’s procreative identity: becoming aware, being aware, and being responsible. Journal of Marriage and Family. 2001;63(1):123–35. doi:doi: 10.1111/j.1741-3737.2001.00123.x. [DOI] [Google Scholar]
  • 26.Webb RE, Daniluk JC. The end of the line: infertile men’s experiences of being unable to produce a child. Men and Masculinities. 1999;2(1):6–25. doi: 10.1177/1097184x99002001002. [DOI] [Google Scholar]
  • 27.O’Donnell L, Stanton P, de Kretser DM. Endocrinology of the male reproductive system and spermatogenesis In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM et al. , editors. Endotext. South Dartmouth (MA): MDText.com, Inc.;2000. [Google Scholar]
  • 28.Molina PE. Endocrine physiology. Fifth edition. ed. New York: McGraw-Hill Education; 2018. [Google Scholar]
  • 29.Meachem SJ, Nieschlag E, Simoni M. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur J Endocrinol. 2001;145(5):561–71. [DOI] [PubMed] [Google Scholar]
  • 30.Young B, Wheater PR. Wheater’s functional histology : a text and colour atlas. 5th ed. Oxford: Churchill Livingstone Elsevier; 2006. [Google Scholar]
  • 31.Borg CL, Wolski KM, Gibbs GM, O’Bryan MK. Phenotyping male infertility in the mouse: how to get the most out of a ‘non-performer’. Hum Reprod Update. 2010;16(2):205–24. doi: 10.1093/humupd/dmp032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • ••32.Barratt CLR, Bjorndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum Reprod Update. 2017;23(6):660–80. doi: 10.1093/humupd/dmx021.This article summarizes recommendations given to the World Health Organization regarding the highest priority questions about male infertility diagnostics. Evidence-based findings provide information about the prevalence of male infertility, semen parameters, evaluation requirements, and the impact of environmental exposures on fertility.
  • 33.Bieniek JM, Lo KC. Recent advances in understanding & managing male infertility. F1000Res. 2016;5:2756. doi: 10.12688/f1000research.9375.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Gudeloglu A, Parekattil SJ. Update in the evaluation of the azoospermic male. Clinics (Sao Paulo). 2013;68 Suppl 1:27–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • ••35.Practice Committee of the American Society for Reproductive Medicine in collaboration with the Society for Male Reproduction and Urology. Evaluation of the azoospermic male: a committee opinion. Fertil Steril. 2018;109(5):777–82. doi: 10.1016/j.fertnstert.2018.01.043.This document from the American Society for Reproductive Medicine provides specific diagnostic algorithms for obstructive and nonobstructive azoospermia to aid clinical decision making.
  • 36.Jedrzejczak P, Taszarek-Hauke G, Hauke J, Pawelczyk L, Duleba AJ. Prediction of spontaneous conception based on semen parameters. Int J Androl. 2008;31(5):499–507. doi: 10.1111/j.1365-2605.2007.00799.x. [DOI] [PubMed] [Google Scholar]
  • 37.Macleod J, Gold RZ. The male factor in fertility and infertility. II. Spermatozoon counts in 1000 men of known fertility and in 1000 cases of infertile marriage. J Urol. 1951;66(3):436–49. [DOI] [PubMed] [Google Scholar]
  • 38.World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010. [Google Scholar]
  • 39.Cooper TG. Semen analysis. In: Nieschlag E, Behre HM, Nieschlag S, editors. Andrology: male reproductive health and dysfunction. 3rd ed. Heidelberg: Springer; 2010. p. xvii, 629 p. [Google Scholar]
  • 40.Alshahrani S, McGill J, Agarwal A. Prostatitis and male infertility. J Reprod Immunol. 2013;100(1):30–6. doi: 10.1016/j.jri.2013.05.004. [DOI] [PubMed] [Google Scholar]
  • 41.Roberts M, Jarvi K. Steps in the investigation and management of low semen volume in the infertile man. Can Urol Assoc J. 2009;3(6):479–85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G et al. European Association of Urology guidelines on male infertility: the 2012 update. Eur Urol. 2012;62(2):324–32. doi: 10.1016/j.eururo.2012.04.048. [DOI] [PubMed] [Google Scholar]
  • 43.Simoni M, Nieschlag E. Endocrine Laboratory Diagnosis. In: Nieschlag E, Behre HM, Nieschlag S, editors. Andrology: male reproductive health and dysfunction. 3rd ed. Heidelberg: Springer; 2010. p. xvii, 629 p. [Google Scholar]
  • 44.McLachlan RI. Approach to the patient with oligozoospermia. J Clin Endocrinol Metab. 2013;98(3):873–80. doi: 10.1210/jc.2012-3650. [DOI] [PubMed] [Google Scholar]
  • 45.Kolettis PN, Purcell ML, Parker W, Poston T, Nangia AK. Medical testosterone: an iatrogenic cause of male infertility and a growing problem. Urology. 2015;85(5):1068–73. doi: 10.1016/j.urology.2014.12.052. [DOI] [PubMed] [Google Scholar]
  • ••46.Okutman O, Rhouma MB, Benkhalifa M, Muller J, Viville S. Genetic evaluation of patients with non-syndromic male infertility. J Assist Reprod Genet. 2018;35(11):1939–51.This paper offers a clear work flow for genetic tests in male infertility. In addition, case studies are used to demonstrate effective responses to differential test results.
