Skip to main content
Journal of Translational Medicine logoLink to Journal of Translational Medicine
. 2019 Dec 26;17:427. doi: 10.1186/s12967-019-02168-z

The regulatory effect of microRNA-21a-3p on the promotion of telocyte angiogenesis mediated by PI3K (p110α)/AKT/mTOR in LPS induced mice ARDS

Yile Zhou 1, Yajie Yang 1, Tao Liang 1, Yan Hu 1,2, Haihong Tang 1, Dongli Song 3,, Hao Fang 2,4,
PMCID: PMC6933909  PMID: 31878977

Abstract

Background

Telocytes (TCs) are newly identified interstitial cells that participate in tissue protection and repair. The present study investigated the mechanisms underlying the protective effect of TCs in a mouse model of respiratory distress.

Methods

The mouse model of acute respiratory distress syndrome (ARDS) was established by intratracheal instillation of lipopolysaccharide (LPS). After instillation of TCs culture medium, lung injury was assessed, and angiogenesis markers, including CD31 and endothelial nitric oxide synthase (eNOS), were detected by immunofluorescence. Bioinformatics analysis was used to screen significantly differentially expressed microRNAs (miRNAs) in cultured TCs stimulated with LPS, and the regulation of downstream angiogenesis genes by these miRNAs was analysed and verified. PI3K subunits and pathways were evaluated by using a PI3K p110α inhibitor to study the involved mechanisms.

Results

In ARDS mice, instillation of TCs culture medium ameliorated LPS-induced inflammation and lung injury and increased the protein levels of CD31 and eNOS in the injured lungs. A total of 7 miRNAs and 1899 mRNAs were differentially regulated in TCs stimulated with LPS. Functional prediction analysis showed that the differentially expressed mRNAs were enriched in angiogenesis-related processes, which were highly correlated with miR-21a-3p. Culture medium from TCs with miR-21a-3p inhibition failed to promote angiogenesis in mouse models of LPS-induced ARDS. In cultured TCs, LPS stimulation upregulated the expression of miR-21a-3p, which further targeted the transcription factor E2F8 and decreased Notch2 protein expression. TCs culture medium enhanced hemangioendothelioma endothelial cells (EOMA cells) proliferation, which was blocked by the miR-21a-3p inhibitor. The PI3K p110α inhibitor decreased vascular endothelial growth factor levels in LPS-stimulated TCs and reversed the enhancing effect of TCs culture medium on EOMA cells proliferation.

Conclusions

TCs exerted protective effects under inflammatory conditions by promoting angiogenesis via miR-21a-3p. The PI3K p110α subunit and transcriptional factor E2F8 could be involved in this process.

Keywords: Telocyte, miRNA-21a-3p, Angiogenesis, Acute respiratory distress syndrome, PI3K p110α

Introduction

Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterised by acute progression of respiratory failure. According to an international multi-centre research, the prevalence of ARDS was 10.4% of ICU admissions [1]. Inflammatory responses destroy underlying vascular endothelial cells and respiratory epithelial cells and impair the lungs’ ability to exchange oxygen and carbon dioxide [2]. Therefore, decreasing inflammation and accelerating blood vessel repair are two key factors in the prevention and treatment of ARDS. Since its severity and lack of effective pharmacologic treatments [3], it is of great significance to explore novel therapeutic strategies for ARDS. Recently, cell therapy have been shown to have promising therapeutic potential. Mesenchymal stem cells ameliorated ARDS due to paracrine mechanism [4].

Telocytes (TCs) are newly identified mesenchymal cells that play a role in providing nutrition to surrounding cells by cell–cell communication and have post-injury repair and regeneration functions [57]. TCs contribute to angiogenesis within the myocardium [8]. Transplantation of cardiac TCs promotes post ischaemic myocardial repair [9]. Pulmonary TCs also assist with angiogenesis since they participate in forming the structure of the air–blood barrier [10]. Intratracheal administration of activated TCs has been reported to alleviate ventilator-induced lung injury in a mouse model by releasing angiogenic factors [11]. However, the underlying mechanism remains unclear.

Class I Phosphoinositide-3-kinases (PI3Ks) or the four subtypes of catalytic subunit—p110α, p110β, p110γ and p110δ—are expressed in all mammalian cells. The catalytic subunits bind to p85 regulatory subunits, activate receptor tyrosine kinases (RTKs), and transmit a variety of cell surface receptor signals, such as those from the epidermal growth factor receptor (EGFR) or fibroblast growth factor receptor (FGFR), to promote cell growth [12]. The PI3K subunits p110α and p110δ were demonstrated to be associated with tissue repair; however, this function is mediated by different mechanisms. The activity of PI3K p110α can be enhanced by tyrosine kinase ligands, such as vascular endothelial growth factor (VEGF) A, and can induce angiogenesis and vascular remodelling [13]. Moreover, p110α regulates endothelial cell migration through the small GTPase RhoA, mediated by PI3KCG, a gene encoding a p110γ subunit, which has a protective effect on hypoxic-reoxygenated cardiomyocytes mediated by activation of the PI3K/AKT signalling pathway and inhibition of apoptosis [14]. PI3K (p110δ)/AKT/mammalian target of rapamycin (mTOR) signalling pathway mediates interferon-γ (IFN-γ) induced airway epithelial cell growth and proliferation through interaction with CEACAM1 [15].

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of target genes via posttranscriptional degradation of mRNA and/or translational inhibition of protein expression. MiR-135a can influence cell proliferation, migration, invasion, apoptosis and tumour angiogenesis through the IGF-1/PI3K/AKT signalling pathway in non-small cell lung cancer (NSCLC) [16]. Mature miR-21a-5p was found to be secreted by lipopolysaccharide (LPS)-activated macrophages in small vesicles, which were endocytosed and internalised by renal fibroblasts, thereby promoting the expression of fibrosis and inflammation markers in a mouse model of chronic renal allograft dysfunction (CAD) in allogeneic kidney transplantation [17]. Antagonism of miR-21a-5p ameliorated CAD in mouse model following kidney transplantation [17]. In patients with renal allograft, elevation of urinary [18] and plasma [19] miR-21 level was correlated with interstitial fibrosis and tubular atrophy.

The TCs line was established by transfection with simian vacuolating virus 40 (SV40) and identified to maintain TCs morphology and immune characteristics [20]. TCs proliferation was demonstrated to be regulated by transforming growth factor-β (TGF-β) and mediated by the PI3K p110α subunit and the PI3K/AKT/mTOR signalling pathway [21]. The present study was designed to investigate the underlying protective effect of TCs in a mouse model of respiratory distress. Bioinformatics approaches were applied to analyse gene expression profiles in TCs challenged with LPS. Particular attention was devoted to the angiogenesis-related process. The protective mechanisms mediated by the PI3K subunit in TCs were further examined in hemangioendothelioma endothelial cells (EOMA cells) in vitro. The current study presents the theoretical bases of an alternative new potential therapeutic strategy for ARDS.

Methods

Animal models

Eight-week-old male C57BL/6 mice, 22 to 25 g, were purchased from Shanghai Jiesijie Company (Shanghai, China). Mice were randomly divided into four groups: Control, ARDS, ARDS with negative control (NC) TCs treatment, and ARDS with miR-21a-3p inhibited TCs treatment. Under anaesthesia (60 mg/kg sodium pentobarbital, Sinopharm Chemical Reagent Co. Shanghai, China), mice were intratracheally instilled with phosphate-buffered saline or LPS (5 mg/kg, Sigma, Germany) via 20-gauge catheters. Mice in the ARDS treatment groups were also instilled with 20 μL of TCs culture medium from TCs treated with the NC or miR-21a-3p inhibitor in the presence of LPS. Twenty-four hours later, animals were sacrificed, and the lungs were collected.

The study protocol was approved by the Animal Ethics Committee of Zhongshan Hospital, Fudan University.

TCs

Mouse primary pulmonary TCs were a kind gift from Dr. Dongli Song. TCs were cultured in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12, Hyclone, Boston, MA) supplemented with 5% foetal bovine serum (FBS, Cellsera, Australia). Experiments with LPS (0.1 μg/mL) were performed in DMEM/F12 without FBS. TCs culture medium was collected from culture dishes after LPS stimulation for 48 h. The p110α inhibitor HS-173 (Selleck, Shanghai, China) was applied 2 h before LPS stimulation.

MiRNA transfection

Both the miR-21a-3p inhibitor and NC were purchased from China Ribobio (Ribobio, Guangzhou, China). TCs were transfected with the miR-21a-3p inhibitor and NC at a final concentration of 50 nmol/L using a lipofectamine RNAiMAX transfection system (ThermoFisher Scientific, Carlsbad, CA) according to the manufacturer’s protocol. Cells were incubated with siRNA in serum-free and antibiotic-free medium for 6 h and then in normal growth medium for another 24 h before the experiments were performed.

Gene expression profiling analysis

Gene expression profiling analysis of both miRNA and mRNA were performed with Agilent Microarray Scanner (Cat # G2565CA, Agilent technologies, Santa Clara, CA). The data were normalised with the AgiMicroRna package [22]. The gene expression files were analysed with R-3.4.1 software. Differentially expressed genes (DEGs) were defined as those with an adjusted P-value of less than 0.05. DEGs were further analysed with the limma package [23]. Heat maps were generated with the ggplot2 package [24].

The online databases miRWalk [25] and TargetScan [26] were used to screen potential miRNA target genes. Overlapping genes in the two databases were selected for further analysis. The online database STRING [27] and the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 [28] were used to analyse gene function. The relationship between DEGs and miRNAs was further visualised with Cytoscape 3.7.1 [29].

Quantification of mRNA and miRNA

Total RNA was extracted from cultured TCs with TRIzol (Takara, Shiga, Japan) according to the provided instructions. MiRNAs were reverse transcribed with a Bulge-Loop miRNA qRT-PCR Starter Kit (Ribobio, Guangzhou, China), and mRNAs were reverse transcribed to complementary DNA (cDNA) with a PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Shiga, Japan). The expression levels of miR-21a-3p, miR-221-5p and mRNAs were measured by quantitative real-time polymerase chain reaction (qPCR) on a Bio-Rad IQ5 real-time PCR instrument, with U6 and GAPDH used as the housekeeping genes for miRNAs and mRNAs, respectively. MiRNA PCR was performed with the Bulge-Loop miRNA qRT-PCR Starter Kit, Bulge-Loop mmu-miR-21a-3p Primer Set and Bulge-Loop mmu-miR-221-5p Primer Set (Ribobio, Guangzhou, China). MRNA primers were synthesised by Sangon (Shanghai, China). The following mouse-specific primers were used: GAPDH sense primer: 5′-GTTCAACGGCACAGTCAAG-3′, antisense primer: 5′-GCCAGTAGACTCCACGACAT-3′; E2F8 sense primer: 5′-CTGTTT GCACGAACACTTATCAG-3′, antisense primer: 5′-GTACCGCGCTAGGAATTTGTG-3′; Acvrl1 sense primer: 5′-TGATTCCTGTTGCCGGCCT-3′, antisense primer: 5′-CAGTGTGGGCTCTCACAAGT-3′; Rbpj sense primer: 5′-TGGCGAGAGTTTGTGGAAGA-3′, antisense primer: 5′-AGCACTGTTTGATCCCCTCG-3′; Notch1 sense primer: 5′-TGTGGCTTCCTTCTACTGCG-3′, antisense primer: 5′-CTTTGCCGTTGACAGGGTTG-3′; Flt1 sense primer: 5′-GTGAGCACTGCGGCAAAAAG-3′, antisense primer: 5′-ACTCATTTTGGGAGGAGCGT -3′; EFNB2 sense primer: 5′-CGAGGTGGCAACAACAATGG-3′, antisense primer: 5′-ATAGTCCCCGCTGACCTTCT -3′; Thbs1 sense primer: 5′-CTGCCAATCATAACCAGCG-3′, antisense primer: 5′-TTCGTTAAAGGCCGAGTGCT-3′; EPAS1 sense primer: 5′-CTGAGGAAGGAGAAATCCCGT-3′, antisense primer: 5′-TGTGTCCGAAGGAAGCTGATG-3′; hypoxia inducible factor-1α (HIF-1α) sense primer: 5′-ACCTTCATCGGAAACTCCAAAG-3′, antisense primer: 5′-CTGTTGGCTGGGAAAAGTTAGG-3′; PIK3CA sense primer: 5′-CCACGACCATCTTCGGGTG-3′, antisense primer: 5′-ACGGAGGCATTCTAAAGTCACTA-3′; PIK3CB sense primer: 5′-CTATGGCAGACAACCTTGACAT-3′, antisense primer: 5′-CTTCCCGAGGTACTTCCAACT-3′; PIK3CD sense primer: 5′-GTAAACGACTTCCGCACTAAGA-3′, antisense primer: 5′-GCTGACACGCAATAAGCCG-3′; and VEGF sense primer: 5′-GTACCTCCACCATGCCAAGT-3′, antisense primer: 5′-TCCTATGTGCTGGCTTTGGT-3′.

