Abstract
Seeds of Australian species of the seagrass genus Posidonia are covered by a membranous wing that we hypothesize plays a fundamental role in seed establishment in sandy, wave swept marine environments. Dimensions of the seed and membrane were quantified under electron microscopy and micro-CT scans, and used to model rotational, drag and lift forces. Seeds maintain contact with the seabed in the presence of strong turbulence: the larger the wing, the more stable the seed. Wing surface area increases from P. sinuosa < P. australis < P.coriacea correlating with their ability to establish in increasingly energetic environments. This unique seed trait in a marine angiosperm corresponds to adaptive pressures imposed on seagrass species along 7,500 km of Australia’s coastline, from open, high energy coasts to calmer environments in bays and estuaries.
Subject terms: Biooceanography, Evolutionary ecology, Population dynamics, Marine biology, Physical oceanography
Introduction
Hooks, hairs, wings and awls on plant seeds have been a constant source of novelty and research focus in terrestrial dispersal biology1,2. Many of these structures enhance wind dispersal of seeds. Seeds in marine environments are water dispersed (via waves, tides, currents) where mean flow is usually one or two orders of magnitude weaker than the mean atmospheric wind velocity (0.1–1 m s−1 versus 1–10 m s−1). However, forces imposed on seeds are approximately three orders of magnitude greater than those exerted on the same seeds when exposed to the same velocities in air, as seawater is approximately 1000 times denser than air.
Despite these large forces, seagrass seeds generally do not disperse far from their parent plant and are often released within or near the sediment surface3. If seeds do disperse over large distances (10s-100s kms) they are usually encased within floating fruit (pericarps) or plant parts (rhipidia or spathes)3,4 and when released the negatively buoyant seed quickly settles to the seabed3. The seagrass genus Posidonia has floating fruits and some species have a prominent membranous wing on their seeds, similar to that observed in winged seeds of some terrestrial plants1. Yet ecological drivers and evolutionary pressures on the formation of a membranous wing in the seeds of Posidonia species do not link directly to any significant increase in dispersal distances, which are dominated by the transportation of floating fruit5,6. This contrasts to the evolution of morphologically similar wings in terrestrial families of plants1,7.
We hypothesize that this membranous wing has instead evolved to reduce hydrodynamic forces on the seeds on the seabed, and hence stabilize their orientation and position, until roots grow and firmly anchor the developing seedling. This helps newly settled seeds overcome their greatest threat to establishment: the hydrodynamics of the marine environment.
Results
To test our hypothesis, X-ray micro-computed Tomography (X-ray micro-CT) scans were used to digitally dissect seeds for three species of Posidonia (P. coriacea, P.australis and P. sinuosa, Fig. 1A, see Supplementary Movie S1, Tables S1 and S2) to precisely determine the composition, size, surface area and shape of the membranous wing. Scanning Electron Microscopy (SEM) observations revealed that the wing of all three species is unsculptured, smooth with wavy surfaces (Fig. 2) and consists of 3–5 layers of irregular elongated, thickened and flattened cells developed from the ovary wall (Fig. 2). There is no differentiation in the structure of the winged membrane covering seeds between the three Posidonia species, other than marked differences in the wing width (Fig. 1A,B), which is also related to the different hydrodynamic regimes where they typically colonize (Table 1). Mean maximum width of the wing (Fig. 1B) of 30 seeds was significantly different between the three Posidonia species (ANOVA (ln transformed), F2,87 = 753.7, p < 0.001). Surface area (Fig. 1C), surface area to volume ratios (Fig. 1E) (p < 0.01) and volume (Fig. 1D) (p < 0.05) were significantly smaller (n = 3, one-tailed paired t-tests, Table 2) when the membranous wing was removed from seeds suggesting the role of the wing is to increase seed surface area relative to volume.
Table 1.