  • 47.Shah K, Sivapalan G, Gibbons N, Tempest H, Griffin DK. The genetic basis of infertility. Reproduction. 2003;126(1):13–25. [DOI] [PubMed] [Google Scholar]
  • 48.Olesen IA, Andersson AM, Aksglaede L, Skakkebaek NE, Rajpert-de Meyts E, Joergensen N et al. Clinical, genetic, biochemical, and testicular biopsy findings among 1,213 men evaluated for infertility. Fertil Steril. 2017;107(1):74–82 e7. doi: 10.1016/j.fertnstert.2016.09.015. [DOI] [PubMed] [Google Scholar]
  • 49.Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369–84. doi: 10.1038/s41585-018-0003-3. [DOI] [PubMed] [Google Scholar]
  • ••50.Tüttelmann F, Ruckert C, Ropke A. Disorders of spermatogenesis: Perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Genet. 2018;30(1):12–20. doi: 10.1007/s11825-018-0181-7.This article calculates the prevalence of unexplained male infertility and recommends criteria for developing a male infertility gene panel.
  • 51.Yu J, Chen Z, Ni Y, Li Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod. 2012;27(1):25–35. doi: 10.1093/humrep/der377. [DOI] [PubMed] [Google Scholar]
  • 52.Patat O, Pagin A, Siegfried A, Mitchell V, Chassaing N, Faguer S et al. Truncating mutations in the adhesion g protein-coupled receptor g2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. Am J Hum Genet. 2016;99(2):437–42. doi: 10.1016/j.ajhg.2016.06.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734–45. [DOI] [PubMed] [Google Scholar]
  • 54.Vogt PH, Edelmann A, Kirsch S, Henegariu O, Hirschmann P, Kiesewetter F et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5(7):933–43. [DOI] [PubMed] [Google Scholar]
  • 55.Navarro-Costa P, Plancha CE, Goncalves J. Genetic dissection of the AZF regions of the human Y chromosome: thriller or filler for male (in)fertility? J Biomed Biotechnol. 2010;2010:936569. doi: 10.1155/2010/936569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Krausz C, Casamonti E. Spermatogenic failure and the Y chromosome. Hum Genet. 2017;136(5):637–55. doi: 10.1007/s00439-017-1793-8. [DOI] [PubMed] [Google Scholar]
  • 57.Massart A, Lissens W, Tournaye H, Stouffs K. Genetic causes of spermatogenic failure. Asian J Androl. 2012;14(1):40–8. doi: 10.1038/aja.2011.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Kamp C, Huellen K, Fernandes S, Sousa M, Schlegel PN, Mielnik A et al. High deletion frequency of the complete AZFa sequence in men with Sertoli-cell-only syndrome. Mol Hum Reprod. 2001;7(10):987–94. [DOI] [PubMed] [Google Scholar]
  • 59.Krausz C, Quintana-Murci L, McElreavey K. Prognostic value of Y deletion analysis: what is the clinical prognostic value of Y chromosome microdeletion analysis? Hum Reprod. 2000;15(7):1431–4. [DOI] [PubMed] [Google Scholar]
  • 60.Rives N, Joly G, Machy A, Simeon N, Leclerc P, Mace B. Assessment of sex chromosome aneuploidy in sperm nuclei from 47,XXY and 46,XY/47,XXY males: comparison with fertile and infertile males with normal karyotype. Mol Hum Reprod. 2000;6(2):107–12. [DOI] [PubMed] [Google Scholar]
  • 61.Donker RB, Vloeberghs V, Groen H, Tournaye H, van Ravenswaaij-Arts CMA, Land JA. Chromosomal abnormalities in 1663 infertile men with azoospermia: the clinical consequences. Hum Reprod. 2017;32(12):2574–80. doi: 10.1093/humrep/dex307. [DOI] [PubMed] [Google Scholar]