Western blotting

Total protein was extracted from cultured TCs with lysis buffer (150 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L NaF, 1 mmol/L dithiothreitol, 10 μg/μL aprotinin, 10 μg/μL leupeptin, 0.1 mmol/L Na3VO4, 1 mmol/L phenylmethylsulfonyl fluoride (PMSF), and 0.5% NP-40). Protein extracts (20 μg) were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membranes (Merck Millipore, Darmstadt, Germany). After blocking with 5% non-fat milk/Tris-buffered saline containing 0.1% Tween 20 at room temperature for one hour, membranes were incubated with primary antibodies [specific for GAPDH (60004-1-Ig, Proteintech, Wuhan, China), E2F8 (ab109596, Abcam, Cambridge, UK), Delta-like 4 (DLL4)(ab7280, Abcam, Cambridge, UK), Notch1 (sc-373891, Santa Cruz, Dallas, TX), Notch2 (sc-5545, Santa Cruz, Dallas, TX), Notch4 (sc-5594, Santa Cruz, Dallas, TX), phosphatase and tensin homolog deleted on chromosome ten (PTEN)(ab32199, Abcam, Cambridge, UK), PI3K (4257T, CST, Boston, MA), p-PI3K (4228T, CST, Boston, MA), mTOR (2983T, CST, Boston, MA), p-mTOR (5536T, CST, Boston, MA), AKT (9272S, CST, Boston, MA), p-AKT (9271S, CST, Boston, MA), and p110α (4249T, CST, Boston, MA)] overnight at 4 °C. Protein expression levels were normalised to those of GAPDH with ImageJ (NIH, Bethesda, MD).

EOMA cells proliferation assay

EOMA cells proliferation was assessed with a colorimetric assay—Cell Counting Kit-8 (CCK8, Yeasen, Shanghai, China)—following the manufacturer’s protocol. Approximately 4000 EOMA cells/well were seeded in a 96-well plate. After adhesion, EOMA cells were incubated for 24 h with culture medium from TCs transfected with the miR-21a-3p inhibitor or NC in the presence of LPS.

Dual luciferase assay

The pGL3 reporter vector (Promega, Madison, WI) was used to generate the plasmids pGL3-WT-E2F8-3′-UTR and pGL3-Mut-E2F8-3′-UTR. Human embryonic kidney cells were co-transfected with pGL3-E2F8-3′-UTR (WT or Mut) and the miR-21a-3p mimic or NC with Lipofectamine 2000 reagent (ThermoFisher Scientific, Carlsbad, CA). After incubation for 24 h, luciferase activity was assessed by the Dual-Luciferase Reporter Assay System (Promega, Madison, WI) according to the manufacturer’s protocol.

Enzyme-linked immunosorbent assay (ELISA)

The concentration of VEGF in the TCs culture medium was measured by a commercial VEGF ELISA kit (Westang, Shanghai, China) according to the manufacturer’s protocol.

Dynamic real-time cell observation

Live observation of EOMA cells was performed with a Cell-IQ cell culture platform (Chip-Man Technologies, Tampere, Finland) equipped with a phase contrast microscope (Nikon CFI Achromat phase contrast objective with 10 magnification) and a camera (Nikon, Fukasawa, Japan). The equipment was controlled by Imagen software (Chip-Man Technologies). Each group contained 16 replicates of visual fields. Images were acquired at 1-h intervals for 48 h.

Tissue preparation and immunofluorescence examination

Lung tissues were fixed with 10% formalin solution and embedded in paraffin. Each tissue was sectioned at 5 μm and stained with haematoxylin–eosin (HE, Beyotime, Shanghai, China) according to the manufacturer’s protocol. For immunofluorescence staining, an antigen retrieval protocol was carried out with incubation in 0.3% H2O2 for 30 min and heating to boiling in a microwave in citrate buffer for 10 min. After blocking with 5% goat serum in Tris-buffered saline, sections were incubated with diluted primary antibodies [CD31 (1:500, ab24590, Abcam, Cambridge, UK), endothelial nitric oxide synthase (eNOS) (1:500, Cat610296, BD Biotechnology, San Jose, CA)] overnight at 4 °C and then with secondary antibodies and 4′,6-diamidino-2-phenylindole (DAPI), separately.

Statistical analysis

Data are expressed as the means ± SDs and were analysed by one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons test. A P-value of < 0.05 was considered statistically significant. All statistical analyses were performed with GraphPad Prism 7.04 (GraphPad, San Diego, CA).

Results

Protective effects of TCs in ARDS

The ability for TCs protection was first estimated in ARDS mouse models. LPS stimulation caused inflammatory infiltration, alveolar wall widening, and vessel destruction (Fig. 1a). The production of inflammatory cytokines was elevated in ARDS mice (Fig. 1b). Since substances, including molecules and exosomes, released by TCs could be important factors affecting adjacent cells, the effect of TCs culture medium was assessed. Instillation of TCs culture medium reduced the inflammatory infiltration, reduced the alveolar interstitial width and decreased the levels of inflammatory cytokines. Bio-behaviours of TCs were recorded by Cell-IQ to show the typical morphology of cultured cells (Additional file 1: Figure S1).

Fig. 1.

Fig. 1

Protective effects of TCs in ARDS mouse models. a HE staining of mice lung tissue in lungs of control mice (Control), ARDS mice (LPS), ARDS mice treated with TCs supernatant (LPS/TC), and ARDS mice treated with miR-21a-3p inhibited TCs supernatant [LPS/TC (miR-21 inhibited)]. b The mRNA expression of inflammatory cytokines in mice lungs in the above four groups. *P < 0.05 vs Control, #P < 0.05 vs LPS, **P < 0.05 vs LPS/TCs, n = 6. IL-1β interleukin-1β, IL-6 interleukin-6, TNF-α tumour necrosis factor-α

TCs promoted angiogenesis in ARDS

As angiogenesis is essential in tissue repair, the induction of angiogenic factors in TCs after stimulation with LPS was assessed. In ARDS mice, the expression of the angiogenesis-related marker CD31 and eNOS was downregulated. However, an increase in CD31 and eNOS expression was observed in the WT TCs treatment group but not in the group treated with medium from TCs with miR-21a-3p inhibition (Fig. 2).

Fig. 2.

Fig. 2

TCs promoted angiogenesis in ARDS mouse models. The expression of CD31 and eNOS in lungs of control mice (Control), ARDS mice (LPS), ARDS mice treated with TCs supernatant (LPS/TC), and ARDS mice treated with miR-21a-3p inhibited TCs supernatant [LPS/TC (miR-21 inhibited)] was shown in green fluorescence, dapi was blue. *P < 0.05 vs Control, #P < 0.05 vs LPS, **P < 0.05 vs LPS/TCs, n = 6. Original magnification: 200x

MiRNA and mRNA profiles in LPS-stimulated TCs

To identify the critical miRNAs in the regulation of angiogenesis by TCs, miRNA and mRNA profiles were generated, and the relationship of differentially expressed miRNAs with downstream angiogenesis factor-associated mRNAs were analysed in LPS-stimulated TCs. In LPS-stimulated TCs, six miRNAs, including miR-155-5p, miR-21a-3p, miR-5100, miR-221-5p, miR-7a-3p and miR-146a-5p, were upregulated, and one miRNA (miR-188-5p) was downregulated with an absolute fold change > 2 (Fig. 3a and Table 1). By referring these results to two online databases (miRWalk and TargetScan), 4368 target genes were predicted to be downstream targets of the differentially expressed miRNAs.

Fig. 3.

Fig. 3

Differentially expressed genes in TCs with LPS treatment. a Heat map of differential expressed miRNAs in cultured TCs stimulated with LPS. b Heat map of differential expressed genes in cultured TCs stimulated with LPS. c Relationship between differential expressed miRNAs and their differential expressed target mRNAs. Yellow indicated miRNAs, green indicated downregulated mRNAs, and red indicated upregulated mRNAs. d Interaction of the angiogenesis-related proteins in STRING. Different colours indicated the involvement of proteins in different processes. Red indicated angiogenesis, pink indicated blood vessel morphogenesis, purple indicated vasculature development, brown indicated blood vessel remodelling, blue indicated sprouting angiogenesis, cyan indicated venous blood vessel sprouting, orange indicated venous blood vessel morphogenesis, green indicated regulation of angiogenesis, and yellow indicated positive regulation of angiogenesis. e Angiogenesis related miRNAs and their downstream genes. Red indicated upregulated miRNAs, green indicated downregulated miRNAs, yellow indicated genes that were enriched in more than three processes in STRING, blue indicated other mRNAs

Table 1.

Summary of differentially expressed miRNAs in TCs treated with LPSgraphic file with name 12967_2019_2168_Figa_HTML.jpg

Gene symbols Fold change Gene symbols Fold change Gene symbols Fold change
mmu-miR-146a-5p 8.761 mmu-miR-1231-3p 1.378 mmu-miR-6237 1.067
mmu-miR-7a-5p 2.813 mmu-miR-1948-3p 1.370 mmu-miR-7059-3p 1.065
mmu-miR-221-5p 2.407 mmu-let-7i-5p 1.350 mmu-miR-881-3p 1.064
mmu-miR-5100 2.330 mmu-miR-29b-3p 1.347 mmu-miR-3074-5p 1.063
mmu-miR-21a-3p 2.258 mmu-miR-3967 1.337 mmu-miR-7216-5p 1.063
mmu-miR-155-5p 2.067 mmu-miR-487b-3p 1.333 mmu-miR-770-5p 1.063
mmu-miR-33-5p 1.947 mmu-miR-1981-3p 1.300 mmu-miR-6901-5p 1.062
mmu-miR-96-5p 1.930 mmu-miR-6948-5p 1.299 mmu-miR-3092-5p 1.062
mmu-miR-532-3p 1.901 mmu-miR-6395 1.292 mmu-miR-302c-5p 1.061
mmu-miR-129-5p 1.845 mmu-miR-21a-5p 1.287 mmu-miR-6988-3p 1.060
mmu-miR-532-5p 1.837 mmu-miR-6367 1.263 mmu-miR-3109-3p 1.058
mmu-miR-211-3p 1.771 mmu-miR-7002-5p 1.251 mmu-miR-1668 1.057
mmu-miR-19a-3p 1.768 mmu-miR-27a-3p 1.219 mmu-miR-3572-3p 1.055
mmu-miR-6951-3p 1.766 mmu-miR-5623-5p 1.203 mmu-miR-451b 1.054
mmu-miR-210-3p 1.763 mmu-miR-23b-5p 1.190 mmu-miR-7007-3p 1.051
mmu-miR-126b-3p 1.756 mmu-miR-302b-5p 1.186 mmu-miR-6957-5p 1.048
mmu-miR-221-3p 1.738 mmu-miR-669g 1.181 mmu-miR-219b-5p 1.045
mmu-miR-6369 1.713 mmu-miR-1b-5p 1.167 mmu-miR-377-5p 1.043
mmu-miR-92a-3p 1.712 mmu-miR-147-3p 1.158 mmu-miR-6921-5p 1.043
mmu-miR-18a-5p 1.675 mmu-miR-6994-3p 1.123 mmu-miR-7040-3p 1.043
mmu-miR-802-5p 1.662 mmu-miR-7680-3p 1.114 mmu-miR-7068-3p 1.042
mmu-miR-1897-5p 1.631 mmu-miR-7673-5p 1.101 mmu-miR-376c-5p 1.040
mmu-miR-129-2-3p 1.615 mmu-miR-6908-3p 1.090 mmu-miR-7059-5p 1.039
mmu-miR-7211-5p 1.611 mmu-miR-3572-5p 1.088 mmu-miR-7684-3p 1.038
mmu-miR-210-5p 1.594 mmu-miR-106a-3p 1.084 mmu-miR-181d-3p 1.037
mmu-miR-362-3p 1.576 mmu-miR-6964-5p 1.083 mmu-miR-6942-3p 1.036
mmu-miR-218-5p 1.540 mmu-miR-6407 1.082 mmu-miR-511-3p 1.034
mmu-miR-6396 1.537 mmu-miR-6954-5p 1.081 mmu-miR-741-3p 1.034
mmu-miR-17-5p 1.517 mmu-miR-344h-3p 1.081 mmu-miR-465d-5p 1.029
mmu-miR-1897-3p 1.512 mmu-miR-467g 1.080 mmu-miR-1955-3p 1.029
mmu-miR-1956 1.479 mmu-miR-154-3p 1.080 mmu-miR-6930-5p 1.027
mmu-miR-20a-5p 1.475 mmu-miR-5625-5p 1.080 mmu-miR-7013-5p 1.025
mmu-miR-34a-5p 1.413 mmu-miR-6389 1.076 mmu-miR-3109-5p 1.025
mmu-miR-222-5p 1.401 mmu-miR-466n-5p 1.071 mmu-miR-7089-3p 1.022
mmu-miR-19b-3p 1.390 mmu-miR-326-3p 1.071 mmu-miR-375-5p 1.018
mmu-miR-7115-3p 1.378 mmu-miR-7672-5p 1.069
graphic file with name 12967_2019_2168_Figb_HTML.gif
Gene symbol Fold change Gene symbol Fold change Gene symbol Fold change
mmu-miR-188-5p 0.393 mmu-miR-6922-3p 0.734 mmu-miR-139-3p 0.908
mmu-miR-291a-3p 0.503 mmu-miR-202-3p 0.734 mmu-miR-184-3p 0.910
mmu-miR-375-3p 0.520 mmu-miR-6936-5p 0.735 mmu-miR-381-3p 0.911
mmu-miR-6974-3p 0.527 mmu-miR-6960-3p 0.737 mmu-miR-3471 0.911
mmu-miR-5107-5p 0.528 mmu-miR-125a-3p 0.739 mmu-miR-299b-5p 0.916
mmu-miR-7020-5p 0.544 mmu-miR-7005-5p 0.749 mmu-miR-6546-3p 0.919
mmu-miR-6948-3p 0.569 mmu-miR-691 0.759 mmu-miR-5116 0.930
mmu-miR-7014-5p 0.572 mmu-miR-6364 0.769 mmu-miR-376a-3p 0.937
mmu-miR-328-5p 0.576 mmu-miR-6929-3p 0.780 mmu-miR-292a-3p 0.938
mmu-miR-434-3p 0.576 mmu-miR-5622-3p 0.788 mmu-miR-1943-3p 0.939
mmu-miR-466h-3p 0.581 mmu-miR-1192 0.790 mmu-miR-7078-5p 0.939
mmu-miR-877-5p 0.591 mmu-miR-5627-5p 0.792 mmu-miR-7024-3p 0.943
mmu-miR-6981-3p 0.595 mmu-let-7j 0.797 mmu-miR-6398 0.944
mmu-miR-1907 0.606 mmu-miR-5624-3p 0.819 mmu-miR-466m-5p 0.946
mmu-miR-6976-5p 0.625 mmu-miR-5107-3p 0.822 mmu-miR-6984-5p 0.946
mmu-miR-3087-3p 0.626 mmu-miR-574-5p 0.825 mmu-miR-7228-5p 0.950
mmu-miR-7019-5p 0.635 mmu-miR-3057-5p 0.842 mmu-miR-323-3p 0.951
mmu-miR-7055-3p 0.645 mmu-miR-7220-3p 0.843 mmu-miR-6394 0.957
mmu-miR-1258-5p 0.659 mmu-miR-6929-5p 0.857 mmu-miR-92a-2-5p 0.958
mmu-miR-1193-3p 0.672 mmu-miR-5124b 0.858 mmu-miR-1946a 0.962
mmu-miR-129b-5p 0.690 mmu-miR-7066-5p 0.858 mmu-miR-5620-3p 0.967
mmu-miR-345-3p 0.691 mmu-miR-335-5p 0.859 mmu-miR-18a-3p 0.969
mmu-miR-344d-3p 0.713 mmu-miR-680 0.861 mmu-miR-7676-3p 0.971
mmu-miR-693-3p 0.729 mmu-miR-325-3p 0.886 mmu-miR-346-5p 0.972
mmu-miR-678 0.730 mmu-miR-7023-3p 0.889 mmu-miR-6346 0.972
mmu-miR-7034-3p 0.730 mmu-miR-467c-3p 0.889 mmu-miR-30b-3p 0.984
mmu-miR-466l-3p 0.731

In total, 1899 mRNAs—901 upregulated and 998 downregulated—were differentially expressed in TCs after LPS stimulation (Fig. 3b and Table 2). A total of 519 genes overlapped with those from the online prediction (Fig. 3c).

Table 2.

Summary of differentially expressed mRNAs in TCs treated with LPSgraphic file with name 12967_2019_2168_Figc_HTML.jpg

Gene symbol Fold change Gene symbol Fold change Gene symbol Fold change
Saa3 88.57679 Sh3kbp1 1.714612 Aldoa 1.358346
Steap4 39.69958 Gm10382 1.713579 Bcl2l11 1.358341
C3 27.54466 Sphk1 1.711903 Wnt5a 1.358042
Cxcl1 21.9035 Tnfsf10 1.709923 Sdc4 1.357917
Lcn2 18.11751 Fosl2 1.70942 Pttg1 1.357846
Cp 13.17588 Arhgap24 1.703888 Eps8 1.356005
Ccl2 9.407872 Rspo3 1.702523 Parp8 1.355285
Ccl7 9.313701 Rasl11a 1.701653 AI413582 1.355264
Lbp 9.248471 Snhg11 1.699314 H2afj 1.35191
Slpi 8.496525 Pnp2 1.69892 Tapbpl 1.350347
Hp 7.020443 9930111J21Rik2 1.697292 Fam46a 1.349368
Casp4 6.491574 F730043M19Rik 1.696927 Gpr162 1.349043
Oas3 6.472296 Gstt1 1.694392 Itpr2 1.347899
Slc16a2 6.293287 Tor3a 1.694311 Fendrr 1.347418
Kng2 6.13421 Tnfrsf14 1.693478 Eif2ak2 1.346754
Neurl3 6.123261 Pcdhgc5 1.692342 Bcam 1.346359
Lgi2 5.548539 Usp18 1.690192 Tmem192 1.346301
Zbp1 5.500857 Icam1 1.685666 Atxn7l1 1.346144
Cebpd 5.490325 Vnn1 1.684905 Tcirg1 1.346103
Tmem176a 5.352542 Isg20 1.684825 H6pd 1.34602
Tmem176b 5.292897 Cdh23 1.682662 Acad10 1.345811
Cxcl5 5.105818 Hivep2 1.678786 Ggta1 1.344527
Serpina3i 5.062072 Serpinb9 1.676066 Ago4 1.343551
Ly6a 4.890107 Ier3 1.670507 Rpl39 1.343105
Ms4a4d 4.778005 Spidr 1.66764 Arsj 1.342469
Kcnj15 4.627825 Parp10 1.667283 Kif21a 1.341944
Slfn2 4.500739 Jak2 1.667282 Grtp1 1.340769
Nfkbiz 4.420487 Lnx1 1.665956 Hook2 1.340696
Oas1g 4.352056 Dtx3l 1.665121 Pisd-ps1 1.340025
Gm8995 4.258631 Hopx 1.661591 Hbp1 1.33937
Zc3h12a 4.118584 Rsl1 1.6613 Mlkl 1.338835
Mt2 4.050379 Insig2 1.660402 Fbln1 1.338393
H2-Q7 4.021978 Syt17 1.659707 Ern1 1.338122
Kank4 3.966313 Ppp1r3b 1.659039 Unc93b1 1.338107
Gm16685 3.952599 Junb 1.658968 Oplah 1.337688
Phf11b 3.899771 Lhfpl2 1.658507 Dhrs9 1.337432
H2-Q5 3.876445 Aqp3 1.658025 Ank3 1.336823
Gbp5 3.860209 Bst1 1.653379 Hspa1a 1.335089
Gbp3 3.711967 Cd14 1.647933 Fos 1.334711
Xdh 3.706347 Abcb1a 1.64782 Dusp1 1.334023
Sod3 3.705108 Gm43068 1.642165 Tmem53 1.332695
H2-T10 3.615936 Tsc22d1 1.640017 Riok3 1.332508
Adamts7 3.547664 Cfap69 1.639558 Zc2hc1a 1.332429
H2-K1 3.536976 Clca3a1 1.637745 Gata6 1.33174
Ccl5 3.523568 En1 1.637662 Nrp2 1.330772
Lrrc32 3.510921 Pdk1 1.637498 Fam134b 1.330567
Ntn1 3.468896 Pnrc1 1.636296 Dgat2 1.330413
Fas 3.466618 Enpp2 1.635831 Trafd1 1.328525
H2-Q6 3.433254 Abcd2 1.63519 Laptm4b 1.328518
Vcam1 3.350214 Gm16365 1.634922 D930015E06Rik 1.328021
Cd74 3.317107 Fabp4 1.634064 Timp1 1.327406
Ch25h 3.315495 Parp9 1.633709 Itga7 1.327246
Psmb8 3.278491 Serpinb1b 1.63368 Galk2 1.326399
Il6 3.219911 Gm13010 1.633034 Rhbdl3 1.325887
Gm4951 3.2116 Stx6 1.632089 Cdkn2b 1.324984
H2-T23 3.207359 Elf3 1.632065 Psme2 1.324769
Plac8 3.197626 Spp1 1.630536 Sh3bp5 1.32441
Oas2 3.197366 Rnf144a 1.630365 Mif 1.323852
Arrdc4 3.158372 Trp63 1.62831 Pgk1 1.323539
C1ra 3.158361 A330074K22Rik 1.626237 Fam43a 1.322902
Gbp6 3.147647 Sfmbt2 1.625612 Arid3a 1.321845
Slc11a2 3.134662 Gbp11 1.625111 Lars2 1.321181
Ppm1h 3.127213 Ifih1 1.622407 Morc3 1.320638
Ifi47 3.105228 Tnnc1 1.620872 Shb 1.319344
Ccl20 3.098563 Tmem86a 1.61825 Sat1 1.318761
Ifi205 3.098305 Gm15433 1.615772 Acvr1b 1.318652
F830016B08Rik 3.053166 Enpp4 1.615508 Tmem170b 1.317625
Oas1a 3.019199 Trim5 1.614655 Hadh 1.317598
Ifi203 3.016137 Serpinb9b 1.608848 Stat5a 1.315396
Map3k8 3.013409 C130074G19Rik 1.606202 2-Mar 1.314095
Gm12250 3.012671 AI854703 1.605264 Eno2 1.313938
Tgtp2 3.005529 Tuba8 1.604317 Enpp5 1.313706
H2-Q4 2.972546 Serping1 1.603547 Irak4 1.312126
Mx1 2.865782 Il13ra1 1.602487 Rsrp1 1.31211
Uba7 2.864864 Piwil4 1.602483 Kcnab2 1.311973
Mmp19 2.861314 Rhbdl2 1.601725 Ptgr1 1.311529
Psmb9 2.850848 Fst 1.600533 Elf1 1.311246
Slc7a2 2.846346 Trim34a 1.600318 Ablim1 1.311022
Tspan11 2.844123 Amigo2 1.599439 Tnfaip6 1.310247
Tnn 2.822897 Hcn1 1.597937 Socs2 1.309989
H2-D1 2.809787 Egfr 1.592054 Pisd-ps2 1.308864
AI607873 2.803398 Hpse 1.588624 Traf2 1.308431
Rsad2 2.794983 AW011738 1.587681 Tfrc 1.308415
C1s1 2.784179 Dpep1 1.587215 Nadk 1.308229
Nod2 2.775693 Pydc3 1.583759 Acacb 1.306549
Sod2 2.762665 Tnfaip2 1.583296 Fbxl5 1.305723
Apol6 2.760061 Irgm1 1.583039 Slc2a1 1.304708
Ifi44 2.759968 Rnd1 1.582149 Zeb2 1.304438
Nfkbia 2.75616 Aldoc 1.581229 Ada 1.302207
Irf7 2.751557 Lrp1 1.579985 Rpl38 1.30147
Bmp3 2.745035 Ninl 1.579937 Plod2 1.30112
Kng1 2.741277 Mgarp 1.579404 Itm2c 1.300462
Cxcl10 2.723592 Gm26669 1.577867 Galnt18 1.300344
Olfr56 2.707222 Rasl11b 1.577414 Cdkn2a 1.300124
Sp100 2.654866 N4bp2l1 1.577031 Jade2 1.299487
Scube1 2.653081 Ikbke 1.573942 Cd320 1.297584
Ak4 2.651385 E230016K23Rik 1.573215 A430105I19Rik 1.296067
B2m 2.641611 Nsun7 1.57274 Cir1 1.295174
Bcl3 2.637123 Fam162a 1.568999 Rnaset2b 1.295007
Gch1 2.620331 Col18a1 1.566809 Pnpt1 1.29442
Angpt1 2.617582 Oas1b 1.563128 Eif3e 1.293846
Pdzrn4 2.608996 Bid 1.561949 Lamp2 1.292359
Ifit3 2.605192 Lipa 1.559201 Itm2b 1.291908
Serpina3h 2.599538 Dock10 1.558234 Enah 1.291837
Dram1 2.576206 Tnfsf13b 1.556325 Pou6f1 1.289991
D030025P21Rik 2.575076 Smim4 1.555893 Fibin 1.289861
Trim30a 2.570312 Gdap10 1.555756 Rgs3 1.289133
Gm5345 2.547477 Gm16217 1.554982 Btg2 1.289051
Phf11d 2.537169 Gng12 1.554866 Naa25 1.288593
Rac3 2.52761 Ddx58 1.554735 Notch3 1.286227
Cxcl3 2.52009 Fam129c 1.553522 Pcmtd2 1.28613
Pik3r5 2.519794 Dhx58os 1.550817 Tacc1 1.284319
Klf15 2.498912 Tsku 1.546568 Arfgef2 1.283314
Gbp9 2.49656 Heatr9 1.541554 Nqo2 1.283077
Wisp2 2.49624 Il6st 1.540291 Dnajb6 1.282975
Angptl4 2.493561 Stat1 1.538849 Ksr1 1.282116
Parp14 2.487984 Stap2 1.537892 Rictor 1.281955
Npy1r 2.487878 Tnip1 1.536153 Azi2 1.281312
Ecscr 2.486491 Junos 1.535682 Narf 1.280799
Tcp11l2 2.482509 Gm43050 1.534956 Aebp1 1.280756
Bst2 2.478323 Parp12 1.534759 Scarb2 1.279926
Lrig1 2.464502 Medag 1.534548 Rras 1.279648
Repin1 2.457953 Ifnlr1 1.534026 Zfp322a 1.279547
Mgst1 2.451896 Il18 1.533373 Renbp 1.279486
Ltbp2 2.441692 Adar 1.532874 Zfp263 1.278938
Fmo1 2.437275 Shisa5 1.532173 Cd302 1.278793
Mndal 2.437132 Rarres2 1.530833 Uaca 1.2784
Ifitm3 2.433955 Mitf 1.530693 Plgrkt 1.278267
Serpinb1a 2.429138 Hif1a 1.52939 Ptges 1.278224
Lgals3bp 2.420976 Znfx1 1.528807 Ezh1 1.277255
Ifi204 2.394185 Pik3r1 1.52783 Ifnar1 1.275384
Gbp2 2.374173 Grem1 1.526552 Slc25a37 1.275033
Ddx60 2.365483 Gm12216 1.520431 Arel1 1.274603
Ifit3b 2.349228 Igfbp7 1.519077 Zfp36 1.274392
Gm4070 2.333254 AI429214 1.517825 Rab11fip1 1.273259
Zmynd15 2.311957 Susd1 1.517214 Fbxl20 1.27301
Slc15a3 2.298627 Pamr1 1.516791 Usp25 1.272639
4930512H18Rik 2.294978 Gas7 1.515823 Mycbp2 1.272037
A530020G20Rik 2.291215 A230050P20Rik 1.515791 Abca2 1.271611
Abcc3 2.277936 Cd274 1.515474 Ctsb 1.27127
Tap1 2.275735 Gm24187 1.512612 Sfi1 1.271049
Il7 2.274442 Slfn10-ps 1.511997 Capg 1.269608
Micall2 2.266222 Serpinb6b 1.508674 Msi2 1.268826
H2-Ab1 2.255115 H2-M3 1.507956 Adam17 1.267733
Slco3a1 2.249391 Pcdh17 1.507897 2810474O19Rik 1.266183
Ly6c1 2.247399 Pnp 1.506862 Cnp 1.266005
Apol9b 2.243974 Errfi1 1.506135 Rhoj 1.265107
Slfn8 2.237092 Psen2 1.504761 Fbn1 1.265104
Serpina3g 2.223564 Bmper 1.503315 Plekha2 1.264872
Trim30d 2.222229 Rassf2 1.502351 Qsox1 1.264705
Macrod1 2.216982 Rnf150 1.502349 Il4ra 1.262579
Susd6 2.216522 Foxred2 1.502222 Zfp862-ps 1.26213
Rab32 2.208063 Nfkb1 1.500361 Abhd4 1.262
RP24-118K20.1 2.203351 Gm26797 1.499863 Apobec3 1.261504
Islr 2.202374 Cebpb 1.499767 Cryzl1 1.26039
Tnfrsf9 2.201074 Gdnf 1.499677 Snx18 1.259801
Mx2 2.1992 Erap1 1.499261 Snx10 1.259016
Dhx58 2.197596 Phactr1 1.498501 Psme1 1.258257
Mgst2 2.196355 Acy3 1.498313 Prdx5 1.256944
Nlrc5 2.19327 Pde1a 1.497383 Rpl19 1.254924
Ifi27l2a 2.185136 Gm16675 1.4961 Fbxw17 1.254918
Atp8b4 2.184018 Pced1b 1.49569 Ahnak2 1.254603
Dcxr 2.173452 Fndc3a 1.494781 Pgm2 1.254392
Gbp7 2.172556 Sik1 1.48986 Lgals8 1.254212
Nos2 2.172346 Pax5 1.489642 Dusp16 1.254097
Trpc3 2.172073 Rbm47 1.489147 Fdps 1.253066
Col24a1 2.166567 Rhbdf2 1.488124 Zswim4 1.25276
A4galt 2.160477 Gla 1.48683 Tmem9 1.252663
Sp110 2.153144 Mt1 1.486484 Ext1 1.252343
Iigp1 2.150941 Helz2 1.484205 Ldha 1.252201
Bdkrb1 2.144746 Adarb1 1.483657 Ccng1 1.251981
Glrx 2.144381 Manba 1.481685 Rps23 1.251225
Oasl2 2.142329 Ssbp2 1.481023 Traf3 1.251037
Gypc 2.141326 Cd47 1.480263 Tbc1d2b 1.251012
Mark1 2.137578 Gpr176 1.48 Pan2 1.250188
Pdgfra 2.130591 Peli3 1.479421 Ip6k1 1.249537
Tgfbr3 2.126753 Parp11 1.479263 Vegfa 1.248657
Gm20559 2.124888 Agpat9 1.475738 Prrx1 1.248548
Tnfaip3 2.124389 Clip1 1.475604 Nfe2l1 1.247093
Ifit1bl2 2.121353 Pcx 1.475162 Ago1 1.246536
Il6ra 2.115453 Mov10 1.475059 Fgfr1op 1.246307
Cyp7b1 2.114831 Mvp 1.473965 Tnfaip8 1.245604
H2-T22 2.112472 Vdr 1.473286 Appl2 1.245541
Tlr2 2.108417 Ampd3 1.472815 Acaa1a 1.245346
Apol9a 2.107259 Mfsd7c 1.470604 Phip 1.244919
Txnip 2.102973 Ifngr2 1.470338 Rev1 1.244257
Cbr2 2.094355 Nampt 1.47029 Lpin1 1.243059
Ptpn13 2.091855 Stat2 1.469684 Hacl1 1.24284
Isg15 2.084784 Klhl24 1.468335 Abtb1 1.242142
Serpina3f 2.082629 Irak3 1.468302 Zfp281 1.241946
Selp 2.067573 Socs3 1.464374 Pkdcc 1.240434
Gvin1 2.043168 Car11 1.462349 Arhgap12 1.239317
Cmpk2 2.030401 Flt1 1.462052 Malat1 1.23865
Trim12c 2.030228 Ypel3 1.460792 Baiap2 1.236936
Grb14 2.02788 Wdyhv1 1.460703 Sh3d19 1.236615
Gm4841 2.026738 2310001H17Rik 1.458497 Igf2bp2 1.236566
Mnda 2.026163 Slc16a3 1.456228 Fbxo38 1.236407
Igfbp3 2.023331 Cdon 1.455779 Zswim6 1.235488
Gm9574 2.0163 3-Mar 1.455144 Rnf115 1.235458
Tgtp1 2.013841 Psmd10 1.454387 Ubr4 1.233944
Ly6e 1.998818 Cntnap1 1.452562 Calcoco1 1.233454
C4b 1.993132 H2-K2 1.451514 Insr 1.233242
Gfra2 1.985483 Trim25 1.451455 Rps15a 1.233115
Gm2619 1.982496 Scamp1 1.450926 Hexim1 1.233029
Slc39a4 1.982118 Tnfrsf1b 1.449087 Aplp2 1.232116
Osmr 1.97891 Acadsb 1.447878 Ankrd17 1.231804
Ifit1 1.966789 Procr 1.447607 Maff 1.231303
Rrad 1.959059 Pla2g16 1.444745 Foxo4 1.230508
Herc6 1.953162 Atp8a1 1.442774 Urod 1.2304
Clec2d 1.95126 Rbpj 1.441469 Nfib 1.230388
Epas1 1.950642 Neat1 1.440341 Zmynd8 1.229542
9330175E14Rik 1.950302 Il18bp 1.435413 Rsbn1l 1.229463
Lifr 1.947789 Arntl2 1.435176 Mapkapk2 1.228835
Hap1 1.946544 Runx1 1.434923 Lgmn 1.228287
Cfap100 1.939772 BC051226 1.433817 Rasa3 1.228205
Cfh 1.939442 Pvrl2 1.433681 Rps20 1.228122
Slc6a2 1.931558 Zfp874b 1.431978 Chmp4b 1.227714
C1rl 1.930971 Acsl1 1.431187 Prkar2b 1.227104
Abca1 1.922383 Mfsd7a 1.43055 Jun 1.225972
Agrn 1.91988 Mitd1 1.428555 Mmp2 1.225692
Sbno2 1.916865 Ctsh 1.425118 Sumo1 1.225557
Tnip3 1.913463 Zfp874a 1.42474 Tor1aip1 1.225418
Ugcg 1.910687 Mtss1 1.424259 Lacc1 1.225387
Spib 1.907491 Perm1 1.423781 Kdm3a 1.224975
Kcnn3 1.898432 Gsdmd 1.422904 Flnb 1.224811
Ripk2 1.89521 Rspo2 1.422633 Ktn1 1.224573
Ptpn5 1.894565 Gm36936 1.420322 Hspa1b 1.223939
Nod1 1.889504 Dpy19l1 1.419975 Psd 1.223572
Gm4955 1.887092 Spry2 1.418837 Nt5dc2 1.222385
Gm43196 1.885374 Fam3c 1.417203 Usp12 1.222266
Kcnq5 1.876112 Gfpt2 1.4161 Axl 1.222093
Xaf1 1.874808 Ifitm2 1.410051 Akr1b8 1.220794
Lyz2 1.874716 Trim21 1.409367 Gaa 1.219884
C920025E04Rik 1.873125 Pnpla7 1.40874 Ptprj 1.219624
Slc2a6 1.870162 Ociad2 1.408322 Mmab 1.216943
Cxcl16 1.869931 Mkx 1.406854 Osbpl3 1.216658
Foxo3 1.869316 Il10rb 1.406503 Ticam1 1.216655
Relb 1.863299 Vmp1 1.405888 Nub1 1.21658
Ifitm1 1.857611 Spsb1 1.40294 Ogfr 1.216222
Ctps 1.85722 Zfpm2 1.402674 Add3 1.215534
Trim12a 1.851346 Ifi35 1.402586 Slc29a1 1.215147
Ell2 1.849304 Tmem154 1.402112 Nfil3 1.214777
Psmb10 1.849216 Oasl1 1.40142 Parp3 1.21461
Adtrp 1.846019 Irf1 1.401037 Nab1 1.214327
Gm16464 1.843872 Kank1 1.400088 Rpl34 1.214249
Cdk6 1.843573 Traf3ip2 1.399787 Naaa 1.21421
Bnip3 1.840519 Trib1 1.399217 Map1lc3b 1.21098
Plscr1 1.832872 Fbxo32 1.398883 Zfos1 1.210827
Rnf213 1.830593 Dtnbp1 1.398525 Irf9 1.210808
Plscr2 1.824617 Dclk1 1.396242 Vps26a 1.210646
Cgn 1.818312 Gatsl2 1.394958 Col5a3 1.210558
Nek6 1.816836 Irf2 1.39425 Kdm5a 1.209736
Gm43197 1.816332 Dnajc12 1.392043 Tor1aip2 1.209517
P2rx4 1.810723 Ctso 1.391962 Gnptab 1.208163
Rbpms 1.809021 Grina 1.388872 Rab8b 1.207975
Sp140 1.804443 Daam1 1.388466 Spred2 1.207248
Lgals9 1.804377 Cxadr 1.387017 Gdf11 1.206992
Il16 1.803712 Arid5b 1.386992 Pak3 1.206941
Camp 1.801329 Stx11 1.386314 Nlgn2 1.206715
Ube2l6 1.800442 Tcn2 1.385764 Dst 1.206062
Pfkl 1.797849 Ppl 1.38494 Nr1d2 1.205401
Gpr88 1.794428 Aftph 1.383957 Daxx 1.204017
Gm5970 1.793526 Ctsl 1.38209 Uvrag 1.203409
Nfkbie 1.79343 Slc16a1 1.379145 Tnfrsf1a 1.203158
Il20ra 1.793392 B4galt5 1.378838 Cmtm6 1.202344
Rgs16 1.789903 Acvrl1 1.378201 Cstb 1.202249
Ccl9 1.789024 Cx3cl1 1.376893 Il17ra 1.201293
Mettl20 1.78797 Podnl1 1.376677 Stat3 1.200716
Cgnl1 1.781933 Txndc16 1.376549 Sgk1 1.199554
Col6a4 1.781322 Aldh1l1 1.375993 Cldn12 1.197903
Gm19684 1.778757 Crebrf 1.375601 Dync1h1 1.197443
Npc2 1.777478 Ptpre 1.375528 Gabarapl1 1.197238
Igtp 1.776729 Flrt2 1.375148 Tbk1 1.196546
Tapbp 1.776018 Dtwd1 1.374774 Myo18a 1.196491
Slc10a6 1.77264 Il1rl1 1.374317 G3bp2 1.195278
Rtp4 1.772625 Pml 1.373905 Rbm33 1.192694
Itih5 1.77129 Ifit2 1.373384 Eml4 1.192421
Gm12185 1.769756 Rnf114 1.372865 Zmiz1 1.19149
Adhfe1 1.765856 Fth1 1.372822 Psma6 1.19122
Ifnar2 1.760615 H2-T24 1.372506 Csf1 1.189881
Slco1a6 1.753534 Pygl 1.37231 Srsf5 1.1887
Cxcl2 1.752155 Phyh 1.371721 Lmo4 1.187609
Negr1 1.751596 Pik3c2b 1.370604 Pip5k1a 1.182817
Gng2 1.751401 Ttc39c 1.370202 Mlxip 1.181411
Fgf7 1.750411 Myrf 1.369639 Uhrf1bp1l 1.18067
Samd9l 1.750223 Slirp 1.368745 Foxp1 1.175338
Tlr3 1.749767 Mef2a 1.367217 Notch2 1.174766
Tap2 1.73925 Nfkb2 1.366624 N4bp1 1.174303
Irgm2 1.738998 Asah2 1.366535 D17Wsu92e 1.170473
Tifa 1.735914 Ndrg2 1.366351 Prkaa1 1.16978
Tgm1 1.734849 Bnip3l 1.365928 Zc3hav1 1.168237
Birc3 1.728337 Fyco1 1.365796 Abcc1 1.167684
Gm26809 1.725966 Gm6548 1.365763 Paip2 1.164378
Il34 1.725927 Gpr146 1.36386 Bsg 1.161778
Thbs2 1.722317 Plekhn1 1.362388 P4ha1 1.160257
Ppm1k 1.720243 Ghr 1.360096 Pld3 1.160076
Casp12 1.719866 Cnnm2 1.359865 Lamc1 1.159628
Arhgdib 1.719733 Arid5a 1.359164 Ece1 1.15875
Stab 1 1.719107 Car13 1.358995 Dcaf8 1.154963
Nmi 1.7184 Jak3 1.358706 Psap 1.148899
Ptgir 1.71638
graphic file with name 12967_2019_2168_Figd_HTML.gif
Gene symbol Fold change Gene symbol Fold change Gene symbol Fold change
Col2a1 0.194072 AI506816 0.692198 Zfp36l2 0.779391
Megf6 0.2661 Coro2b 0.692611 Uchl1 0.780148
Col11a2 0.305052 Mybl2 0.692634 Mageh1 0.780348
Pdlim3 0.320795 Ckb 0.693344 Pear1 0.780434
Hes1 0.358613 Ltbp4 0.693767 Chd3 0.780444
Cnn1 0.360323 Col6a3 0.694023 Tmem214 0.780529
Chodl 0.361883 Lrp4 0.694203 Ehbp1l1 0.780809
Cthrc1 0.362334 Gli2 0.694925 Ncapg2 0.781412
Col27a1 0.365089 Osbpl10 0.695198 Vldlr 0.781545
Adamts18 0.373978 Kif18a 0.697441 Ajuba 0.781571
Alcam 0.3757 Birc5 0.697479 Cad 0.781967
H19 0.376363 Klhdc8a 0.69799 Crip2 0.782054
Cmklr1 0.398128 Kif14 0.698154 Lnp 0.783162
Acta2 0.406436 Ttll3 0.698273 Tmsb10 0.783219
Igfbp2 0.40714 Nid2 0.698295 Plaur 0.783269
Kirrel3 0.412516 4930427A07Rik 0.698662 Kctd11 0.783405
Crlf1 0.415332 Spc24 0.698751 Fam160a2 0.783821
Adamtsl1 0.417672 Pcsk9 0.69891 Mis18bp1 0.783968
Egr3 0.429728 Tmem144 0.6995 Cenpq 0.784621
Kcnh2 0.431717 Cenpp 0.699524 Mcm8 0.784843
Fam132b 0.437393 Bmp5 0.699542 Nucks1 0.784887
AI593442 0.43824 Aurka 0.700218 Sec23a 0.78531
Slc14a1 0.438322 Radil 0.700268 Plxna1 0.785572
Lrrc17 0.439491 Espl1 0.701332 Troap 0.786395
C1qtnf3 0.44141 Crabp1 0.701809 Rraga 0.786476
Dock8 0.443083 Tenm3 0.702765 Spdl1 0.78654
Hr 0.446347 Adm2 0.702837 Klf13 0.786594
Pappa2 0.45507 2810417H13Rik 0.702964 Cdk1 0.786628
Bok 0.455099 Cnn2 0.703147 Igfbp6 0.786699
Sorbs2 0.455931 Ska3 0.703358 Svil 0.786846
Tspan18 0.457162 Tubb5 0.705065 Shf 0.787274
Fgf18 0.46685 Cenpe 0.705359 Paqr4 0.787633
Eln 0.468291 Slc24a3 0.705444 Ids 0.788248
Dlx5 0.46936 Plekhh3 0.706342 Fkbp10 0.788316
Heyl 0.472756 Parvb 0.706447 Sun2 0.788366
Adra1d 0.476707 Fbln5 0.706969 Pbx3 0.788441
Cacna1h 0.482864 Adra1b 0.707729 Mthfd2 0.788495
Fam101b 0.490039 Flna 0.708151 Lrrc59 0.788518
Thbd 0.490796 Enc1 0.708306 Ticrr 0.788655
Epha1 0.496545 Tmeff2 0.708497 Gata2 0.788815
Actg2 0.500303 Mdga1 0.708616 Tiam2 0.788818
Ccser1 0.502486 Fbxo5 0.708739 Yif1b 0.789025
Sema3a 0.503289 4930503L19Rik 0.708843 Myh9 0.789258
Rnf128 0.50426 Cit 0.709144 Srm 0.789413
Glis1 0.50534 Igsf9 0.709326 Hmgb1 0.789802
Pparg 0.507961 Crip1 0.709588 Arf2 0.789924
Dpysl3 0.511253 Mad2l1 0.70974 Fancd2 0.790044
Plppr4 0.5121 Fblim1 0.709755 Smc2 0.790137
Aqp1 0.512552 Dck 0.709924 Nrp1 0.790629
Flrt3 0.514301 Chpf 0.710145 Fes 0.790664
Acan 0.514645 Tmeff1 0.71038 Herpud1 0.790702
Fbln7 0.515943 Unc5b 0.71092 Myh10 0.791068
Perp 0.516446 Cdca8 0.710994 Tmem200b 0.791145
Trpv2 0.516591 Pycr1 0.711174 Copz2 0.791267
Wscd2 0.51676 Naaladl1 0.711837 Ube2s 0.791564
Elmo1 0.517566 Tusc1 0.711918 Wdr1 0.79158
Ube2ql1 0.517989 Slc18b1 0.712161 Cdkn2c 0.791604
Hey1 0.518071 Plagl1 0.713162 Alyref 0.791762
Cdh3 0.51819 Melk 0.713693 Clmn 0.791941
Tagln 0.522316 Cdc25b 0.714193 Dlc1 0.791964
Mest 0.522663 Baiap2l1 0.714203 Mesdc1 0.791976
Pcolce2 0.523521 St3gal6 0.714705 Midn 0.792069
Cyp26b1 0.523717 Col16a1 0.714714 Megf9 0.792474
Pdgfc 0.523729 Hoxb5 0.714759 Cep41 0.79254
Irx3 0.525344 Phf19 0.714806 Npepl1 0.792581
Fmod 0.525701 Oxct1 0.714916 Ptrf 0.792717
Itga8 0.529252 Fam171a1 0.716872 Kctd9 0.793202
Erg 0.529291 Pcdh19 0.717354 Crtap 0.793212
Nfatc2 0.531646 Stbd1 0.717433 Plppr3 0.793224
Adamts16 0.531726 Fhod3 0.717683 Rusc2 0.793289
Palmd 0.531982 Basp1 0.717717 Adam19 0.793359
Foxd1 0.53212 Anln 0.717824 Akap12 0.793685
Wnt2b 0.532995 Nek2 0.71792 Snhg5 0.793858
Limch1 0.533269 Phgdh 0.718101 Dbf4 0.793865
Adgrl3 0.533541 Cacna1c 0.718104 Fig4 0.794195
Cd24a 0.536601 Hmmr 0.718652 Tmcc2 0.794436
Gpc1 0.537676 Chac1 0.718843 Mcm10 0.794634
Itga11 0.538779 Palld 0.718898 Akirin2 0.794761
Gprc5c 0.53903 Sgol1 0.719211 Ppp1r13l 0.795115
Frem1 0.541975 Ska1 0.719223 Sorl1 0.795125
Plcl1 0.5431 Tmsb4x 0.719624 Aif1l 0.795392
Col15a1 0.546367 Irs1 0.719744 Tacc2 0.795702
Fhl1 0.547264 Spag5 0.719865 Rc3h2 0.795776
Mfap4 0.548733 Acot2 0.719927 Cdc25c 0.795811
Mcam 0.54916 Cenpl 0.720249 Olfml2b 0.796074
Gm14321 0.549468 Kif20a 0.720582 Vasn 0.796149
Hmgb3 0.552312 Dlx1 0.720615 Bub1 0.796335
Smoc2 0.552559 Lama2 0.720683 Xrcc1 0.796544
Thbs1 0.553418 Glis2 0.72081 Shmt2 0.797154
Ptn 0.555662 Kif4 0.72101 Sertad3 0.797265
Igf1 0.557068 P3h1 0.72114 Anxa2 0.797684
Fbn2 0.558778 Pdlim7 0.721444 Tubb4b 0.79815
Card10 0.560923 Angptl2 0.72184 Nab2 0.798326
Gm43719 0.561666 Id1 0.721848 Cryab 0.798375
Gm17315 0.561884 Sorcs2 0.722051 Fzr1 0.798917
Lrrc75b 0.562648 Kif26b 0.722251 Alg8 0.798963
Kcnk6 0.565036 Dars2 0.72227 Zbtb14 0.799177
Rnf39 0.565946 Stk39 0.722641 Pcolce 0.799313
Pcp4l1 0.565995 2700099C18Rik 0.722713 Rara 0.799377
Lims2 0.568426 Tpx2 0.7228 S100a10 0.799605
Rxfp3 0.568433 Nusap1 0.723138 Taf5 0.799838
Mb21d2 0.56918 Cald1 0.723271 Col5a1 0.800168
Id4 0.569201 Cenpn 0.723906 Ercc6 0.800219
Pitx2 0.569411 Cenpi 0.724017 Exo1 0.800893
Sox5 0.569607 Lrr1 0.724263 Myadm 0.801324
Ahrr 0.571186 Kifc5b 0.724644 Ggcx 0.801779
Efs 0.571392 Kif22 0.725384 Klf16 0.801989
Sema3d 0.571535 Cenpm 0.725625 Gpaa1 0.802171
Etl4 0.573284 Ptprk 0.725655 Pmf1 0.802196
Megf10 0.573779 Syk 0.725715 D030056L22Rik 0.80231
Arhgap36 0.573854 Gm22 0.725943 Grk6 0.802539
Hbegf 0.575347 Rsph3b 0.726129 Phlda3 0.802648
Pi15 0.576538 Tanc1 0.7262 Ddah1 0.802713
Ank1 0.577911 Hid1 0.726245 Cd248 0.803109
Lrrn3 0.578392 4933404O12Rik 0.726327 Rcn1 0.80311
Tmem238 0.578485 Ap1s2 0.726428 Got1 0.803556
Tcp11l1 0.579068 Haus8 0.726684 Slc6a6 0.803585
Ccna1 0.579425 Ncapd2 0.727616 Prx 0.803637
St8sia2 0.579469 Marcks 0.727633 Map1s 0.803739
Aoc3 0.579637 Tgfb3 0.727733 Wwp2 0.804876
Prr7 0.579853 Fzd8 0.728304 Pkd1 0.8053
Tspan2 0.580597 Eya4 0.728318 Pithd1 0.805306
Plekhg1 0.58319 Cxxc5 0.72853 Iqgap3 0.805603
Tnfrsf11b 0.583534 Mn1 0.728747 Tbl1xr1 0.805732
Gm9936 0.584827 Cenpa 0.728756 Ddx39 0.805924
Gper1 0.584873 Hcfc1r1 0.72942 Capn2 0.80608
Ctgf 0.586173 Itgbl1 0.729729 Edem1 0.806473
Psrc1 0.586316 Ccna2 0.729782 F3 0.80656
Mxd3 0.586498 Reep4 0.729883 Gltp 0.806717
Npas4 0.587419 Pck2 0.730548 Ckap2 0.806725
Dlg2 0.587439 Ank 0.730673 Slc3a2 0.806799
9230111E07Rik 0.590223 Cdca2 0.730751 Ado 0.806898
Ano1 0.590542 Sim2 0.730981 Slc35a2 0.807269
Gas2 0.59414 B3gnt9 0.731156 Cntrob 0.807304
Rtn4r 0.596076 Top2a 0.731442 Mmp14 0.807447
Col12a1 0.597466 Cdc42ep3 0.731593 Arhgap5 0.807549
Gm26737 0.597617 Kif18b 0.732018 Zfp827 0.807876
Adcy1 0.597814 Syde2 0.732501 Trim59 0.80795
Gm2115 0.598004 Ctnnal1 0.732705 Cyp20a1 0.808079
Dgkg 0.598166 Daam2 0.733135 Plxnb1 0.808099
Sox9 0.598415 Depdc1a 0.7333 Tcaf1 0.808114
Map3k7cl 0.599708 Trpv4 0.733578 Adamts5 0.808125
Prkg1 0.599718 Dstn 0.733957 Slc12a2 0.808408
Ankle1 0.599936 Wisp1 0.734367 Txndc5 0.808421
Otud1 0.600065 Tpm2 0.734462 Trim27 0.808773
Jag1 0.600976 Ect2 0.734528 Ptgfrn 0.808829
2700069I18Rik 0.601158 Gmppb 0.734658 Rbm15b 0.808867
Dhrs3 0.601739 Mastl 0.734793 Gnas 0.809065
Slc40a1 0.603454 Tgfb1i1 0.735408 Plp2 0.809371
1700061I17Rik 0.604504 Myo1e 0.73552 Casc5 0.80943
Cap2 0.604809 Stmn1 0.735545 Prkcdbp 0.809663
Ctnnd2 0.606786 Odf2 0.735631 Ndc1 0.809727
Gas6 0.607571 Bub1b 0.736395 Cyb5r1 0.810306
Rcan2 0.607984 Gm1976 0.736422 Haus7 0.810536
Vim 0.608469 Racgap1 0.736603 Hjurp 0.810706
Myl9 0.609077 Gpsm1 0.736621 Cd34 0.810768
Pif1 0.609688 Gm12715 0.73667 Alg5 0.810783
Ptprv 0.609772 Kifc1 0.736797 S100a11 0.810974
Vav3 0.610392 Fabp5 0.737278 Tk1 0.811112
Myh11 0.610733 Notch1 0.737474 Sertad2 0.811164
C430049B03Rik 0.610924 Rnf26 0.738216 Smarcd1 0.811398
Irx5 0.611034 Actg1 0.738473 Mbnl1 0.811622
Cspg4 0.611366 Poc5 0.738631 9430015G10Rik 0.812019
Jazf1 0.611816 Fhl2 0.738831 Lgals1 0.812145
Npr3 0.612709 Aspm 0.7396 Gars 0.812233
Nog 0.614075 Mettl1 0.739674 Map6 0.812248
Crispld2 0.614285 Oip5 0.739925 Dhx57 0.812313
Htra3 0.615126 Lmnb1 0.74011 Fnbp1l 0.812351
Kazald1 0.615545 Fgfr2 0.740416 Uevld 0.812642
Smad9 0.616235 Prc1 0.740456 Klhdc10 0.812852
Gata3 0.616758 Aurkb 0.740768 Ybx3 0.813191
Fam198b 0.617949 Slc7a5 0.740978 Tmem263 0.813199
Prex2 0.619588 Gsg2 0.741532 Tes 0.813433
Itgb3 0.621091 Ptx3 0.741631 Gas2l3 0.813511
Pcsk6 0.621802 Nuak1 0.742034 Esyt1 0.813751
Adamts1 0.622628 Lockd 0.742214 Hmgn2 0.814175
Fam131b 0.623292 Nuf2 0.7423 Anxa5 0.814195
Grb10 0.623477 Col8a2 0.742911 Kdelr3 0.814222
Ascl1 0.623525 Odc1 0.742989 Klf10 0.81458
Ptprm 0.624038 Pxdc1 0.743054 C77080 0.814703
Chst2 0.624537 Cep55 0.743097 Lmf2 0.81475
Gli1 0.624862 Tuba1a 0.743583 Cbarp 0.815046
Rtn4rl1 0.624873 Shcbp1 0.743698 Plekhg2 0.815326
Arxes2 0.627232 4931428F04Rik 0.743798 Clcn2 0.816112
Cldn15 0.627251 St6galnac2 0.743933 Eif1 0.816272
Map2 0.627453 Recql4 0.743985 0610009O20Rik 0.816622
A730020E08Rik 0.627473 Masp1 0.743993 Kpna2 0.816748
Paqr8 0.628133 Rhob 0.745098 Emp1 0.816779
Slc2a10 0.628161 Ldlrad3 0.745422 Fndc4 0.816887
Fam83d 0.628566 Gm11223 0.745634 Fhod1 0.816915
Sema6d 0.62888 Cdkn3 0.745643 Fam149a 0.817229
Rltpr 0.629271 Aff3 0.745775 Tnrc18 0.817407
Inhba 0.629286 Cplx2 0.745867 C330027C09Rik 0.817453
Tgfbi 0.631807 Nfix 0.745916 Sec24d 0.817484
Gcnt4 0.632013 Taf4a 0.74597 Wsb2 0.817526
Mertk 0.632108 Cdkn2d 0.746083 Dda1 0.817574
C1ql3 0.633177 Pfn1 0.746768 Rtel1 0.818013
Lpar3 0.633363 Srf 0.747411 Prep 0.81832
Wnt11 0.633839 Aldh1l2 0.748636 Sec24a 0.818454
Gpc6 0.634565 Cdca5 0.748855 Soga1 0.818645
Shank2 0.634576 Dlgap5 0.748977 Obsl1 0.818749
Fam65b 0.634732 Gpt2 0.749626 Sox4 0.819024
Optc 0.634952 Plxdc2 0.749849 Olfml3 0.819129
Cldn1 0.635369 Fam20c 0.750155 Dpysl2 0.819636
Ucp2 0.635725 Dolpp1 0.750377 Arpc5 0.819906
Tub 0.636665 Msrb3 0.75087 Mdm1 0.820017
Esr2 0.637654 Gpx7 0.751128 Maged1 0.820067
Zcchc5 0.637808 Gpc4 0.751191 Efemp2 0.820203
Cgref1 0.637844 Sh3rf3 0.751228 Maz 0.820264
Cobl 0.637877 Mical1 0.75133 Rcc1 0.820373
Efcab11 0.639182 Plk4 0.751777 Limk1 0.820457
Clec11a 0.639468 Id2 0.751969 Sdc1 0.820495
Mfap2 0.640436 Svep1 0.752872 Pfas 0.820519
Fam64a 0.640806 Depdc1b 0.75297 Bora 0.820562
Agtr2 0.64086 Tsc22d3 0.753152 2700081O15Rik 0.820759
Aspn 0.641139 Tuba1c 0.75324 Degs1 0.820789
Cdca3 0.641611 Ccnb1 0.753654 Slc7a1 0.82085
Gm26651 0.642262 B4galt2 0.753667 Ckap5 0.821241
Rrm2 0.642632 Tpm1 0.753828 Dennd2a 0.821364
Fam122b 0.642715 Rian 0.75385 Marveld1 0.821535
Fgf21 0.643125 Gramd2 0.753866 Ncaph 0.822363
L1cam 0.643173 Ttyh3 0.754083 Maf 0.822728
Prss23 0.643878 Depdc7 0.754102 Arid1b 0.822833
Nrep 0.644 Hyls1 0.754994 Pitrm1 0.822917
Srgap1 0.644061 Adamts6 0.755142 Ran 0.823
Dusp5 0.644116 Dap 0.755702 Nfyb 0.823101
Lonrf1 0.645283 Pkmyt1 0.755798 E2f1 0.823463
Artn 0.6468 Zdhhc2 0.755898 Dpp9 0.82356
Slc17a9 0.646801 Irs2 0.756009 H2afz 0.823848
Nexn 0.647017 Larp1b 0.756428 Gmnn 0.823908
Efnb2 0.648037 Trp53i13 0.756504 Nfatc4 0.823922
C530008M17Rik 0.648087 Tmpo 0.756673 Bmi1 0.823945
E2f8 0.648404 Tmcc3 0.757004 Anapc16 0.824058
Adrb1 0.649094 Cdk2ap1 0.757041 Fscn1 0.824548
Snai1 0.649563 Mtss1l 0.75718 Lmna 0.824985
Gja1 0.650241 Mum1l1 0.757403 Mex3c 0.825829
Cilp2 0.651178 Pbk 0.757669 Rad51 0.825881
Kitl 0.651609 Tcf7l2 0.758116 Sepn1 0.825965
H1fx 0.651903 Fam8a1 0.758148 Csrp1 0.826069
Vit 0.652032 Plk1 0.758271 mt-Nd2 0.826147
Shank1 0.652795 Hccs 0.758344 Specc1 0.826198
Lmod1 0.653332 Nde1 0.758371 Gsr 0.826224
Tacc3 0.653646 Mki67 0.758515 Osbp 0.826319
E2f7 0.653948 Ccnf 0.758729 Net1 0.826663
Trim66 0.654695 Ttl 0.759024 Mpp1 0.826811
Sapcd2 0.654882 Col1a2 0.75928 Ehd2 0.827066
Hoxa10 0.655107 Spire2 0.759392 Oaf 0.82721
Gamt 0.655282 Trip13 0.759459 Tcf19 0.827416
Neurl1b 0.655678 Gm17501 0.759486 P3h4 0.827463
Ntn4 0.656116 Coq10b 0.760732 Col5a2 0.827588
Zfp804a 0.656484 Zfp9 0.760978 Ncs1 0.827762
Plau 0.657035 Thy1 0.761234 Thbs3 0.828031
Lingo1 0.657449 Fgfrl1 0.761271 Dad1 0.828311
Ctxn1 0.657571 Incenp 0.761488 Hmces 0.828493
Omd 0.657621 Itga1 0.76159 Eef2k 0.828914
Kif23 0.657802 Fkbp14 0.762018 Serpinh1 0.830267
Spta1 0.657819 Col6a2 0.762075 Cenpc1 0.830422
Arhgap19 0.658013 Cks2 0.762688 Dna2 0.831046
Fzd6 0.6582 Zfp518b 0.763119 Adgrl1 0.831229
Hic1 0.658269 Vcl 0.763179 Pom121 0.831379
Chtf18 0.658417 Sgol2a 0.763283 Dtymk 0.831805
Trib3 0.65844 Cenpu 0.763296 Elavl1 0.832095
Prkab2 0.658741 Zbed3 0.763309 Mcm5 0.832182
Rps6ka2 0.658892 Yrdc 0.763508 5-Sep 0.83248
Prr5l 0.658974 Pask 0.763629 Col4a2 0.833235
Tcf7l1 0.659331 Ska2 0.763681 Mpp6 0.834295
Foxm1 0.659418 Cdkl2 0.763788 Gclc 0.834364
Col1a1 0.659671 Dock5 0.764101 Ppp2r5a 0.835098
Sh3rf2 0.65978 Scarf2 0.764653 Zw10 0.835134
Cdh1 0.660507 Ncapg 0.765 Met 0.835261
Smtn 0.661819 Tmem119 0.765155 Clspn 0.835293
Lmo1 0.662257 Fgfr3 0.765166 Kntc1 0.83531
Fam110b 0.663262 Neil3 0.765235 Plpp5 0.83564
Slc7a3 0.66339 Dact3 0.765316 Pygb 0.835725
Ube2c 0.663546 Pusl1 0.765544 Ino80e 0.835727
Cdh2 0.664276 Kif2c 0.765579 Myo1c 0.836357
Cdc20 0.664437 Mtus1 0.76598 Fam114a1 0.836547
Serinc2 0.664934 H2afx 0.766012 Nup85 0.836806
Zyx 0.665352 Klhl23 0.766603 Emx2 0.837083
Wnt2 0.66692 Sh3bgrl3 0.766626 Tcof1 0.837375
Timp3 0.667381 Prrc1 0.766849 Eif2ak3 0.838006
Olfm1 0.667483 Gcsh 0.767235 Fez2 0.838275
Lhx9 0.667998 Slc1a4 0.767371 Qk 0.838602
Nqo1 0.669185 Fat4 0.767491 Pmp22 0.838661
Ndc80 0.669493 Gm14005 0.767686 Tnc 0.839473
Foxc2 0.669981 Kdelr2 0.76815 Golim4 0.839552
Ccdc80 0.670023 Qpct 0.768216 Gpsm2 0.839794
Tmem158 0.670685 BC030867 0.768468 Adgrg6 0.839888
Jup 0.67169 Efnb1 0.76946 Rpa2 0.840289
Hmcn1 0.671695 Kif20b 0.769555 Ckap4 0.840779
Esco2 0.67216 Creb3l1 0.76961 Col4a1 0.842209
Lfng 0.672375 Ifi27 0.769882 Impad1 0.842282
Gtse1 0.672472 Myl6 0.769907 Nras 0.842384
Ckap2l 0.673922 Zfp354c 0.769947 Mxd4 0.842803
Col11a1 0.673993 Actb 0.769987 Nup107 0.842931
St6gal1 0.674366 Pmepa1 0.770031 Kpnb1 0.843093
Egr2 0.674946 Cenpt 0.770107 Tcf4 0.843201
Ccdc85c 0.67579 Nfatc1 0.770872 Mthfd1l 0.843236
Adamtsl3 0.676597 Pcyt1b 0.771831 Klf6 0.843283
Amot 0.67673 Pofut2 0.772115 Ikbip 0.844251
Parpbp 0.676812 Tmem64 0.772532 Egr1 0.844545
Rps4l 0.676948 Celf2 0.772687 Pcbp1 0.845333
Piezo2 0.677444 Fgd1 0.772758 Arfgap1 0.845823
Pkp1 0.67865 2700094K13Rik 0.772841 Fermt2 0.845996
Ezr 0.67867 Rbmx 0.772952 Fkbp9 0.846524
Ccdc169 0.679208 Rangap1 0.772989 Pofut1 0.84685
Slc43a1 0.679473 Pkp4 0.772993 Ptbp1 0.847263
Prune2 0.679475 Anapc11 0.773243 Copg1 0.848294
Kcp 0.68011 Anxa6 0.773856 Kif1c 0.848401
Dysf 0.680215 Ccnb2 0.774255 Arpc4 0.848799
Cav1 0.680273 Dzip1l 0.774278 Creb3l2 0.851804
Miip 0.680407 Aldh18a1 0.774618 Lamb2 0.85188
Cenpf 0.680683 Ccdc18 0.774722 Cbx5 0.851952
Adamts12 0.680685 Arhgap11a 0.775249 Actn1 0.852875
Asf1b 0.681309 Slc6a9 0.775406 Cd9 0.853406
Lgr6 0.681438 Siah2 0.775723 Wwc2 0.854263
Dlx2 0.683214 Ccdc74a 0.775994 Gls 0.854739
Doc2b 0.684296 P4ha3 0.77607 Sfr1 0.85486
Gulp1 0.685434 Dusp7 0.776231 Rcn3 0.855116
Hacd1 0.685474 Slc27a3 0.776587 Pias3 0.855486
Plcb1 0.6858 Atf5 0.776605 Kctd10 0.855905
Dnm3os 0.686603 Pde3b 0.776666 Cntrl 0.855999
Arnt2 0.688141 Garnl3 0.777086 Cs 0.856556
Prelp 0.688287 Bcl2l1 0.777251 Maged2 0.858124
Cdr2 0.68853 Fhl3 0.777932 Atp1a1 0.858214
Morc4 0.689027 Kif15 0.778861 Golga2 0.859759
Tcaf2 0.690546 Rad51ap1 0.778895 Lbr 0.860158
Spc25 0.690558 Adgre5 0.778903 Setd8 0.860806
Kctd15 0.690753 Brca1 0.779076 Slc35e1 0.8627
Arhgap33 0.690899 Vangl1 0.779078 Uhrf1 0.86398
Kif11 0.690918 Tuba1b 0.779294 Calu 0.868509
Six2 0.691737 Atf4 0.779332 Crim1 0.869402
Glt8d2 0.692094 Ttk 0.779355

Pulmonary TCs were reported to promote angiogenesis in a mouse model of ARDS [11]; thus, particular attention was devoted to angiogenesis in the gene ontology (GO) functional analysis. According to the DAVID online database, 28 DEGs were enriched in the processes of blood vessel formation, angiogenesis, blood vessel morphogenesis, blood vessel remodelling, and sprouting angiogenesis. For further analysis, the DEGs were enriched in the STRING database. According to the STRING database, the DEGs were enriched in 9 angiogenesis-related processes: angiogenesis, blood vessel morphogenesis, vasculature development, blood vessel remodelling, sprouting angiogenesis, venous blood vessel sprouting, venous blood vessel morphogenesis, regulation of angiogenesis, and positive regulation of angiogenesis (Fig. 3d). As most genes participated in at least 3 biological processes, those involved in more than three processes—i.e. E2F8, Notch1, EPAS1, Rbpj, Flt1, ACVRL1, EFNB2 and Thbs1—were selected for further research. MiR-21a-3p, miR-221-5p, miR-146a-5p and miR-188-5p regulated these 8 genes (Fig. 3e).

Validation of miRNAs and their target mRNAs in TCs

We next assessed the mRNA levels of angiogenesis factors. The mRNA expression of E2F8, Notch1, EPAS1, Rbpj, Flt1, ACVRL1, EFNB2 and Thbs1 was measured in TCs after LPS stimulation. After LPS stimulation, E2F8, EFNB2, and EPAS1 were significantly downregulated, while Flt1 was upregulated. Given that miRNAs usually negatively regulate downstream genes, E2F8, EFNB2, and EPAS1 were further studied. LPS stimulation significantly increased miR-21a-3p and miR-221-5p expression in TCs compared with that in cells under control conditions. To clarify the relationship between miRNAs and mRNAs, miRNA inhibitors were applied. MiR-221-5p inhibition restored the expression of EPAS1 but not EFNB2, and miR-21a-3p inhibition restored the expression of E2F8 but not EPAS1. MiR-21 had been reported to increase proliferation, migration and tube formation of Human Umbilical Vein Endothelial Cells (HUVECs) and induce angiogenesis by directly targeting PTEN [30, 31]. Moreover, miR-21a-3p and its downstream target E2F8 were further studied. After 24 h, the protein expression of E2F8 was decreased in TCs challenged with LPS and was restored by inhibition of miR-21a-3p. The dual luciferase reporter assay indicated that E2F8 was the direct target of miR-21a-3p (Fig. 4).

Fig. 4.

Fig. 4

Expression of angiogenesis-related genes in TCs with LPS treatment. a mRNA levels of E2F8, Notch1, EPAS1, Rbpj, Flt1, ACVRL1, EFNB2, Thbs1, FLT1, miR-21a-3p and miR-221-5p in TCs treated with LPS and/or miR-21a-3p inhibitor or miR-221-5p inhibitor. *P < 0.05 vs Control, #P < 0.05 vs LPS. b Protein levels of E2F8 in TCs treated with LPS and/or miR-21a-3p inhibitor. *P < 0.05 vs Control, #P < 0.05 vs LPS. c MiR-21a-3p led to a significant reduction of the luciferase activity of reporter with the wildtype 3′ UTR but not that of the mutant reporter. *P < 0.05 vs E2F8-WT/miRNA miR-21a-3p mimic. n = 6

MiR-21a-3p regulated angiogenesis under inflammatory conditions

The transcription factors E2F7/8 were reported to regulate vessel branching via DLL4-Notch approaches [32] or HIF-1α/VEGFA signalling [33]. In the present study, LPS stimulation reduced the protein expression of Notch 2 but not Notch 1, Notch 4 or DLL4. Inhibition of miR-21a-3p restored Notch 2 protein expression in TCs in the presence of LPS. LPS did not affect HIF-1α expression. However, LPS increased the expression of VEGFA at the mRNA level, and this increase was reversed by miR-21a-3p inhibition in cultured TCs (Fig. 5).

Fig. 5.

Fig. 5

MiR-21a-3p regulated angiogenesis associated signalling in TCs induced with LPS. a, b Protein levels of DLL4, Notch1, Notch2, and Notch4 in TCs treated with LPS and/or miR-21a-3p inhibitor. c Expression of HIF-1α and VEGF on mRNA level. *P < 0.05 vs Control, #P < 0.05 vs LPS, n = 6

PI3K signalling might participate in angiogenesis

PI3K, especially the Class I catalytic isoforms, plays an important role in angiogenesis. To study the mechanisms underlying the effect of miR-21a-3p in TCs on angiogenesis induction, PI3K subunit expression was first examined. The mRNA levels of the Class I PI3K isoforms PIK3CA, PIK3CB, and PIK3CD did not significantly change with LPS stimulation. However, the protein level of p110α in TCs was significantly increased with LPS stimulation and decreased with miR-21a-3p inhibitor co-treatment. The PI3K signalling molecules AKT, mTOR, and PTEN were unaffected by either LPS or miR-21a-3p. These results indicated that PI3K signalling might participate in angiogenesis via the p110α isoform (Fig. 6).

Fig. 6.

Fig. 6

Expression of PI3K signalling in TCs induced with LPS. a mRNA levels of PIK3CA, PIK3CB, and PIK3CD in TCs treated with LPS and/or miR-21a-3p inhibitor. b, c Protein levels of p110α, p-PI3K, PI3K, p-mTOR, mTOR, PTEN, p-AKT, AKT in TCs treated with LPS and/or miR-21a-3p inhibitor. *P < 0.05 vs Control, #P < 0.05 vs LPS, n = 6

MiR-21a-3p and p110α in TCs promoted the proliferation of EOMA cells

The proliferation of EOMA cells was then estimated after co-culture with TCs pre-treated with the miR-21a-3p or PI3K p110α inhibitor. Culture medium from TCs stimulated with LPS promoted EOMA cells proliferation, as determined by the CCK8 assay. Compared with medium from NC TCs, culture medium from TCs with miR-21a-3p inhibition significantly reduced EOMA cells proliferation (Fig. 7a). The effect of p110α was examined by dynamic real-time cell observation. The proliferation assay indicated that EOMA cells proliferation decreased with LPS stimulation but was restored by co-culture with TCs. Inhibition of miR-21a-3p or p110α (with its inhibitor HS-173) weakened the protective effect of TCs (Fig. 7b, d). The scratch assay showed similar results (Fig. 7c, e). VEGF protein expression was significantly elevated with LPS stimulation, and this increase was reversed by inhibition of either miR-21a-3p or p110α (Fig. 7f). The results above indicated that VEGF is regulated by both miR-21a-3p and p110α.

Fig. 7.

Fig. 7

MiR-21a-3p and p110α mediated the promotion of TCs on EOMA proliferation induced by LPS. a Cells proliferation rate of EOMA treated with LPS and/or TCs and miR-21a-3p inhibitor measured by CCK8 assay. *P < 0.05 vs Control, #P < 0.05 vs LPS/TC. b, d Cell proliferation of EOMA treated with LPS and/or TCs and miR-21a-3p inhibitor or p110α inhibitor measured by Cell-IQ. *P < 0.05 vs Control, #P < 0.05 vs LPS, **P < 0.05 vs LPS/TC, n = 6. c, e Cell movement of EOMA treated with LPS and/or TCs and miR-21a-3p inhibitor or p110α inhibitor measured by Cell-IQ. f VEGFA levels secreted by TCs treated with LPS and/or miR-21a-3p inhibitor or p110α inhibitor measured by ELISA. *P < 0.05 vs Control, #P < 0.05 vs LPS, n = 6

Discussion

This study reports that TCs culture medium can alleviate ARDS in mice probably via angiogenesis-associated factors regulated by miR-21a-3p. TCs exposed to LPS exhibited increased miR-21a-3p expression and VEGF production, which further promoted vascular endothelial cell proliferation. The protective effects of TCs mediated by miR-21a-3p might be regulated through PI3K (p110α)/AKT/mTOR signalling and the expression levels of the downstream targets E2F8 and Notch 2 (Fig. 8).

Fig. 8.

Fig. 8

Schematic representation of the working model. TCs induced by LPS promoted endothelial regeneration and angiogenesis through miR-21a-3p-PI3K (p110α)/AKT/mTOR and VEGF signalling in TCs. The E2F8/Notch2 signalling pathway might also participates in this procession

Endotoxin-induced ARDS has been reported to affect both respiratory epithelial cells and the underlying vascular endothelial cells [34]. In the present study, LPS stimulation induced severe vascular damage in the lungs, as shown by the reduced levels of CD31 and eNOS. TCs are distinct from mesenchymal stem cells and fibroblasts and have been reported to have specific roles in cell signalling, tissue remodelling and angiogenesis [35]. In the present study, TCs culture medium exhibited great potential to reverse the angiogenic signalling that was reduced by LPS-induced inflammation, supporting the observation that TCs alleviate LPS-induced lung injury in mice by releasing angiogenic factors [11].

Non-coding miRNAs are involved in several pathological processes, including angiogenesis [36, 37]. MiR-221-5p [38], miR-146a-5p [39], and miR-21a-3p [4042] are reported to be associated with the angiogenesis process. MiR-21a-3p and miR-221-5p were demonstrated to be involved in the promotion of angiogenesis in TCs. As miR-21a-3p was more frequently reported on angiogenesis, it was further studied. MiR-21a-3p knockdown in TCs reduced CD31 and eNOS expression in the lungs of ARDS mice in vivo. MiR-21a-3p exerts its protective effects on injury repair by inducing angiogenesis-associated signalling pathways. For instance, miR-21a-3p activates the AKT pathway and increases matrix metalloproteinase-2 (MMP-2) expression to reduce the extent of the infarcted region in heart ischaemia/reperfusion injury [41], inhibits PTEN and sprouty homolog 1 (SPRY1) to heal soft tissue wounds [40], and upregulates VEGF and activates the Ang-1/Tie-2 axis in traumatic brain injury [42]. In the current study, the p110α isoform in PI3K/AKT/mTOR signalling pathway was demonstrated to be involved in miR-21a-3p-mediated angiogenic factor induction in TCs. However, the alteration of other protein levels and HIF-1α in TCs treated with LPS and the miR-21a-3p inhibitor indicated that more complex signalling pathways were involved in regulating the angiogenic function of TCs. Culture medium from LPS-induced TCs promoted EOMA cells proliferation in vitro, accompanied by elevated levels of VEGF mRNA and secretion, which further demonstrated that the functional miR-21a-3p was generated by TCs. These data support the hypothesis that miR-21a-3p plays a role in angiogenesis and profoundly demonstrate the mechanisms mediated by PI3K p110α.

The E2F family was first reported to induce cell proliferation [43], and E2F family members are essential transcriptional regulators of cell cycle progression [44], as well as apoptosis, metabolism and angiogenesis [45]. E2F8 is an atypical transcriptional repressor in the E2F family since it contains domains that differ from the canonical domains [46]. By forming homodimers or heterodimers with E2F7, E2F8 reduces the excessive and destructive activation of E2F1 [47]. However, reports of E2F8 in angiogenesis in the literature are controversial. E2F7/8 has been reported to positively regulate the formation of blood vessels during embryonic development via HIF-1α/VEGFA signalling [33]. On the other hand, E2F7/8 suppresses tumour angiogenesis via the induction of DLL4 [32]. In the present study, E2F8 expression was reduced after LPS stimulation in TCs and restored with miR-21a-3p inhibition, indicating that E2F8 plays a negative role in angiogenesis under inflammatory conditions.

The Notch family, which contains several receptors and ligands, is fundamental in the regulation of blood vessel branching [48]. DLL4, a Notch ligand, has an inhibitory function in blood vessel branching [49] that is compromised by Jagged 1 activation [50]. Notch1 positively regulates angiogenesis [51], while Notch2 negatively regulates cell proliferation [52] and angiogenesis [53]. In the initial stage of angiogenesis, inhibition of Notch 2 promotes vascular endothelial cell proliferation, while activation of Notch 2 reduces endothelial cell responses to VEGF [54, 55]. In the present study, Notch2 expression was mediated by miR-21a-3p. However, the relationship between the transcription factor E2F8 and Notch2 was not illustrated. Further experiments should be conducted to confirm the signalling pathway of E2F8/Notch2 in angiogenesis.

Conclusion

TCs have been reported to be important in tissue repair and healing processes. Via mouse models, bioinformatics approaches and molecular biological methods, the present study shows that activated TCs promote endothelial regeneration and angiogenesis through miR-21a-3p-PI3K (p110α)/AKT/mTOR signalling and further demonstrates the key roles of VEGF in TCs. The E2F8/Notch2 signalling might also participates in this process. These findings shed light on miR-21a-3p in TCs as a new therapeutic target for vessel protection.

Supplementary information

12967_2019_2168_MOESM1_ESM.tif (7MB, tif)

Additional file 1: Figure S1. The morphology of TCs. The pictures were gathered by Cell-IQ every 8 h. The white arrow showed the typical telopode.

Acknowledgements

The authors would like to thank Dr. Dongli Song (Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai Medical College, Fudan University, Shanghai, China the Central Laboratory, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China) for kindly providing mouse TCs.

Abbreviations

ARDS

acute respiratory distress syndrome

TC

telocyte

PI3K

phosphoinositide-3-kinase

RTK

receptor tyrosine kinase

EGFR

epidermal growth factor receptor

FGFR

fibroblast growth factor receptor

VEGF

vascular endothelial growth factor

mTOR

mammalian target of rapamycin

IFN-γ

interferon-γ

miRNAs

microRNA

NSCLC

non-small cell lung cancer

LPS

lipopolysaccharide

CAD

chronic renal allograft dysfunction

SV40

simian vacuolating virus 40

TGF-β

transforming growth factor-β

EOMA cells

hemangioendothelioma endothelial cells

NC

negative control

DMEM/F12

Dulbecco’s modified Eagle’s medium/F12

FBS

foetal bovine serum

DAVID

Database for Annotation, Visualization and Integrated Discovery

cDNA

complementary DNA

qPCR

quantitative real-time polymerase chain reaction

HIF-1α

hypoxia inducible factor-1α

PMSF

phenylmethylsulfonyl fluoride

DLL4

Delta-like 4

PTEN

phosphatase and tension homolog on chromosome ten

ELISA

enzyme-linked immunosorbent assay

HE

hematoxylin–eosin

eNOS

endothelial nitric oxide synthase

DAPI

4′,6-diamidino-2-phenylindole

ANOVA

analysis of variance

GO

gene ontology

SPRY1

sprouty homolog 1

Authors’ contributions

YZ, DS and HF designed the study. YY, YH and TL completed the experimental process, literature search. DS and YZ wrote and edited the manuscript. YY and HT completed generation of figures. All authors reviewed the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (nos. 81971863, 81700008, 81873409, 2017YFSF090207), and Shanghai Science Foundation (17ZR1404300).

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the Zhongshan Hospital Biomedical Research Department.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Dongli Song, Email: songdongli37@126.com.

Hao Fang, Email: drfanghao@163.com.

Supplementary information

Supplementary information accompanies this paper at 10.1186/s12967-019-02168-z.

References

  • 1.Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291. [DOI] [PubMed] [Google Scholar]
  • 2.Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–1349. doi: 10.1056/NEJM200005043421806. [DOI] [PubMed] [Google Scholar]
  • 3.Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710. doi: 10.1001/jama.2017.21907. [DOI] [PubMed] [Google Scholar]
  • 4.Abraham A, Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome: concise review. Stem Cells Transl Med. 2019 doi: 10.1002/sctm.19-0205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Song D, Yang D, Powell CA, Wang X. Cell-cell communication: old mystery and new opportunity. Cell Biol Toxicol. 2019;35(2):89–93. doi: 10.1007/s10565-019-09470-y. [DOI] [PubMed] [Google Scholar]
  • 6.Ibba-Manneschi L, Rosa I, Manetti M. Telocyte implications in human pathology: an overview. Semin Cell Dev Biol. 2016;55:62–69. doi: 10.1016/j.semcdb.2016.01.022. [DOI] [PubMed] [Google Scholar]
  • 7.Popescu LM, Faussone-Pellegrini MS. TELOCYTES—a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14(4):729–740. doi: 10.1111/j.1582-4934.2010.01059.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Manole CG, Cismasiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15(11):2284–2296. doi: 10.1111/j.1582-4934.2011.01449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Zhao B, Chen S, Liu J, Yuan Z, Qi X, Qin J, et al. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17(1):123–133. doi: 10.1111/j.1582-4934.2012.01655.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6(1):45–49. doi: 10.1586/ers.11.91. [DOI] [PubMed] [Google Scholar]
  • 11.Ma R, Wu P, Shi Q, Song D, Fang H. Telocytes promote VEGF expression and alleviate ventilator-induced lung injury in mice. Acta Biochim Biophys Sin (Shanghai) 2018;50(8):817–825. doi: 10.1093/abbs/gmy066. [DOI] [PubMed] [Google Scholar]
  • 12.Cao Y, Ye Q, Zhuang M, Xie S, Zhong R, Cui J, et al. Ginsenoside Rg3 inhibits angiogenesis in a rat model of endometriosis through the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway. PLoS ONE. 2017;12(11):e0186520. doi: 10.1371/journal.pone.0186520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Murillo MM, Zelenay S, Nye E, Castellano E, Lassailly F, Stamp G, et al. RAS interaction with PI3K p110alpha is required for tumor-induced angiogenesis. J Clin Invest. 2014;124(8):3601–3611. doi: 10.1172/JCI74134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gong G, Yang XX, Li YY, Geng HY, Wang H, Wang LS, et al. Protective effects of PI3KCG gene on acute myocardial infarction. J Thorac Dis. 2018;10(2):941–953. doi: 10.21037/jtd.2018.01.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zhu Y, Song D, Song Y, Wang X. Interferon gamma induces inflammatory responses through the interaction of CEACAM1 and PI3K in airway epithelial cells. J Transl Med. 2019;17(1):147. doi: 10.1186/s12967-019-1894-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem. 2017;42(4):1431–1446. doi: 10.1159/000479207. [DOI] [PubMed] [Google Scholar]
  • 17.Schauerte C, Hubner A, Rong S, Wang S, Shushakova N, Mengel M, et al. Antagonism of profibrotic microRNA-21 improves outcome of murine chronic renal allograft dysfunction. Kidney Int. 2017;92(3):646–656. doi: 10.1016/j.kint.2017.02.012. [DOI] [PubMed] [Google Scholar]
  • 18.Zununi Vahed S, Omidi Y, Ardalan M, Samadi N. Dysregulation of urinary miR-21 and miR-200b associated with interstitial fibrosis and tubular atrophy (IFTA) in renal transplant recipients. Clin Biochem. 2017;50(1–2):32–39. doi: 10.1016/j.clinbiochem.2016.08.007. [DOI] [PubMed] [Google Scholar]
  • 19.Zununi Vahed S, Poursadegh Zonouzi A, Ghanbarian H, Ghojazadeh M, Samadi N, Omidi Y, et al. Differential expression of circulating miR-21, miR-142-3p and miR-155 in renal transplant recipients with impaired graft function. Int Urol Nephrol. 2017;49(9):1681–1689. doi: 10.1007/s11255-017-1602-2. [DOI] [PubMed] [Google Scholar]
  • 20.Song D, Xu M, Qi R, Ma R, Zhou Y, Wu D, et al. Influence of gene modification in biological behaviors and responses of mouse lung telocytes to inflammation. J Transl Med. 2019;17(1):158. doi: 10.1186/s12967-019-1870-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Song D, Tang L, Wang L, Huang J, Zeng T, Fang H, et al. Roles of TGFbeta1 in the expression of phosphoinositide 3-kinase isoform genes and sensitivity and response of lung telocytes to PI3K inhibitors. Cell Biol Toxicol. 2019 doi: 10.1007/s10565-019-09487-3. [DOI] [PubMed] [Google Scholar]
  • 22.Lopez-Romero P. Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library. BMC Genomics. 2011;12:64. doi: 10.1186/1471-2164-12-64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Valero-Mora PM. ggplot2: elegant graphics for data analysis. J Stat Softw. 2010 doi: 10.18637/jss.v035.b01. [DOI] [Google Scholar]
  • 25.Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239. doi: 10.1371/journal.pone.0206239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015 doi: 10.7554/eLife.05005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi: 10.1093/nar/gky1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Dennis G, Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3. doi: 10.1186/gb-2003-4-5-p3. [DOI] [PubMed] [Google Scholar]
  • 29.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Zhang Y, Chen Z, Feng L, Jiang P, Li X, Wang X. Ionizing radiation-inducible microRNA-21 induces angiogenesis by directly targeting PTEN. Asian Pac J Cancer Prev. 2019;20(5):1587–1593. doi: 10.31557/APJCP.2019.20.5.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Zhang Y, Yuan F, Liu L, Chen Z, Ma X, Lin Z, et al. The Role of the miR-21/SPRY2 axis in modulating proangiogenic factors, epithelial phenotypes, and wound healing in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2019;60(12):3854–3862. doi: 10.1167/iovs.19-27013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Weijts B, Westendorp B, Hien BT, Martinez-Lopez LM, Zijp M, Thurlings I, et al. Atypical E2Fs inhibit tumor angiogenesis. Oncogene. 2018;37(2):271–276. doi: 10.1038/onc.2017.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Weijts BG, Bakker WJ, Cornelissen PW, Liang KH, Schaftenaar FH, Westendorp B, et al. E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1. EMBO J. 2012;31(19):3871–3884. doi: 10.1038/emboj.2012.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L379–L399. doi: 10.1152/ajplung.00010.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Zheng Y, Zhang M, Qian M, Wang L, Cismasiu VB, Bai C, et al. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med. 2013;17(4):567–577. doi: 10.1111/jcmm.12052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Wang S, Olson EN. AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19(3):205–211. doi: 10.1016/j.gde.2009.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108(9):3068–3071. doi: 10.1182/blood-2006-01-012369. [DOI] [PubMed] [Google Scholar]
  • 38.Xu CH, Liu Y, Xiao LM, Chen LK, Zheng SY, Zeng EM, et al. Silencing microRNA-221/222 cluster suppresses glioblastoma angiogenesis by suppressor of cytokine signaling-3-dependent JAK/STAT pathway. J Cell Physiol. 2019 doi: 10.1002/jcp.28794. [DOI] [PubMed] [Google Scholar]
  • 39.Seo HH, Lee SY, Lee CY, Kim R, Kim P, Oh S, et al. Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart. J Vasc Res. 2017;54(2):100–108. doi: 10.1159/000461596. [DOI] [PubMed] [Google Scholar]
  • 40.Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 2018;8(1):169–184. doi: 10.7150/thno.21234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82(1):21–29. doi: 10.1093/cvr/cvp015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep. 2014;4:6718. doi: 10.1038/srep06718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell. 1991;65(6):1053–1061. doi: 10.1016/0092-8674(91)90557-F. [DOI] [PubMed] [Google Scholar]
  • 44.Kent LN, Leone G. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer. 2019;19(6):326–338. doi: 10.1038/s41568-019-0143-7. [DOI] [PubMed] [Google Scholar]
  • 45.Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009;9(11):785–797. doi: 10.1038/nrc2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Morgunova E, Yin Y, Jolma A, Dave K, Schmierer B, Popov A, et al. Structural insights into the DNA-binding specificity of E2F family transcription factors. Nat Commun. 2015;6:10050. doi: 10.1038/ncomms10050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell. 2008;14(1):62–75. doi: 10.1016/j.devcel.2007.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006;444(7122):1032–1037. doi: 10.1038/nature05355. [DOI] [PubMed] [Google Scholar]
  • 49.Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8(6):464–478. doi: 10.1038/nrm2183. [DOI] [PubMed] [Google Scholar]
  • 50.Luo Z, Shang X, Zhang H, Wang G, Massey PA, Barton SR, et al. Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am J Pathol. 2019;189(8):1495–1500. doi: 10.1016/j.ajpath.2019.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Zhao Q, Huang J, Wang D, Chen L, Sun D, Zhao C. Endothelium-specific CYP2J2 overexpression improves cardiac dysfunction by promoting angiogenesis via Jagged1/Notch1 signaling. J Mol Cell Cardiol. 2018;123:118–127. doi: 10.1016/j.yjmcc.2018.08.027. [DOI] [PubMed] [Google Scholar]
  • 52.Boucher JM, Harrington A, Rostama B, Lindner V, Liaw L. A receptor-specific function for Notch2 in mediating vascular smooth muscle cell growth arrest through cyclin-dependent kinase inhibitor 1B. Circ Res. 2013;113(8):975–985. doi: 10.1161/CIRCRESAHA.113.301272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ho RX, Meyer RD, Chandler KB, Ersoy E, Park M, Bondzie PA, et al. MINAR1 is a Notch2-binding protein that inhibits angiogenesis and breast cancer growth. J Mol Cell Biol. 2018;10(3):195–204. doi: 10.1093/jmcb/mjy002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Wang Y, Yu T, Jin H, Zhao C, Wang Y. Knockdown MiR-302b alleviates LPS-induced injury by targeting Smad3 in C28/I2 chondrocytic cells. Cell Physiol Biochem. 2018;45(2):733–743. doi: 10.1159/000487165. [DOI] [PubMed] [Google Scholar]
  • 55.Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res. 2002;64(3):372–383. doi: 10.1006/mvre.2002.2443. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12967_2019_2168_MOESM1_ESM.tif (7MB, tif)

Additional file 1: Figure S1. The morphology of TCs. The pictures were gathered by Cell-IQ every 8 h. The white arrow showed the typical telopode.

Data Availability Statement

Not applicable.


Articles from Journal of Translational Medicine are provided here courtesy of BMC

RESOURCES