Region | Minimum Depth of Meadows | Ocean Swells | Wind waves | ||
---|---|---|---|---|---|
height | season | ||||
P. coriacea | SW Australia | Exposed coasts, deeper inner shelf regions (>3 m) | 2–3 m mean 8–12 m max37,38 | 1.5 m | summer |
P. australis | S Australia | Estuaries, sheltered coasts | 1.5 m mean 7 m max38 | 0.5 m | summer |
P. sinuosa | S Australia | Sheltered coasts, deeper coastal regions (>1 m) | 1.5 m mean 7 m max38 | 0.5 m | summer |
P. oceanica | W. Mediterranean | Sheltered coasts, deep inner shelf regions (>1 m) | <0.5–2 m39,40 | <0.25–0.5 m | summer |
Table 2.
Species | variable | d.f. | t-test | p-value | 95% CI | Mean difference |
---|---|---|---|---|---|---|
P. coriacea | Surface Area (SA) | 2 | 19.316 | 0.0013 | 309.399 | 364.5 |
Volume (V) | 2 | 15.636 | 0.0020 | 41.747 | 51.333 | |
SA/V ratio | 2 | 11.942 | 0.0035 | 1.055 | 1.397 | |
P. australis | Surface Area (SA) | 2 | 27.398 | 0.0007 | 162.645 | 183.167 |
Volume (V) | 2 | 6.371 | 0.0119 | 21.307 | 39.333 | |
SA/V ratio | 2 | 10.392 | 0.0046 | 0.431 | 0.600 | |
P. sinuosa | Surface Area (SA) | 2 | 8.832 | 0.0063 | 86.465 | 129.167 |
Volume (V) | 2 | 12.333 | 0.0326 | 28.240 | 37.000 | |
SA/V ratio | 2 | 20.057 | 0.0012 | 0.347 | 0.407 |
A combination of laboratory flume experiments and Computational Fluid Dynamic (CFD) modelling of the 3-dimensional micro-CT scans demonstrated that the large differences in wing width in congeneric species are a direct adaptation to the hydrodynamic environments where each species are found (Table 1). The membranous wing that covers the seed, reduced hydrodynamic rotation, drag and lift forces (Fig. 3). There was a tendency for seeds from all species to rotate in the horizontal plane into a stable position on the bed (Fig. 3A). The greatest stability occurs when the seeds are pointed into the current or when the membranous wing is pointed into the current (Fig. 3A).
Seeds maintain contact with the seabed in the presence of strong turbulence: the larger the wing, the more stable the seed. When all seeds face into the current, drag and lift coefficients (normalised by the seed plan area and represent the respective forces) were small and converged to similar values for all cases (Fig. 3B,C). However, the drag coefficient rapidly increased as the seeds were rotated out of this stable position (Fig. 3B). For P. coriacea, the membranous wing could either act to impose lift force on these seeds if they were positioned slightly askew from their most streamlined position, or act to impose a downward force when the seeds were positioned with the membranous wing pointed into the current (Fig. 3C). Posidonia coriacea seeds have the most effective wing for reducing hydrodynamic forces that are typical of shallow wave-exposed coastal environment in western and southern Australia (Table 1). The lift coefficients for P. australis and P. sinuosa were less influenced by the presence of a membranous wing (Fig. 3C), corresponding to their usual habitat, wave sheltered bays and estuaries, where the seeds are able to settle and colonize less energetic environments with reduced forces that could affect their stability (Table 1).
Discussion
Our results demonstrate for the first time that a unique morphology, a thin membrane covering the seed in the Australian species of the marine genus Posidonia has evolved to utilize benthic boundary layer physics to settle and attach to the substratum across environmental gradients in wave and current intensity. This thin seed membrane, provides an essential window of stability until the rapid gravitropic growth of the root8 anchors the seed to the bed. An example of convergent evolution among differing taxa, the asymmetric linear shape of this membranous wing and the seeds of seagrasses is similar in form to similar structures utilized by algae9 and invertebrate larvae10 to settle and attach to the substratum in moving seawater. We hypothesize that this unique seed trait in a marine angiosperm evolved in seagrasses to colonise a wide range of environments to fill available niches from open, high energy coasts to calmer environments in bays and estuaries.