  • 62.Schiff JD, Palermo GD, Veeck LL, Goldstein M, Rosenwaks Z, Schlegel PN. Success of testicular sperm extraction [corrected] and intracytoplasmic sperm injection in men with Klinefelter syndrome. J Clin Endocrinol Metab. 2005;90(11):6263–7. doi: 10.1210/jc.2004-2322. [DOI] [PubMed] [Google Scholar]
  • 63.Fullerton G, Hamilton M, Maheshwari A. Should non-mosaic Klinefelter syndrome men be labelled as infertile in 2009? Hum Reprod. 2010;25(3):588–97. doi: 10.1093/humrep/dep431. [DOI] [PubMed] [Google Scholar]
  • 64.Vorona E, Zitzmann M, Gromoll J, Schuring AN, Nieschlag E. Clinical, endocrinological, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. J Clin Endocrinol Metab. 2007;92(9):3458–65. doi: 10.1210/jc.2007-0447. [DOI] [PubMed] [Google Scholar]
  • 65.de la Chapelle A The etiology of maleness in XX men. Hum Genet. 1981;58(1):105–16. [DOI] [PubMed] [Google Scholar]
  • 66.Van Assche E, Bonduelle M, Tournaye H, Joris H, Verheyen G, Devroey P et al. Cytogenetics of infertile men. Hum Reprod. 1996;11 Suppl 4:1–24; discussion 25–6. [DOI] [PubMed] [Google Scholar]
  • 67.Burgoyne PS, Mahadevaiah SK, Turner JM. The consequences of asynapsis for mammalian meiosis. Nat Rev Genet. 2009;10(3):207–16. doi: 10.1038/nrg2505. [DOI] [PubMed] [Google Scholar]
  • 68.Homolka D, Ivanek R, Capkova J, Jansa P, Forejt J. Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res. 2007;17(10):1431–7. doi: 10.1101/gr.6520107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Vozdova M, Oracova E, Kasikova K, Prinosilova P, Rybar R, Horinova V et al. Balanced chromosomal translocations in men: relationships among semen parameters, chromatin integrity, sperm meiotic segregation and aneuploidy. J Assist Reprod Genet. 2013;30(3):391–405. doi: 10.1007/s10815-012-9921-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Xie C, Chen X, Liu Y, Wu Z, Ping P. Multicenter study of genetic abnormalities associated with severe oligospermia and non-obstructive azoospermia. J Int Med Res. 2018;46(1):107–14. doi: 10.1177/0300060517718771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Brugnon F, Van Assche E, Verheyen G, Sion B, Boucher D, Pouly JL et al. Study of two markers of apoptosis and meiotic segregation in ejaculated sperm of chromosomal translocation carrier patients. Hum Reprod. 2006;21(3):685–93. doi: 10.1093/humrep/dei401. [DOI] [PubMed] [Google Scholar]
  • 72.Oliver-Bonet M, Navarro J, Codina-Pascual M, Abad C, Guitart M, Egozcue J et al. From spermatocytes to sperm: meiotic behaviour of human male reciprocal translocations. Hum Reprod. 2004;19(11):2515–22. doi: 10.1093/humrep/deh492. [DOI] [PubMed] [Google Scholar]
  • 73.Kavalier F Investigation of recurrent miscarriages. BMJ. 2005;331(7509):121–2. doi: 10.1136/bmj.331.7509.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 2002;4 Suppl:s41–9. doi: 10.1038/ncb-nm-fertilityS41. [DOI] [PubMed] [Google Scholar]
  • •75.Oud MS, Volozonoka L, Smits RM, Vissers L, Ramos L, Veltman JA. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod. 2019;34(5):932–41.This article uses Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and standardized clinical validity assessment to review male infertility genes.
  • 76.Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018;20(11):1365–73. [DOI] [PubMed] [Google Scholar]
  • 77.Tuttelmann F, Simoni M, Kliesch S, Ledig S, Dworniczak B, Wieacker P et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLoS One. 2011;6(4):e19426. doi: 10.1371/journal.pone.0019426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Lo Giacco D, Chianese C, Ars E, Ruiz-Castane E, Forti G, Krausz C. Recurrent X chromosome-linked deletions: discovery of new genetic factors in male infertility. J Med Genet. 2014;51(5):340–4. doi: 10.1136/jmedgenet-2013-101988. [DOI] [PubMed] [Google Scholar]
  • 79.Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod Biomed Online. 2018;37(3):315–26. doi: 10.1016/j.rbmo.2018.06.023. [DOI] [PubMed] [Google Scholar]
  • 80.Simon L, Emery BR, Carrell DT. Review: Diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56. doi: 10.1016/j.bpobgyn.2017.07.003. [DOI] [PubMed] [Google Scholar]
  • 81.Mitchell MJ, Metzler-Guillemain C, Toure A, Coutton C, Arnoult C, Ray PF. Single gene defects leading to sperm quantitative anomalies. Clin Genet. 2017;91(2):208–16. doi: 10.1111/cge.12900. [DOI] [PubMed] [Google Scholar]
  • 82.Nakamura S, Miyado M, Saito K, Katsumi M, Nakamura A, Kobori Y, et al. Next-generation sequencing for patients with non-obstructive azoospermia: implications for significant roles of monogenic/oligogenic mutations. Andrology. 2017; 5(4):824–831. 10.1111/andr.12378. [DOI] [PubMed] [Google Scholar]
  • 83.Robay A, Abbasi S, Akil A, El-Bardisi H, Arafa M, Crystal RG et al. A systematic review on the genetics of male infertility in the era of next-generation sequencing. Arab J Urol. 2018;16(1):53–64. doi: 10.1016/j.aju.2017.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Patel B, Parets S, Akana M, Kellogg G, Jansen M, Chang C et al. Comprehensive genetic testing for female and male infertility using next-generation sequencing. J Assist Reprod Genet. 2018;35(8):1489–96. doi: 10.1007/s10815-018-1204-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Vendrell X New genetic point mutations in male infertility. In: Horcajadas JA, Gosálvez J, editors. Reproductomics : the -omics revolution and its impact on human reproductive medicine. London, United Kingdom; San Diego, CA: Elsevier/Academic Press; 2018. p. 47–62. [Google Scholar]
  • 86.Higgins AW, Alkuraya FS, Bosco AF, Brown KK, Bruns GA, Donovan DJ et al. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am J Hum Genet. 2008;82(3):712–22. doi: 10.1016/j.ajhg.2008.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Schilit SL, Currall BB, Yao R, Hanscom C, Collins RL, Pillalamarri V et al. Estrogen-related receptor gamma implicated in a phenotype including hearing loss and mild developmental delay. Eur J Hum Genet. 2016;24(11):1622–6. doi: 10.1038/ejhg.2016.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Currall BB, Chen M, Sallari RC, Cotter M, Wong KE, Robertson NG et al. Loss of LDAH associated with prostate cancer and hearing loss. Hum Mol Genet. 2018;27(24):4194–203. doi: 10.1093/hmg/ddy310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Wilch ES, Morton CC. Historical and clinical perspectives on chromosomal translocations In: Zhang Y, editor. Chromosome Translocation. Singapore: Springer Singapore; 2018. p. 1–14. [DOI] [PubMed] [Google Scholar]
  • 90.Mukherjee K, Ishii K, Pillalamarri V, Kammin T, Atkin JF, Hickey SE et al. Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesisdagger. Hum Mol Genet. 2016;25(7):1255–70. doi: 10.1093/hmg/ddw006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Redin C, Brand H, Collins RL, Kammin T, Mitchell E, Hodge JC et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet. 2017;49(1):36–45. doi: 10.1038/ng.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Lindgren AM, Hoyos T, Talkowski ME, Hanscom C, Blumenthal I, Chiang C et al. Haploinsufficiency of KDM6A is associated with severe psychomotor retardation, global growth restriction, seizures and cleft palate. Hum Genet. 2013;132(5):537–52. doi: 10.1007/s00439-013-1263-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Kim HG, Kim HT, Leach NT, Lan F, Ullmann R, Silahtaroglu A et al. Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. Am J Hum Genet. 2012;91(1):56–72. doi: 10.1016/j.ajhg.2012.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Lachke SA, Higgins AW, Inagaki M, Saadi I, Xi Q, Long M et al. The cell adhesion gene PVRL3 is associated with congenital ocular defects. Hum Genet. 2012;131(2):235–50. doi: 10.1007/s00439-011-1064-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Brown KK, Reiss JA, Crow K, Ferguson HL, Kelly C, Fritzsch B et al. Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35). Hum Genet. 2010;127(1):19–31. doi: 10.1007/s00439-009-0736-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • •96.Schilit SLP, Menon S, Friedrich C, Kammin T, Wilch E, Hanscom C et al. SYCP2 translocation-mediated dysregulation and frameshift variants cause human male infertility. bioRxiv. 2019:641928. doi: 10.1101/641928.This article provides evidence that disrupted or potentially dysregulated genes by rearrangement breakpoints should be evaluated for causality in infertile males with BCAs.