The form of the membranous wing as shown from SEM is quite similar to a winged achene or samara, such as found in maple and ash trees7, where papery tissue from the ovary wall develops into a flattened single-sided aerodynamic wing. The wing reduced hydrodynamic rotation, drag and lift forces resulting in the seed being less susceptible to movement on the seabed. Such movement disrupts the gravitropic growth of the root and consequently the success of seedling recruitment at a given location. Seeds of all species rotated in the flow to two weak equilibrium positions parallel to flow direction or where the wing was pointed into the current. Flume experiments with elongated shapes (objects of similar geometrical form to Posidonia seeds) in unidirectional flow have demonstrated that the most stable solution for an asymmetrical elongated shape is parallel to flow direction10 and that elongated shapes are prone to automatically rotate into a pattern that included two weak equilibrium positions11, consistent with our seed rotation results. The wing adds a further dimension, producing a downward force if aligned into the current. Such a downward force has been observed to stabilise flounder on the seabed12 and is also deliberately induced through the careful design of wing features on vehicles13.
The membranous wing in Australian species of Posidonia is a clear demonstration of how form evolves to overcome the physics of settlement and attachment into the benthic boundary layer in the ocean. The need for seeds to maintain a stable position to allow root initiation and growth is similar to the broader issues of settlement and attachment of marine organisms in moving seawater. Some evolved solutions in microbes, algae and invertebrates and other species of seagrass include mucus sheaths in red algae9 and marine snails14, mucus threads in bacteria15,16, larval sea anemones17, corals18,19 and bivalves20, and adhesive hypocotyl hairs in other seagrasses21,22. If the seeds are moved by currents, waves or turbulence the strong gravitropic root response is disturbed. This disturbance can result in roots that develop into the water column or become ‘corkscrewed’ as root growth adjusts to being rotated and tumbled at the sediment surface.
Seagrassses are an unusual ancient group of higher flowering plants that have evolved unique traits to establish, grow, reproduce, and survive in the sea (e.g. tolerance to salt water, submarine pollination, reduced cuticle on the leaf surface, no stomata, chloroplasts in the epidermis). While seagrasses are highly clonal, sexual reproduction and their offspring, seeds, are also important in both ecological and evolutionary connectivity3,4,23,24. Our results demonstrate, for the first time, that species in the marine genus Posidonia have a unique morphology where a thin membrane covering the seed, plays a critical role in its establishment across environmental gradients in wave and current intensity until the seed is able to anchor with rapid growth of the gravitropic root8. The primary root is already growing in the direct developing seeds of Posidonia and rapidly extends into the sediment by 0.5 to 1 cm within 12–24 hours. This reliance on root growth differs from P. oceanica in the Mediterranean where seeds initiate many sticky hypocotyl filaments that attach to rocks and sand grains as a primary root develops21,22. The development of membranous wings appears to have evolved after the isolation of Australian congeneric species from P. oceanica with the closure of the Tethys Sea during the Miocene (20–10 Myr BP)25,26. Sticky hypocotyl filaments like those found in P. oceanica have also been described from other seagrass genera including Zostera27, Halophila28,29 and Thalassia30. That hypocotyl filaments are less abundant in Australian Posidonia increases the importance of the wing-like adaptation of the membrane covering seeds.
Seagrasses are some of the most threatened habitats in the world’s oceans today31,32. Despite providing significant ecosystem services, especially nursery habitat33, as well as many ongoing efforts to ameliorate anthropogenic effects that are the leading cause for seagrass decline34, attempts to restore seagrass remain elusive31. The establishment phase has proved to be a major bottleneck to recovery in many environments35. As seagrass seeds are known to be vitally important in the recovery of seagrass meadows23, a thorough understanding of how seeds of different seagrass species behave in aqueous environments will be one crucial element in the success of managing seagrass ecosystems for future resilience and in developing successful seed-based restoration strategies similar to those found in terrestrial plant restoration36.
Methods
Collection of seeds
Approximately 30 fruits, containing an individual seed were collected from inflorescences of P. coriacea, P. australis and P. sinuosa. These collections were made between 2 and 5 m depths using SCUBA at Rottnest Island (S 32.000625°, E 115.548531°), and Parmelia Bank (S 32.096408°, E 115.728296°), Western Australia. The fruit were transferred to large 300–800 L aquaria with recirculating seawater (salinity = 35.6) in a greenhouse until the seeds were released. Seeds were then taken into the laboratory for processing. Maximum wing width was measured from 30 seeds from P. sinuosa, P. australis and P. coriacea with the use of a pair of calipers and a dissecting microscope.
Scanning electron microscopy (SEM)
Seeds of each species were fixed in a solution of 2.5% glutaraldehyde and 1.7% paraformaldehyde in seawater that was buffered with 0.1 M phosphate buffer. Seeds were stored at 4 °C until SEM. Segments 10–15 mm2 in length were excised from different parts of the wings, washed in deionized water, dehydrated in a graded series of ethanol (30–100% and 100%-anhydrous) and then flooded with liquid CO2 for 1.5 h before critical point drying (31 °C, 1200 psi). The segments were gold sputter-coated and then examined at 5 kV and 30 µm aperture size with a SEM Zeiss 55.
X-ray micro-computed Tomography
Each seed was stained with 1% osmium tetroxide (OsO4) in 0.1 M phosphate buffer for 6 min using microwaves for better peretration of the stain. Seeds then were mounted in 5% agar in warm water in a 5 ml polypropylene tube. Samples were scanned at 60 kV and 83 µA (5 Watts) using a µCT system (Versa XRM520, Zeiss) running Scout and Scan software (v10.6.2005.12038, Zeiss). A total of 3201 projections were collected over 360°, each with a 2 s exposure. Binning (2x) was used to achieve a suitable signal to noise ratio and 0.4x optical magnification was used to achieve an isotropic voxel resolution of 35.4 µm. No source filters were applied. Projections were reconstructed using XMReconstructor software (v10.7.3679.13921, Zeiss) wih a standard centre shift and beam hardening correction and a 0.7 kernel size reconstruction filter setting. Data generated from µCT scans was analysied and visualized with Avizo (v8.1.1, FEI) software. Workflows for seed segmentation and analysis are provided in Tables S1 and S2. In order to measure only the external surface of the seed and not the internal connecting surfaces of seeds, common (connected) surfaces were removed by subtracting the surface areas measured for relevant combinations of the parts of the seed (as listed in Table S1 step 3). The statistical significance of change (decline) in surface area, volume and surface area to volume ratios for the paired seeds with and without membranous wings were tested using one tailed paired t tests using R.statistics (Version 3.2.4, dplyr package) (Table 2).
Numerical modelling
Quantifying the forces imposed on seagrass seeds requires high-resolution flow field data at the seed scale. High resolution computational fluid dynamics (CFD) simulations can provide detailed flow field information and also provide direct measurements of canopy element drag forces. Reynolds Averaged Navier Stokes Simulations, RANS-models, split the velocities, u, v, w, and the pressure, p, into a mean and fluctuating component , i.e. . The Navier Stokes equations are averaged both in time and in space and the goal is to capture the average of key processes (e.g., velocities, pressure) in each timestep. RANS models do not include any random turbulent motion, and the turbulent motions are all estimated through sub-scale models and represented by eddy viscosities and diffusivities. For the aim of this study, this approach was considered an appropriate balance of the computational cost and physical process insight.
OpenFoam+ v1712 and the incompressible solver SimpleFoam was used in the analysis with the k-omega-SST turbulence closure model for incompressible flows. A uniform numerical grid was first generated in a 0.2 m × 0.2 m × 0.2 m domain with an initial grid resolution of 5 mm. The seed object obtained from the µCT analysis was then inserted into the domain and the grid further refined. A boundary layer refinement region was defined over the bed and extended to a height of 5 mm above the bed. We then used the SnappyHexMesh algorithm to refine the grid over three layers around seed object. To evaluate the grid-size independence of the numerical solution, results for the default computational grid described above and a finer grid (with resolution increased by approximately 40%) were compared. Differences between numerical results generated with the two grid resolutions were negligible, indicating grid-size-independent solutions.
A mean pressure gradient was imposed in the streamwise direction to drive the flow at the critical velocity determined from laboratory experiments. At the bed and seed surfaces, a no-slip condition was applied. To avoid the complexity of modeling the free surface, the upper boundary of the domain was treated as a frictionless rigid lid. The water depth in all cases was 0.2 m, which ensured a free-stream flow condition developed above the seed. The simulations were allowed to run until a steady state condition was achieved, which was define by monitoring the drag force until this force stabilized. A dynamic adjustable time stepping technique was used to guarantee a local Courant number less than 0.5.
To calculate the rotation, drag and lift forces for each seed case as well as for different seed orientations, the pressure and viscous forces acting on the seeds were calculated. The normalized force coefficients were then determined using established drag, lift and rotation equations (see Supplementary Methods). Simulations and calculations were undertaken at 10 degree resolution, by rotating the seed in the horizontal plane about the seed’s centre of mass.
Laboratory experiments
The critical velocity to initiate seed movement was quantified for 30 seeds of each species, with and without a membranous wing, in a reticulating flume at the Indian Ocean Marine Research Centre - Watermans Bay (40 cm × 50 cm × 7.5 m). A sediment bed of beach sand (median grain size of 327 µm) was constructed and smoothed in the flume prior to the commencement of each experiment. In each experiment, six seeds were then placed on the bed and the flume slowly filled with seawater (salinity = 35.6) to a depth of 60 cm. The current was slowly increased at 1 cm s−1 increments and maintained for 2 min over a current velocity range of 5–48 cm s−1. The current velocity was measured at 64 Hz using an acoustic Doppler velocimeter (Nortek ADV) positioned 23 cm above the bed and the velocity acting on the seed determined for the steady two-dimensional flow over a hydrodynamically rough bed using the Karman-Prandtl equation. The position of the seeds were tracked using a downward facing camera at 24 Hz. The video data was transformed into Cartesian coordinates, corrected for distortion and the position of the seeds analysed frame-by-frame for the duration of the experiment. The velocity that initiated seed movement along the bed was defined as the velocity where the seed had the greatest instantaneous movement distance.
Supplementary information
Acknowledgements
We would like thank Leonardo Ruiz-Montoya for early discussion and for performing flume experiments, as well as Andrea Zavala Perez for field collections. We thank Peta Clode for help with the X-ray micro-CT scanning and advise on Scanning Electron Microscopy. The authors acknowledge the use of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. We also thank Vahid Etminan Farooji for his advice on the numerical modelling. Computational resources for the project were provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. Funding for this research came from Australian Research Council Linkage grants (LP13100918, LP160101011).
Author contributions
The research was conceptualized by G.A.K., M.L.C., R.J.O., A.W.P. and R.J.L. Analysis using SEM and micro-CT was performed by L.K. and J.S., with advice from G.A.K., M.L.C. and A.W.P. The flume experiments were conducted with advice from R.J.L. and G.A.K. The hydrodynamic modelling was performed by A.W.P. in discussion with J.S., R.J.O. and G.A.K. All authors were involved the writing, reviewing and editing of the manuscript. This is contribution no. 3859 from the Virginia Institute of Marine Science.
Data availability
3D reconstructions of the seeds from the micro-CT scans are available on the UWA Research Repository (10.26182/5df1a8623d1ea). All other data is available in the main text or the Supplementary Materials.
Competing interests
The authors declare no competing interests.
Footnotes
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
is available for this paper at 10.1038/s41598-019-56202-7.
References
- 1.Howe HF, Smallwood J. Ecology of Seed Dispersal. Annu. Rev. Ecol. Syst. 1982;13:201–228. doi: 10.1146/annurev.es.13.110182.001221. [DOI] [Google Scholar]
- 2.Elbaum R, Zaltzman L, Burgert I, Fratzl P. The role of wheat awns in the seed dispersal unit. Science. 2007;316:884–886. doi: 10.1126/science.1140097. [DOI] [PubMed] [Google Scholar]
- 3.Kendrick GA, et al. The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience. 2012;62:56–65. doi: 10.1525/bio.2012.62.1.10. [DOI] [Google Scholar]
- 4.McMahon K, et al. The movement ecology of seagrasses. Proc. Biol. Sci. 2014;281:20140878. doi: 10.1098/rspb.2014.0878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Ruiz-Montoya L, Lowe RJ, Van Niel KP, Kendrick GA. The role of hydrodynamics on seed dispersal in seagrasses. Limnol. Oceanogr. 2012;57:1257–1265. doi: 10.4319/lo.2012.57.5.1257. [DOI] [Google Scholar]
- 6.Ruiz-Montoya L, Lowe RJ, Kendrick GA. Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows. Mov Ecol. 2015;3:9. doi: 10.1186/s40462-015-0034-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Lorenz, R. D. Spinning Flight: Dynamics of Frisbees, Boomerangs, Samaras, and Skipping Stones. (Springer Science & Business Media, 2007).
- 8.Hashiguchi Y, Tasaka M, Morita MT. Mechanism of higher plant gravity sensing. Am. J. Bot. 2013;100:91–100. doi: 10.3732/ajb.1200315. [DOI] [PubMed] [Google Scholar]
- 9.Boney AD. Mucilage sheaths of spores of red algae. J. Mar. Biol. Assoc. U. K. 1975;55:511–518. doi: 10.1017/S0025315400017227. [DOI] [Google Scholar]
- 10.Abelson A, Denny M. Settlement of marine organisms in flow. Annual Review of Ecology and Systematics. 1997;28:317–339. doi: 10.1146/annurev.ecolsys.28.1.317. [DOI] [Google Scholar]
- 11.Krushkal EM, Gallily I. On the orientation distribution function of non-spherical aerosol particles in a general shear flow - II. the turbulent case. J. Aerosol Sci. 1988;19:197–211. doi: 10.1016/0021-8502(88)90223-6. [DOI] [Google Scholar]
- 12.Webb PW. Station-holding by three species of benthic fishes. J. Exp. Biol. 1989;145:303–320. [Google Scholar]
- 13.Katz J. Aerodynamics of race cars. Annu. Rev. Fluid Mech. 2006;38:27–63. doi: 10.1146/annurev.fluid.38.050304.092016. [DOI] [Google Scholar]
- 14.Vahl O. Mucus drifting in the limpet Helcion (=Patina) pellucidus (Prosobranchia, Patellidae) Sarsia. 1983;68:209–211. doi: 10.1080/00364827.1983.10420573. [DOI] [Google Scholar]
- 15.Cowen JP. Morphological study of marine bacterial capsules: implications for marine aggregates. Mar. Biol. 1992;114:85–95. [Google Scholar]
- 16.Nakasone N, Iwanaga M. Pili of a Vibrio parahaemolyticus strain as a possible colonization factor. Infect. Immun. 1990;58:61–69. doi: 10.1128/iai.58.1.61-69.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Siebert AE., Jr. A description of the embryology, larval development, and feeding of the sea anemones Anthopleura elegantissima and A. xanthogrammica. Can. J. Zool. 1974;52:1383–1388. doi: 10.1139/z74-175. [DOI] [PubMed] [Google Scholar]
- 18.Abelson A, Weihs D, Loya Y. Hydrodynamic impediments to settlement of marine propagules. and adhesive-filament solutions. Limnology and Oceanography. 1994;39:164–169. doi: 10.4319/lo.1994.39.1.0164. [DOI] [Google Scholar]
- 19.Tranter PRG, Nicholson DN, Kinchington D. A description of spawning and post-gastrula development of the cool temperate coral, Caryophyllia smithi. J. Mar. Biol. Assoc. U. K. 1982;62:845–854. doi: 10.1017/S0025315400070387. [DOI] [Google Scholar]
- 20.Sigurdsson JB, Titman CW, Davies PA. The dispersal of young post-larval bivalve molluscs by byssus threads. Nature. 1976;262:386–387. doi: 10.1038/262386a0. [DOI] [Google Scholar]
- 21.Belzunce M, Navarro RM, Rapoport HF. Seed and early plantlet structure of the Mediterranean seagrass Posidonia oceanica. Aquat. Bot. 2005;82:269–283. doi: 10.1016/j.aquabot.2005.04.006. [DOI] [Google Scholar]
- 22.Guerrero-Meseguer L, Sanz-Lázaro C, Marín A. Understanding the sexual recruitment of one of the oldest and largest organisms on Earth, the seagrass Posidonia oceanica. PLoS One. 2018;13:e0207345. doi: 10.1371/journal.pone.0207345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Kendrick GA, et al. Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol. Rev. Camb. Philos. Soc. 2017;92:921–938. doi: 10.1111/brv.12261. [DOI] [PubMed] [Google Scholar]
- 24.Sinclair EA, et al. Reproduction at the extremes: pseudovivipary, hybridization and genetic mosaicism in Posidonia australis (Posidoniaceae) Ann. Bot. 2016;117:237–247. doi: 10.1093/aob/mcv162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Les DH, Cleland MA, Waycott M. Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst. Bot. 1997;22:443–463. doi: 10.2307/2419820. [DOI] [Google Scholar]
- 26.Aires T, et al. Evolutionary history of the seagrass genus Posidonia. Mar. Ecol. Prog. Ser. 2011;421:117–130. doi: 10.3354/meps08879. [DOI] [Google Scholar]
- 27.Stafford-Bell RE, Chariton AA, Robinson RW. Germination and early-stage development in the seagrass, Zostera muelleri Irmisch ex Asch in response to multiple stressors. Aquat. Bot. 2016;128:18–25. doi: 10.1016/j.aquabot.2015.09.004. [DOI] [Google Scholar]
- 28.McMillan C. Seed-germination and seedling morphology of the seagrass, Halophila engelmanii (Hydrocharitacea) Aquat. Bot. 1987;28:179–188. doi: 10.1016/0304-3770(87)90039-8. [DOI] [Google Scholar]
- 29.Kuo J, Long WJL, Coles RG. Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae) Marine and Freshwater Research. 1993;44:43–57. doi: 10.1071/MF9930043. [DOI] [Google Scholar]
- 30.Soong K, Chiu S-T, Chen C-NN. Novel seed adaptations of a Monocotyledon seagrass in the Wavy Sea. PLoS ONE. 2013;8:e74143. doi: 10.1371/journal.pone.0074143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Cullen-Unsworth LC, Unsworth R. A call for seagrass protection. Science. 2018;361:446–448. doi: 10.1126/science.aat7318. [DOI] [PubMed] [Google Scholar]
- 32.Waycott M, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA. 2009;106:12377–12381. doi: 10.1073/pnas.0905620106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Lefcheck JS, et al. Are coastal habitats important nurseries? A meta-analysis. Conservation Letters. 2019;75:e12645. doi: 10.1111/conl.12645. [DOI] [Google Scholar]
- 34.Lefcheck JS, Wilcox DJ, Murphy RR, Marion SR, Orth RJ. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Chang. Biol. 2017;23:3474–3483. doi: 10.1111/gcb.13623. [DOI] [PubMed] [Google Scholar]
- 35.Statton J, Montoya LR, Orth RJ, Dixon KW, Kendrick GA. Identifying critical recruitment bottlenecks limiting seedling establishment in a degraded seagrass ecosystem. Sci. Rep. 2017;7:14786. doi: 10.1038/s41598-017-13833-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Merritt DJ, Dixon KW. Restoration Seed Banks—A Matter of Scale. Science. 2011;332:424–425. doi: 10.1126/science.1203083. [DOI] [PubMed] [Google Scholar]
- 37.Lemm AJ, Hegge BJ, Masselink G. Offshore wave climate, Perth (Western Australia), 1994–96. Mar. Freshwater Res. 1999;50:95–102. doi: 10.1071/MF98081. [DOI] [Google Scholar]
- 38.Carruthers T, et al. Seagrasses of south-west Australia: A conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J. Exp. Mar. Bio. Ecol. 2007;350:21–45. doi: 10.1016/j.jembe.2007.05.036. [DOI] [Google Scholar]
- 39.Sánchez-Arcilla A, González-Marco D, Bolaños R. A review of wave climate and prediction along the Spanish Mediterranean coast. Natural Hazards and Earth System Sciences. 2008;8:1217–1228. doi: 10.5194/nhess-8-1217-2008. [DOI] [Google Scholar]
- 40.Casas-Prat M, Sierra JP. Projected future wave climate in the NW Mediterranean Sea. J. Geophys. Res. C: Oceans. 2013;118:3548–3568. doi: 10.1002/jgrc.20233. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
3D reconstructions of the seeds from the micro-CT scans are available on the UWA Research Repository (10.26182/5df1a8623d1ea). All other data is available in the main text or the Supplementary Materials.