  • 97.Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet. 2017;91(2):217–32. doi: 10.1111/cge.12905. [DOI] [PubMed] [Google Scholar]
  • 98.Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet. 2007;39(5):661–5. doi: 10.1038/ng2027. [DOI] [PubMed] [Google Scholar]
  • 99.Harbuz R, Zouari R, Pierre V, Ben Khelifa M, Kharouf M, Coutton C et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet. 2011;88(3):351–61. doi: 10.1016/j.ajhg.2011.02.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81(4):813–20. doi: 10.1086/521314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Rybouchkin AV, Van der Straeten F, Quatacker J, De Sutter P, Dhont M. Fertilization and pregnancy after assisted oocyte activation and intracytoplasmic sperm injection in a case of round-headed sperm associated with deficient oocyte activation capacity. Fertil Steril. 1997;68(6):1144–7. [DOI] [PubMed] [Google Scholar]
  • 102.Kochhar PK, Ghosh P. Intracytoplasmic sperm injection with assisted oocyte activation resulting in successful pregnancies and live birth in couples with globozoospermia: a report of two cases. J Hum Reprod Sci. 2018;11(1):72–4. doi: 10.4103/jhrs.JHRS_47_17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Tang S, Wang X, Li W, Yang X, Li Z, Liu W et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100(6):854–64. doi: 10.1016/j.ajhg.2017.04.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L et al. Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse. Am J Hum Genet. 2018;102(4):636–48. doi: 10.1016/j.ajhg.2018.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Ben Khelifa M, Coutton C, Zouari R, Karaouzene T, Rendu J, Bidart M et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94(1):95–104. doi: 10.1016/j.ajhg.2013.11.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100(6):895–906. doi: 10.1016/j.ajhg.2017.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Foresta C, Ferlin A, Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Mol Genet. 2000;9(8):1161–9. [DOI] [PubMed] [Google Scholar]
  • 108.Gershoni M, Hauser R, Yogev L, Lehavi O, Azem F, Yavetz H et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med. 2017;19(9):998–1006. [DOI] [PubMed] [Google Scholar]
  • 109.Kasak L, Punab M, Nagirnaja L, Grigorova M, Minajeva A, Lopes AM et al. Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. Am J Hum Genet. 2018;103(2):200–12. doi: 10.1016/j.ajhg.2018.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S et al. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell. 2017;169(6):1090–104 e13. doi: 10.1016/j.cell.2017.04.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Yatsenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W et al. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet. 2006;15(23):3411–9. doi: 10.1093/hmg/ddl417. [DOI] [PubMed] [Google Scholar]
  • 112.Tenenbaum-Rakover Y, Weinberg-Shukron A, Renbaum P, Lobel O, Eideh H, Gulsuner S et al. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J Med Genet. 2015;52(6):391–9. doi: 10.1136/jmedgenet-2014-102921. [DOI] [PubMed] [Google Scholar]
  • 113.Miyamoto T, Bando Y, Koh E, Tsujimura A, Miyagawa Y, Iijima M et al. A PLK4 mutation causing azoospermia in a man with Sertoli cell-only syndrome. Andrology. 2016;4(1):75–81. doi: 10.1111/andr.12113. [DOI] [PubMed] [Google Scholar]
  • 114.Kherraf ZE, Christou-Kent M, Karaouzene T, Amiri-Yekta A, Martinez G, Vargas AS et al. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Mol Med. 2017;9(8):1132–49. doi: 10.15252/emmm.201607461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Maor-Sagie E, Cinnamon Y, Yaacov B, Shaag A, Goldsmidt H, Zenvirt S et al. Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. J Assist Reprod Genet. 2015;32(6):887–91. doi: 10.1007/s10815-015-0445-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362(9397):1714–9. doi: 10.1016/S0140-6736(03)14845-3. [DOI] [PubMed] [Google Scholar]
  • 117.Ayhan O, Balkan M, Guven A, Hazan R, Atar M, Tok A et al. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet. 2014;51(4):239–44. doi: 10.1136/jmedgenet-2013-102102. [DOI] [PubMed] [Google Scholar]
  • 118.Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet Med. 2019;21(5):1209–17. [DOI] [PubMed] [Google Scholar]
  • 119.Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54(9):633–9. doi: 10.1136/jmedgenet-2017-104514. [DOI] [PubMed] [Google Scholar]
  • 120.Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H et al. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015;7(9):1198–210. doi: 10.15252/emmm.201404967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Yatsenko AN, Georgiadis AP, Ropke A, Berman AJ, Jaffe T, Olszewska M et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372(22):2097–107. doi: 10.1056/NEJMoa1406192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Colombo R, Pontoglio A, Bini M. Two novel TEX15 mutations in a family with nonobstructive azoospermia. Gynecol Obstet Invest. 2017;82(3):283–6. [DOI] [PubMed] [Google Scholar]
  • 123.Yang Y, Guo J, Dai L, Zhu Y, Hu H, Tan L et al. XRCC2 mutation causes meiotic arrest, azoospermia and infertility. J Med Genet. 2018;55(9):628–36. doi: 10.1136/jmedgenet-2017-105145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Zhang YX, Li HY, He WB, Tu C, Du J, Li W et al. XRCC2 mutation causes premature ovarian insufficiency as well as non-obstructive azoospermia in humans. Clin Genet. 2019;95(3):442–3. [DOI] [PubMed] [Google Scholar]
  • 125.Zhu F, Liu C, Wang F, Yang X, Zhang J, Wu H et al. Mutations in PMFBP1 cause acephalic spermatozoa syndrome. Am J Hum Genet. 2018;103(2):188–99. doi: 10.1016/j.ajhg.2018.06.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet. 2016;99(6):1405. doi: 10.1016/j.ajhg.2016.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84(4):505–10. doi: 10.1016/j.ajhg.2009.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Dirami T, Rode B, Jollivet M, Da Silva N, Escalier D, Gaitch N et al. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. Am J Hum Genet. 2013;92(5):760–6. doi: 10.1016/j.ajhg.2013.03.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Zhu F, Gong F, Lin G, Lu G. DPY19L2 gene mutations are a major cause of globozoospermia: identification of three novel point mutations. Mol Hum Reprod. 2013;19(6):395–404. doi: 10.1093/molehr/gat018. [DOI] [PubMed] [Google Scholar]
  • 130.Coutton C, Martinez G, Kherraf ZE, Amiri-Yekta A, Boguenet M, Saut A et al. Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet. 2019;104(2):331–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Wang X, Jin H, Han F, Cui Y, Chen J, Yang C et al. Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin Genet. 2017;91(2):313–21. doi: 10.1111/cge.12857. [DOI] [PubMed] [Google Scholar]
  • 132.Imtiaz A, Belyantseva IA, Beirl AJ, Fenollar-Ferrer C, Bashir R, Bukhari I et al. CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Hum Mol Genet. 2018;27(5):780–98. doi: 10.1093/hmg/ddx440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Kuo YC, Lin YH, Chen HI, Wang YY, Chiou YW, Lin HH et al. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 2012;33(4):710–9. doi: 10.1002/humu.22028. [DOI] [PubMed] [Google Scholar]
  • 134.Lin YH, Wang YY, Chen HI, Kuo YC, Chiou YW, Lin HH et al. SEPTIN12 genetic variants confer susceptibility to teratozoospermia. PLoS One. 2012;7(3):e34011. doi: 10.1371/journal.pone.0034011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Escoffier J, Lee HC, Yassine S, Zouari R, Martinez G, Karaouzene T et al. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet. 2016;25(5):878–91. doi: 10.1093/hmg/ddv617. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES