Skip to main content
PLOS One logoLink to PLOS One
. 2019 Dec 31;14(12):e0227096. doi: 10.1371/journal.pone.0227096

One-shot phase-recovery using a cellphone RGB camera on a Jamin-Lebedeff microscope

Benedict Diederich 1,2,*,#, Barbora Marsikova 1,2,#, Brad Amos 3, Rainer Heintzmann 1,2
Editor: Yuval Garini4
PMCID: PMC6938357  PMID: 31891618

Abstract

Jamin-Lebedeff (JL) polarization interference microscopy is a classical method for determining the change in the optical path of transparent tissues. Whilst a differential interference contrast (DIC) microscopy interferes an image with itself shifted by half a point spread function, the shear between the object and reference image in a JL-microscope is about half the field of view. The optical path difference (OPD) between the sample and reference region (assumed to be empty) is encoded into a color by white-light interference. From a color-table, the Michel-Levy chart, the OPD can be deduced. In cytology JL-imaging can be used as a way to determine the OPD which closely corresponds to the dry mass per area of cells in a single image. Like in other interference microscopy methods (e.g. holography), we present a phase retrieval method relying on single-shot measurements only, thus allowing real-time quantitative phase measurements. This is achieved by adding several customized 3D-printed parts (e.g. rotational polarization-filter holders) and a modern cellphone with an RGB-camera to the Jamin-Lebedeff setup, thus bringing an old microscope back to life. The algorithm is calibrated using a reference image of a known phase object (e.g. optical fiber). A gradient-descent based inverse problem generates an inverse look-up-table (LUT) which is used to convert the measured RGB signal of a phase-sample into an OPD. To account for possible ambiguities in the phase-map or phase-unwrapping artifacts we introduce a total-variation based regularization. We present results from fixed and living biological samples as well as reference samples for comparison.

Introduction

Microscopy is a powerful tool not only for investigation of the micro-structure of an object but also for quantification of local properties of the sample. One such property is the optical path difference (OPD) of the light passing through biological matter, which is known to be closely related to the dry mass per area density of biological matter [1, 2].

The classical brightfield-microscope, well established for almost two centuries [3, 4], is mostly limited to visualize amplitude-contrast e.g. absorptive structures of a sample. By adding optical components altering the phase of the light, Fritz Zernike created the well-known Phase contrast [5] technique greatly enhancing the visibility of weakly absorbing objects such as single cells, yet lacking quantification. Later methods like the Differential Interference Contrast microscopy (DIC) followed this idea of converting a pure phase-variation in the object into amplitude contrast by the interference nature of light [5]. By taking a series of DIC images under different shearing orientation, quantitative phase information can be recovered, a method termed quantitative DIC [6, 7].

Various ways exist to recover quantitative phase information based on some form sequential image acquisition exploiting phase shifting [8] or change of the illumination conditions [911]. However to gain such quantitative phase information from a single image, one either needs to do off-axis holography [12, 13] or simultaneously acquire multiple phase images [1416]. Yet in white-light interferometry it is common to acquire a multi-color image to recover the phase information. This method is closely related to the working principle of the JL-microscope, as detailed further below. If target-specific molecular information is needed, fluorescent labels are the method of choice, as they can be specifically attached to the molecule of interest in the biological sample. The properties of such labels can also be exploited to circumvent the optical diffraction limit formulated by Abbe in 1851 [3]; in techniques such as Structured Illumination Microscopy (SIM) [17], (direct) Stochastic Optical Reconstruction Microscopy (dSTORM) [18] or stimulated emission microscopy [19]. However, labelling a sample means interfering with its biology and the required strong illumination in fluorescence imaging can also be harmful to living organisms [20].

Recent advances in computational imaging combined ordinary microscopes with tailored algorithms in order to obtain sample information without the need for labelling. Quantitative phase measurements using the Jamin-Lebedeff microscope never found its wide application, which is mostly due to the rarity of the equipment and more importantly, because of the lack of an easy-to-use automated quantification process (e.g. single-shot measurements). In general, there are two different methods to recover the OPD in JL-microscopy.

The phase-shifting technique records a set of images using monochromatic light (e.g. λc = 546 nm) which passes a rotating analyzer and a λ/4 plate (Senarmont Compensator). The resulting Senarmont measurement (i.e. varying interference stripes), gives precise information about the local OPD. Alternatively, a single image at polychromatic light is acquired, where the observer compares the colors to a reference color-table (Michel-Levy chart) to estimate the OPD.

To our knowledge no image processing procedure has yet been developed to automatically acquire quantitative data using a LJ-microscope. Yet for the visualization of even small phase differences, this technique is rather outstanding, as it promotes an exquisite sensitivity [21].

In our study we attempt to bring an old Jamin-Lebedeff microscope (Carl Zeiss West, Confocal) back-to-live using a set of 3D-printed parts and the RGB-camera of an ordinary cellphone. Additionally, we present a novel technique to quantitate the phase using a gradient-based phase-retrieval algorithm which uses total variation (TV) regularization implemented using the open-source auto-differentiation toolbox Tensorflow [22].

This label-free technique relies on capturing a single reference image of a known object and does not need any additional modelling parameters. It can then produce phase-measurements in real-time because the color-encoded optical-path difference (OPD) can be recovered in a post-processing step.

Below we describe a new method which measures the OPD using the JL microscope combined with a cellphone in one shot.

Materials and methods

Setup and theory of image formation in Jamin-Lebedeff microscopy

The Jamin-Lebedeff Microscope encodes optical path difference into color [23]. The optical setup including the polarization states for the light in each plane is visualized in Fig 1. It works by first polarizing an incoherent light-source (e.g. a halogen lamp or LEDs) using a linear polarizer, before it passes through a specific condenser containing a birefringent beam-splitter. The two mutually coherent orthogonal linear polarization components are split and displaced with respect to each other before illuminating the sample. The light exiting the sample impinges on a carefully matched beam-combiner representing an identical birefringent calcite crystal plate, cut obliquely to its crystallographic axis. The principal directions are perpendicular to each other and form and angle of 45° with that of the polarizer. For better understanding of the mutual polarization axes, see Fig 1. The beam splitter is mounted directly above the condenser lens and splits the light into two rays vibrating perpendicularly to each other. The ordinary beam forms the laterally (and axially) displaced reference beam, whereas the extraordinary beam is the object beam [24]. The beam-combiner in front of the objective lens generates interference, the previously ordinary beam must now become its extraordinary beam and the extraordinary one must become ordinary. This is achieved by a λ/2 plate which rotates the vibration plane by 90° right after leaving the beam splitter [25].

Fig 1. Optical setup Jamin Lebedeff microscope.

Fig 1

Optical setup of an Jamin-Lebedef interference microscope which follows Köhler illumination. A collimated white-light source is filtered by a polarizer before a combination of a λ/2 -plate and a beam-splitter splits the ordinary (45°) and extraordinary (135°) light-path by roughly half the field of view of the illuminated sample region. The transparent object adds a locally varying phase-factor to the sample beam, whereas the reference beam is unaltered. An adjacent beam-combiner joins the two light-paths before the objective lens images the interference onto a sensor. A ghost-image appears only for those wavelength where the λ/2 -plate does not cancel out the constructive/destructive interference entirely (i.e. white-light). The image on the right shows seven nematocysts near the surface of a tentacle of the anemone Stoichactis. Six are empty capsules which have exploded, but one shows the internal thread not yet everted during explosion. The empty capsules show red/orange first order interference colors; the unexploded capsule the white and other high-order colors due to its high dry mass per unit area. (Lubbock & Amos, (1981) Nature 290, 500-501).

To observe interference, the path length of both beams must be close to equal. This is achieved, by fist adjusting the system carefully on an empty sample region. However, very good compensation is achieved only for specified wavelength (e.g. λ = 546 nm). Linearly Polarized light which does not meet this condition is converted into elliptically polarized light. The beam combiner is mounted in front of the objective lens. It recombines the measuring and reference beam. It has to be carefully aligned for best contrast. The sample is inserted between the λ/2 plate and the beam combiner. If there is no object in the beam path, both beams are identical and both polarizations vibrate in phase and a uniform dark background is observed. In case the sample beam passes through a medium with spatially varying refractive index whereas the reference (p-polarized) passes through an empty region, the OPD generates a phase difference Δα given by:

Δα=π/λ·d·(nR-nO), (1)
OPD=d·(nR-nO), (2)

with nR representing the RI of the reference material, nO the RI of the object. λ is given by the centre wavelength of the illumination and d gives the thickness of the sample along the optical axis.

When passing through the analyser the field-components of polarized light vibrating in its absorption direction are absorbed, while the components vibrating in its transmission direction are transmitted and form an interference pattern right after the analyser.

The above-mentioned components are part of a Carl-Zeiss Jamin-Lebedeff transmitted light interference equipment which was designed to use for the Zeiss STANDART POL-microscope (Zeiss West). We adapted the specialized LJ-optics to a Zeiss West Confocal microscope body (used to be part of a confocal microscope) using customized 3D printed components Fig 2. A rotatable mechanism for the polarizer and analyser allows for setting the correct mutual position of these filters, which is crucial for the interference contrast. All parts can be downloaded from [26].

Fig 2. 3D-printed components to update the Jamin-Lebedeff.

Fig 2

A set of different 3D printed adapters to get the old microscope to work with the Jamin-Lebedeff components. A customized smartphone mount using a magnetic-fit aligns the cellphone lens to the optical axis of the eye-piece. The analyser is equipped with a rotating mechanism to tune the orientation of the polarization filter. The compensator and polarizer got 3D printed adapters to fit into the confocal microscope.

Interference: From wavelength to Color

Illuminating with monochromatic light, a pattern of bright and dark fringes is visible corresponding to constructive and destructive interference at a phase object [26]. In case of polychromatic (white) light the entire spectrum contributes to the interference causing a dependence of the observed color on the OPD (see Fig 1 right). The resulting interference colors are classified in orders conveniently described by the Michel-Levy chart. Although this chart was originally made for measuring birefringence and determination of birefringent materials, it also conveniently visualizes the colors observed using the Jamin-Lebedeff microscope. When setting up the microscope, it is advisable to set the background to black/dark purple. Each phase variation other than the background-medium starts around the first order of white-light interference and therefore shows highest contrast (i.e. less ambiguous in its color-response). The observed color also depends on the spectrum of the light-source and the filter characteristics and potentially the image processing of the imaging device (e.g. the Bayer-pattern of the camera).

When a sample is observed, a darker foggy ghost image is seen. This is caused by the aberrated (i.e. astigmatic) part of the reference beam [27], which also passes through the object, since the beam is largely laterally shifted in the beam combiner. The amount of relative shear between the reference and the object beam (field of view and ghost image shift) depending on the objective used, is listed in Table 1. This ghost image makes imaging of dense objects impossible as false colors caused by superposing of the real and the shifted ghost image produce incorrect results.

Table 1. Table of different microscope objective lenses available for the JL system.

10×, NA = 0.22 30×, NA = 0.65 100×, NA = 1.0 Oil
Shear 500 μm 170 μm 50 μm
FOV 1400 μm 335 μm 145 μm
Ghost Image 565 μm 187 μm 55 μm

The resolution, using the 40× objective, goes beyond 228.1 line-pairs/mm of the USAF resolution target.

Imaging using a cellphone

Recent studies have shown that overall camera performance (e.g. noise, sampling rate etc.) makes replacing expensive sCMOS/emCCD sensors by industry-grade CMOS [28] or even cellphone cameras [29] possible. Especially when it comes to RGB imaging, cellphone cameras are omnipresent. In our study we have tested the Nexus 5 (LG/Google, Japan) and the Huawei P9 pro (China). We connected both of them to a standard binocular-eyepiece (10×, Carl-Zeiss) using a customized 3D-printed Adapter (Fig 2). Correct imaging is achieved if the exit pupil of the microscope matches the entrance pupil of the cellphone’s camera lens.

While measuring the chromatic response of the RGB-sensor of the LG Nexus 5 (Sony Exmor IMX179, 8.0 MP, pixel pitch = 1.4μm), we recognized, that the signal in the blue-channel is very weak and leads to increased noise in our experiments. This causes a noisy pixel-response with close overlaps in the Look-Up-Table (LUT) making the phase recovery more difficult as further discussed in the following section.

Relying on the newer Huawei P9, equipped with a Bayer-patterned, back-illuminated, CMOS sensor (Sony Exmor IMX286, 12.0 MP, pixel pitch = 1.12μm) in combination with a digital controllable LED source (CooLED, pE4000) improve the SNR of the measurements by increasing the blue component in the light-source spectrum.

Compared to common RGB industry-grade cameras, the advantage of using cellphones is twofold. First, recent developments brought up high-sensitivity RGB cameras, which are not only widely spread, but also very compact which makes additional hardware-drivers or cables unnecessary. Secondly, the processing (e.g. phase-recovery) could be carried out on the mobile device itself, thus reducing additional complication of setting up software on a computer.

Throughout our experiments we used the open-source cellphone camera APP FreeDCam [30] to keep settings like white-balance, adaptive contrast compensation etc. constant. We acquired the frames in RAW-format to avoid any additional modifications of the data like JPEG-compression artefacts, auto-whitebalancing (AWB) or de-Bayering of the color-channels. In case of time-lapse or live-view imaging, we used the video mode of the camera APP FreeDCam with highest possible video-bitrate to reduce any possible compression artefacts. Additionally we locked the color-map and exposure settings between measurements and calibrations to avoid any alteration of the color response of the reference and actual sample.

Image processing

Starting with the RGB color-coded microscopy images (see Fig 3) to calculate the gray-valued OPD maps corresponds to an inversion of a color-map with a many-to-one mapping instead of the common one-to-many mapping. Although there exists an analytical formula which relates RGB values to a given optical phase, this is heavily altered if experimental conditions, such as variations in the light-source spectrum, incorrect microscope settings or tone mappings from the cellphone’s camera influence the RGB image. Therefore, we decided to estimate the object’s phase by calibrating with a known phase object (e.g.a glass fiber) which is used to generate a LUT for new samples acquired under the same experimental conditions. This requires a-priori knowledge of the reference sample which can be calibrated once using third-party instruments.

Fig 3. Calibration and sample phase objects for the JL setup.

Fig 3

The calibration routine in a) requires a known phase-sample (e.g. optical fiber, (1)/left) with a phase-profile ((2)/middle) over several wavelengths. The forward model with a known LUT is given in the right (3) and roughly matches the measured RGB image using the cellphone (left). Additionally the optical fiber b) and the HeLa cells c) are imaged using a coherence controlled holographic microscope (CCHM, Q-Phase, Tescan and TELIGHT, Brno, Czech Republic) to have a ground-truth reference. A raw JL image captured with the Huawei P9 RGB camera is shown in d), where we computed the OPD using the minimal norm solution e) and the regularized iterative algorithm f). The iterative algorithm has less ambiguities and preserves fine structures better (indicated with red arrows).

The basic idea is to find a relationship between a given RGB-value and its corresponding OPD-value. In order to keep the influence of pixel-noise and dust in the microscope’s optical path low we chose an optical fiber as a known reference object. This enabled to average over a larger number of RGB pixel or similar OPD-values. In order to build the LUT, the first step is to find the cylindrical shape in the RGB interference image. The LUT is created by averaging the pixel-values of all RGB pixels within a certain OPD-range. To reduce ambiguities, it is helpful to cluster a given OPD range of, in our case, 3 ⋅ λ by dividing this range into e.g. 50 OPD bins. The result of this procedure is a parametric curve in 3D-space (see Fig 4b)) of a relation which is in general not invertible. The MATLAB-code (MATLAB 2017b, The MathWorks, Natick, USA.) can be downloaded from the github-repository [26].

Fig 4. Parametric LUT curve and reconstruction results.

Fig 4

The graphs in a) show the relationship between the reference phase-sample and the resulting color image for each RGB-channel individually as dotted points; dashed line shows the parametrized polynomial fit; b) displays this relationship as a 3D parametric plot. The red arrow indicates points where the curve is very close or even intersecting; here the algorithm has problems to distinguish between different OPDs with close RGB-values. The exemplary JL raw-image from fixed HeLa-cells is reconstructed using the minimal norm-solution in c)/d) and the iterative gradient-descent based algorithm in e)/h). The gradient-descent based algorithm removes the phase-ambiguities and preserves the fine features of the cell membrane compared in the zoomed-in version d) and h). In areas where ghost-images are very dominant (orange area in f)), both algorithms fail (red arrows).

The general idea of retrieving the OPD is now to find the closest RGB value within the LUT for a given pixel in the experimental dataset. Mathematically this can be expressed by minimizing the L2 distance:

argminopd((R[opd]-Rmeas)2+(G[opd]-Gmeas)2+(B[opd]-Bmeas)2), (3)

where R[opd] corresponds to one red color-value with integer index opd ⊂ [opdminmin, opdmax]. Rmeas equals the measured red value of a single pixel. G and B correspond to the green and blue channel. Due to its discrete nature, this problem cannot robustly be solved using standard gradient-descent algorithms. Nevertheless, the solution to the above problem can quickly be found, by taking the OPD-index which minimizes the L2 norm for each pixel—also called the minimum norm solution.

Looking at the exemplary 3D curve in Fig 4b) which corresponds to the RGB-LUT, it can be seen that at certain points in space, the curve nearly intersects with itself (indicated by a yellow arrow). A pixel with RGB-values near such a point of intersection (yellow arrow) can easily be assigned to a wrong OPD, if affected by dust or noise or other small errors. This is because the algorithm is fitting the OPD individually pixel by pixel from the measured RGB data without considering relationships between surrounding pixels.

In order to overcome this noise problem, we optimized the illumination and added a regularization term to the above optimization problem which penalizes jumps in OPD between neighbouring pixels. This is conveniently achieved by taking an isotropic total-variation regularizer [31, 32].

The first step is to make the LUT-based problem differentiable. This is achieved by fitting an nth-order polynomial into each color-channel as shown in Fig 4. We limited the order of the polynomial to 10. The fitting process also smooths the curve and eliminates additional noise as seen in the 3D parametric curve (Fig 4, orange). The optimization problem then reduces to finding a solution to the following equation:

argminopd[(R(opd)-Rmeas)2+(G(opd)-Gmeas)2+(B(opd)-Bmeas)2+RTV(opd)], (4)

where

RTV(opd)=(opddx)2+(opddx)2+eps02. (5)

λTV is an empirically chosen weight for the influence of the regularization term, epsC makes the solution differentiable at the zero-position and controls the smoothness of the solution. Intuitively, the algorithm recovers the OPD in those areas where the phase-gradient is non-smooth e.g. at phase-jumps likely due to overlaps in the 3D parametric curve.

Calibrating the microscope

Setting up the microscope can be done by observing the interference response on the cellphone’s LCD screen. In an ideal case, the polarizer and analyser are set the way, so that the background (e.g. area without any object) is close to black. This means that any phase derivation from the background is interfering around the 0-th order. Throughout our experiments we relied on the 40×, NA = 0.65 objective lens with the matching condenser (Zeiss West Condenser Pol Int. II) with a variable numerical aperture which was set to realize Köhler illumination.

Cell culture

HeLa cells (ATCC CCL-2) cells were routinely cultured in ATCC-formulated Eagle’s Minimum Essential Medium (No. 30-2003) supplemented with 10.0% fetal bovine serum (No 30-2020) and 1% Penicillin-Streptomycin at 37.0°C in a humidified atmosphere with 5.0% CO2. Fetal bovine serum to a final concentration of 10. The rotifer was collected by filtering pond water through a coffee filter and diluting it in condensation water.

Results

Based on the two different proposed image processing algorithms we want to retrieve the phase-information of the color-coded interference images from a JL microscope. Therefore, we have reanimated this 50-year old microscope by incorporating current date technology such as cellphone cameras and 3D printed adapters.

Fig 4 shows an exemplary result of a raw RGB measurement of fixed HeLa cells, where we applied the direct L2 pixel-wise and TV-regularized optimization algorithm to compute the quantitative result. Both algorithms need to be provided with a calibration measurement using a reference sample with known Phase-relation. Here we used a telecom glass-fiber (Thorlabs SMF28) with 8.2/125 μm diameter of core and cladding that shrinks accordingly during tapering, (tapered to diameter 38 μm, n = 1,4585). This fiber is embedded in an immersion media (Mixture of glycerol and water, n = 1,4140), thus following in a maximum OPD of 3λ0 with λ0 = 546 nm which also limits to the maximum OPD-difference measurable with this configuration. As stated above, the fiber offers an OPD of 3λ0 which captures 3 orders of white light interference. The OPD of a biological cell is typically smaller than λ0 which allows quantitative reconstructions even if the interference-order of the background is shifted by one lambda.

The inherent appearance of ghost images (e.g. false-colors visualized in Fig 4 as a red arrow) resulting from the inserted sample at a distance of about half the FOV away, limits the interpretability of the JL-images for users and the algorithms. In general this also limits the technique to sparse phase-samples only. To avoid this effect for the calibration object we choose a reference sample which covered about 1/4 of the field of view (FOV). This is small enough to avoid any superposition of the ghost image with the actual interference of the object and large enough to ensure a high resolution for inverting the LUT. Additionally the glass-fiber was rotated so that the actual image was not overlaying the ghost image. The resulting JL-image as well as the known phase-variation of the fiber as a projection along the optical axis is visualized in Fig 3a). Here the left part 1 describes the raw JL image, the middle part 2 the computed OPD from the fiber and the right part 3 simulates the ideal RGB image using the forward model for the white-light interference.

To compare the results from the retrieved quantitative phase, we acquired ground-truth data of the same samples using the coherence-controlled holographic microscope (Q-Phase, Tescan and TELIGHT, Brno, Czech Republic)) equipped with an 40×, NAdet = 0.95 lens for the detection shown in Fig 3. The maximum OPD of the glass-fiber is given in Fig 3b) which is used to scale the gray-scaled phase-images from the phase-retrieval algorithms.

Results from image and video reconstruction

Fig 4c) shows an exemplary result after applying the direct pixel-wise L2 normalization. The algorithm has difficulties with phase-ambiguities due to near-by color-components indicated by a yellow arrow in the parametric plot of the RGB-color relationship for a given phase-sample in b). This effect is clearly visible in the zoomed-in region of interest (ROI) in d), where the missing relationship of the recovered phase-value of a single pixel to its surrounding pixels follows in a black rim around the cell.

Since the TV-based reconstruction algorithm preserves a relationship of nearby pixels by enforcing a piecewise constancy, it removes these artefacts (e.g. phase ambiguities due to near-by RGB values for different OPDs) visualized in the zoomed in ROI in Fig 4h). Additionally, due to the finite number of supporting points in the computed LUT mentioned previously, the L2-based algorithm follows in a stair-step-like reconstruction of the OPD which can is reduced by applying the TV-based algorithm.

By choosing the parameters λTV and epsc, we can control the shape of the result in terms of smoothness or piecewise constancy. We chose these parameters to be λTV = 1.0 and epsc = 0.001 empirically but can be adjusted for different SNRs of the measurement. Nevertheless, the algorithm did not solve the problem in areas, where the ghost-image produced false-colors which are interpreted wrongly (Fig 4c), 4e) and 4f), red arrow). The retrieved phase-values agree with the ground-truth data from the CCHM measurements in Fig 3c). The reduced optical resolution in the JL images (e.g. hardly resolved nucleus) is caused by the reduced numerical aperture of the used lens (30×, NA = 0.65).

The open-sourced algorithm [26] was implemented using Tensorflows auto-differentiation mechanism. After initializing the iterative phase-recovery algorithm with the minimal-norm solution Eq 3 it typically converges within 50-100 iterations using the ADAM [36] update-rule and a learning-rate of lr = 100 thus taking ca. 5 − 10 s on an ordinary laptop (CPU Intel i5, 8GB RAM) at 1024 × 1024 FOV. In case of video-data, the routine processes each camera-frame individually. To enable on-device reconstruction we also provide a web-based version of the algorithm [37] using the cloud-based image processing framework ImJoy [38].

In the supplemental Video (S1 Video,) we show reconstruction of a video file from a rotifer freely moving in filtered pont water. Here the reference fiber and sample of interest had to be captured using the same video-settings (e.g. framerate, color-map, bitrate, etc.) and background-color. The LUT-inversion is separately done for only one frame from the reference video. During our studies we found out, that a matching background color is one of the most important factors to produce good-quality reconstruction results.

Validation of reconstructed data

In cases where the proposed image processing algorithm is applied to phase-objects with rather unknown phase-profile (e.g. biological cells) the accuracy of the reconstructed result is hard to estimate. To give an additional measure for the accuracy of the computed result to the comparison of holographic measurements above, we compare acquisitions of microspheres immersed in oil with a known phase-profile.

To show the error over time and across multiple frames, we use a series of video-frames extracted from a MP4 movie-stream acquired using a Huawei P20 cellphone (Shenzhen, China) by relying on the open-source codec FFMPEG [39]. The reference sample (e.g. optical fiber) was acquired using the same camera-settings and equal background of the white-light interference. As a known phase sample we use PMMA microspheres (D = 1 − 20 μm, nsphere = 1.592, micro particles GmbH, Germany) which were applied to a standard coverslip and diluted in custom-mixed immersion oil with known refractive index (noil = 1.5321, Cargille Labs, Series A). The resulting maximum OPD computes as OPD = 2rsphere ⋅ (nspherenoil) and can be used to create ground-truth data for the JL-measurements.

To give a pixel-to-pixel estimate for the resulting error, we create the 2D projection of a perfect 3D microsphere based on the proposed parameters and place them on the centre-coordinates of a sphere in each measurement. Parameters like centre-coordinates and radii were derived from a Hough-Transformation to have a measure of the error for many frames and spheres (exemplary visualised in Fig 5 and S2 Video.

Fig 5. Comparison of expected ground-truth and reconstructed OPD results.

Fig 5

The images show an exemplary frame from a video-sequence ().

During the measurements, we noticed, that since the maximum OPD of the spheres is more than one-λc and the color sensitivity of the cellphone camera is less optimal (e.g. noise and the unavoidable auto-white balance in the video mode), the algorithm has difficulties to recover the quantitative phase of the spheroids correctly. Due to the fact, that we use a cylindrical object as a calibration target the number of measurement points per OPD-class is not equally distributed, which can be an additional factor for artefacts in the reconstruction in cases where the samples have an OPD of more than one-λc. This recalls the need for a proper calibration target (e.g. phase wedge). We partially solved this with a adjusting the spacial sampling of the OPD in the LUT-creation (e.g. linear spacing between pixel-steps rather than OPD-steps) as described earlier.

In order to make sure, that the results are not suffering from a wrapped phase, the TV regularisation parameter has to be tuned more carefully. On the one hand an over-regularized reconstruction results in a smooth OPD solution with lower and underestimates the absolute OPD. On the other hand follows low regularisation in many phase-jumps. We tuned the parameter for the TV-regularisation to meet a balance between over- (e.g. too blurry results) and under-regularized results (e.g. too much phase-wrapping). Additionally we increased the number of iteration (e.g. 400 steps) to make sure that the algorithm converges.

To estimate the error between the expected ground-truth and the regularized/non-regularized reconstruction we compute the pixel-wise percentage error as Err = (OPDGTOPDReconstructed)/OPDmax (Fig 5b and 5c), where OPDmax is the max OPD given by the reference fibers’ profile. The graph in Fig 5j) shows the absolute mean error in percent and standard-deviation for each frame of the video-reconstruction (shown in), where the error is only computed in the masked error of known OPD (i.e. detected microspheres). The TV-regularized result has a much lower mean-error compared to the minimal norm solution but is less robust in situation, where the sample is moving and follows in a motion-blur artefact. In general, our proposed algorithm deals with the wrapped phase much better and produces results with a smaller mean-error and standard-deviation per frame as shown in graph j) in Fig 5. The mean-error for the whole time-series is given by 23.78 ± 2.15 for the minimal-norm solution and 12.58 ± 4.90 for the TV-regularized result.

All results and their corresponding algorithms can be reviewed in our github-repository ([26]).

Discussion

We successfully showed, that by combining methods like the Jamin-Lebedeff interference-based quantitative phase microscope—sometimes considered as useless compared to state of-the-art fluorescent or holographic microscopes—with modern cellphones and 3D printed components, helped the device to a new live. Even more, together with tailored image-processing algorithms, we were able to recover information which was not possible using hitherto existing analogue methods. Jamin-Lebedeff microscopes are not widely spread, which makes accessing our method difficult. Yet, we hope, that our method inspires others to reuse historical lab-equipment carrying huge potential, if combined with modern imaging devices and image-processing algorithms.

The color-coded phase-information enabled us to gain quantitative OPD information in a single exposure, making it advantageous over sequential methods like Differential Phase Contrast (DPC) [33] or Fourier Ptychogarphy Microscopy (FPM) [33, 34] e.g. DPC or FPM e.g. for live-cell imaging where dynamic intra-cellular processes are subject of the observation. Even though industry-grade RGB CMOS cameras are not widely spread, we would like to emphasize, that the method is also applicable to those devices.

One main advantage of the proposed method with the generated LUT from a reference sample is, that it does not rely on specific light-source spectrum or a calibrated camera. Once the reference sample is recorded, many other phase-objects can be acquired under the same experimental conditions. During the reconstruction, we noticed that the method is very robust even in cases where the background was not set to black. A next step could be to detect areas where false-colors e.g. produced by dust in the imaging path or superposing ghost-images cause the algorithm to produce false results. This could lead to a probability how likely the reconstructed matches the expected result in a given experiment. Alternatively this could be solved by introducing an additional mask which forces sample-free regions to be the background-phase. It can also be beneficial to use a wedge-like phase object which introduces a linear phase-ramp and produces better sampling for generating the LUT. Compared to optical fibers, this is rather hard to get with accurate dimensions.

In the recorded video, each frame is processed individually which unfortunately does not preserve the intra-frame phase relationship. This could be accounted for by applying a 3D (x, y, t) TV constrain or using machine-learning approaches which is capable of learning sequential-type data like Long-Short-Term-Memory (LSTM) neural networks or an adapted cost-function which accounts for multiple frames.

In the future we are planning to replace the iterative gradient-based phase-recovery with a trained neural network to further accelerate the phase-recovery. The crucial part is to create a good training dataset with data pairs corresponding to a real-world experiment. With our algorithm this process can be automated by recording a large set of microscopic phase objects and using this for training e.g. a conditional generative adversarial network (cGAN) [34, 35] and directly deploying it on the cellphone.

Another point is that our computational method might be useful not only in biological interference microscopy but also in the polarizing microscopy of minerals. The origin of the phase retardation is different, in that it results from birefringence, but there is a similar problem in that mineral specimens are conventionally cut at 30 micrometers thickness and the birefringence is then be deduced from retardation in length units divided by the known thickness. Mineralogists learn to distinguish the retardation colors of the different orders by eye, but our method might remove ambiguity and the need for skilled observation as well as providing a more accurate and objective estimate.

Supporting information

S1 Video. Comparison of different reconstruction algorithm in live-cell imaging of rotifer.

In this video we give a comparison of raw RGB data, the minimal-norm solution and the TV-regularized iterative algorithm of a live-cell image series with a framerate of 30 frames per second (fps).

(GIF)

S2 Video. Validation of time-series reconstruction of spherical beads.

The graphs give the percentaged error between the expected ground-truth measurements and the reconstruction using regularized and non-regularized computations of the OPD.

(GIF)

Acknowledgments

We thank especially Jan Peychl from the Light Microscopy Facility of the MPI-CBG in Dresden for giving us the opportunity to use the quantitative phase microscope (Q-Phase, Tescan and TELIGHT, Brno, Czech Republic). Special thanks goes to Patrick McCall and Moritz Kreysing who helped us acquiring the reference images using the Q-Phase at the MPI-CBG in Dresden. We also thank Patrick Then from the Leibniz IPHT in Jena for providing fixed cell-samples. We also thank Tobias Tiess and Tina Eschrich from IPHT for providing the fibre used as a reference sample.

Data Availability

All data and image processing algorithms can be found in the github repository: https://github.com/beniroquai/Tensorflow_Jamin-Lebedeff.

Funding Statement

This project was supported by the free state of Thuringia and the DAAD GSSP program for studying abroad.

References

  • 1. Bouchal P, Štrbková L, Dostál Z, Chmelík R, Bouchal Z. Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples. Scientific Reports. 2019;9(1):3608 10.1038/s41598-019-40441-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Conlon IJ, Dunn GA, Mudge AW, Raff MC. Extracellular control of cell size. Nat Cell Biol. 2001;3(10):918–921. 10.1038/ncb1001-918 [DOI] [PubMed] [Google Scholar]
  • 3. Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie. 1873;9(1):413–418. 10.1007/BF02956173 [DOI] [Google Scholar]
  • 4. Siedentopf H, Zsigmondy R. Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Annalen der Physik. 1903;315(1):1–39. 10.1002/andp.19023150102 [DOI] [Google Scholar]
  • 5. Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica. 1942;9(10):974–986. 10.1016/S0031-8914(42)80079-8 [DOI] [Google Scholar]
  • 6. Cogswell CJ, Libertun A, Preza C, Piestun R, King SV. Quantitative phase microscopy through differential interference imaging. Journal of Biomedical Optics. 2008. 10.1117/1.2907328 [DOI] [PubMed] [Google Scholar]
  • 7. Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. In: Microscopy and Microanalysis; 2006. 10.1017/S1431927606063434 [DOI] [PubMed] [Google Scholar]
  • 8. ZICHA D, DUNN GA. An image processing system for cell behaviour studies in subconfluent cultures. Journal of Microscopy. 1995;179(1):11–21. 10.1111/j.1365-2818.1995.tb03609.x [DOI] [Google Scholar]
  • 9.Rodenburg JM. Ptychography and related diffractive imaging methods; 2008.
  • 10.Li J, Chen Q, Zhang J, Zhang Y, Lu L, Zuo C. Highly efficient quantitative phase microscopy using programmable annular LED illumination. [DOI] [PMC free article] [PubMed]
  • 11. Horstmeyer R, Yang C. A phase space model of Fourier ptychographic microscopy. Optics Express. 2014;22(1):338 10.1364/OE.22.000338 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Collakova J, Krizova A, Kollarova V, Dostal Z, Slaba M, Vesely P, et al. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion. Journal of Biomedical Optics. 2015;20(11):111213. 10.1117/1.JBO.20.11.111213 [DOI] [PubMed] [Google Scholar]
  • 13. Slabý T, Kolman P, Dostál Z, Antoš M, Lošťák M, Chmelík R. Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope. Optics Express. 2013;21(12):14747 10.1364/OE.21.014747 [DOI] [PubMed] [Google Scholar]
  • 14. Bon P, Aknoun S, Monneret S, Wattellier B. Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination. Optics Express. 2014;22(7):8654 10.1364/OE.22.008654 [DOI] [PubMed] [Google Scholar]
  • 15. Chanteloup JC. Multiple-wave lateral shearing interferometry for wave-front sensing. Applied Optics. 2005. 10.1364/ao.44.001559 [DOI] [PubMed] [Google Scholar]
  • 16. Popescu G, Ikeda T, Dasari RR, Feld MS. Diffraction phase microscopy for quantifying cell structure and dynamics. Optics letters. 2006;31(6):775–7. 10.1364/ol.31.000775 [DOI] [PubMed] [Google Scholar]
  • 17. Heintzmann R, Gustafsson MGL. Subdiffraction resolution in continuous samples. Nature Photonics. 2009;3(7):362–364. 10.1038/nphoton.2009.102 [DOI] [Google Scholar]
  • 18. van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature protocols. 2011;6(7):991–1009. 10.1038/nprot.2011.336 [DOI] [PubMed] [Google Scholar]
  • 19. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters. 1994;19(11):780 10.1364/ol.19.000780 [DOI] [PubMed] [Google Scholar]
  • 20.Jensen EC. Use of Fluorescent Probes: Their Effect on Cell Biology and Limitations; 2012. [DOI] [PubMed]
  • 21. Stavenga DG, Leertouwer HL, Wilts BD. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin-Lebedeff interference microscopy. Light: Science and Applications. 2013;2(SEPTEMBER). [Google Scholar]
  • 22.Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 2016.
  • 23.Wilts BDBD. Brilliant biophotonics: physical properties, pigmentary tuning & biological implications. s.n.; 2013. Available from: https://www.rug.nl/research/portal/en/publications/brilliant-biophotonics(e5c911ea-79ae-4d90-9b42-25136a2f53c8).html.
  • 24. Seckbach JJ, Kociolek JP. The diatom world. Springer Science + Business Media; 2011. [Google Scholar]
  • 25. Cherry RJ. New techniques of optical microscopy and microspectroscopy. CRC Press; 1991. Available from: https://www.crcpress.com/New-Techniques-of-Optical-Microscopy-and-Microspectroscopy/Cherry/p/book/9780849371172. [Google Scholar]
  • 26.Diederich B, Marsikova B, Heintzmann R. Github Repository Jamin Lebedeff Code; 2019. Available from: https://github.com/beniroquai/Tensorflow_Jamin-Lebedeff. [DOI] [PMC free article] [PubMed]
  • 27. Brown AF, Dunn GA. Microinterferometry of the movement of dry matter in fibroblasts. J Cell Sci. 1989. [DOI] [PubMed] [Google Scholar]
  • 28. Diekmann R, Till K, Müller M, Simonis M, Schüttpelz M, Huser T. Characterization of an industry- grade CMOS camera well suited for single molecule localization microscopy—high performance super-resolution at low cost. Scientific Reports. 2017;7(1):14425 10.1038/s41598-017-14762-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Diederich B, Then P, Jügler A, Förster R, Heintzmann R. cellSTORM—Cost-effective super-resolution on a cellphone using dSTORM. PLOS ONE. 2019;14(1):e0209827 10.1371/journal.pone.0209827 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Fuchs I. Github: FreedCam; 2018. Available from: https://github.com/KillerInk/FreeDcam.
  • 31. Kamilov US, Mansour H, Wohlberg B. A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems. IEEE Signal Processing Letters. 2017;24(12):1872–1876. 10.1109/LSP.2017.2763583 [DOI] [Google Scholar]
  • 32.Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms*; 1992. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.1675&rep=rep1&type=pdf.
  • 33. Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope. Optics Express. 2015;23(9):11394 10.1364/OE.23.011394 [DOI] [PubMed] [Google Scholar]
  • 34. Horstmeyer R, Yang C. Diffraction tomography with Fourier ptychography. 2015;3(8). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Isola P, Zhu JY, Zhou T, Efros AA. Image-to-Image Translation with Conditional Adversarial Networks. 2016.
  • 36.Kingma, Diederik P. and Ba, Jimmy L. Adam: A Method for Stochastic Optimization. 2014.
  • 37.Diederich B, Marsikova B, Heintzmann R. Github Repository Jamin Lebedeff Code for ImJoy; 2019. Available from: https://github.com/bionanoimaging/UC2-ImJoy-Plugins. [DOI] [PMC free article] [PubMed]
  • 38.Ouyang W, Mueller F, Hjelmare M, Lundberg E, Zimmer C. ImJoy: an open-source computational platform for the deep learning era. 1. May 2019. http://arxiv.org/abs/1905.13105. Accessed August 25, 2019. [DOI] [PubMed]
  • 39.FFmpeg Developers. (2016). ffmpeg tool (Version be1d324) [Software] Available from http://ffmpeg.org/

Decision Letter 0

Yuval Garini

24 Oct 2019

PONE-D-19-26395

One-Shot phase-recovery using a Cellphone RGB Camera on a Jamin-Lebedeff Microscope

PLOS ONE

Dear Mr. Diederich,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but requires major revisions to meet PLOS ONE’s publication criteria. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

The revisions relates to:

1. Further phase measurements which are quantified and compared with respect to 'ground truth' phase object,

2. Quantitative analysis of the temporal and spatial standard deviations of the obtained OPD map.

We would appreciate receiving your revised manuscript by Dec 08 2019 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

Yuval Garini, Ph.D.

Academic Editor

PLOS ONE

Journal Requirements:

1. When submitting your revision, we need you to address these additional requirements.

Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

http://www.journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and http://www.journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Partly

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: N/A

Reviewer #2: I Don't Know

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The authors suggest using Jamin-Lebedeff (JL) polarization interference microscopy for quantitative phase microscopy of biological cells. The optical path difference (OPD) between the sample and the reference, which should be empty, is encoded into a colour by white-light interference. Then, a colour-table is used to calculate the OPD map. The paper uses a phase retrieval method relying on a single-shot measurement, allowing real-time quantitative phase imaging. The system includes a cellphone with an RGB camera. The problem in the paper is that there are not enough experimental results, which are quantified in respect to a ground truth. Cells might come in different shapes and heights. I think you should add imaging of known diameter microscopic beads (5-10 micron), and also add a quantitative analysis that gives the values of the temporal and spatial standard deviations of the obtained OPD map. Finally, the video does not run. Please submit in a different format.

Reviewer #2: To meet the need of quantitative phase measurements, a cellphone RGB camera is used to capture image from a Jamin-Lebedeff microscope and look-up-table (LUT) is created to convert the measured RGB signal of a phase-sample into an OPD. The method is straightforward, but the accuracy of phase measurement is uncertain. While the smart phone can compute the phase directly, it needs extra effort to get a good images than using the regular microscope camera directly. The contribution to demonstrated application is very limited.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

**********

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2019 Dec 31;14(12):e0227096. doi: 10.1371/journal.pone.0227096.r002

Author response to Decision Letter 0


10 Dec 2019

Dear editor,

Thank you very much for summarizing the issues aroused by the reviewers. We did a generous analysis of long-time image acquisition with ground-truth data which can be found in the manuscript and in the newly attached Supplementary video.

We give a step-by-step explanation of all improvements in the rebuttal letter.

If you have any questions, please don't hesitate to get back to us at any time.

Kind regards

Benedict Diederich

Attachment

Submitted filename: Plos response to reviewers.pdf

Decision Letter 1

Yuval Garini

13 Dec 2019

One-Shot phase-recovery using a Cellphone RGB Camera on a Jamin-Lebedeff Microscope

PONE-D-19-26395R1

Dear Dr. Diederich,

Thank you for sending the revised manuscript. It answers all the issues raised by the authors and has been judged scientifically suitable for publication. It is therefore formally accepted for publication once it complies with all outstanding technical requirements.

Note however the request for minor changes below.

Within one week, you will receive an e-mail containing information on the amendments required prior to publication. When all required modifications have been addressed, you will receive a formal acceptance letter and your manuscript will proceed to our production department and be scheduled for publication.

Shortly after the formal acceptance letter is sent, an invoice for payment will follow. To ensure an efficient production and billing process, please log into Editorial Manager at https://www.editorialmanager.com/pone/, click the "Update My Information" link at the top of the page, and update your user information. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, you must inform our press team as soon as possible and no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

With kind regards,

Yuval Garini, Ph.D.

Academic Editor

PLOS ONE

MINOR CHANGES: 

Please go over the manuscript to clarify minor editing issues such as:

1. Page 6, line 198 - it points to Fig 4 (blue) - is it Fig 4a? Please add the exact figure.

2. Page 6 lines 199-200 - Which figure is it? Fig 4b?

3. Same place, I think it should be a yellow arrow. Also in the figure caption.

4. Ensure that all figure references are exact (i.e. Fig 4b).

5. Page 8, line 288: what is (4, red circle)? If it is Figure 4, there are no circles in figure 4.

6. Page 10, line 353: The Err is defined. Accordingly, the value should be a number smaller than 1.

    But the values given are large. Explain

7. The links in ref's 26, 31 does not work.

8. Page 8, line 261: What is 3? Fig. 3?

Acceptance letter

Yuval Garini

18 Dec 2019

PONE-D-19-26395R1

One-Shot phase-recovery using a Cellphone RGB Camera on a Jamin-Lebedeff Microscope

Dear Dr. Diederich:

I am pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

For any other questions or concerns, please email plosone@plos.org.

Thank you for submitting your work to PLOS ONE.

With kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Prof. Yuval Garini

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Video. Comparison of different reconstruction algorithm in live-cell imaging of rotifer.

    In this video we give a comparison of raw RGB data, the minimal-norm solution and the TV-regularized iterative algorithm of a live-cell image series with a framerate of 30 frames per second (fps).

    (GIF)

    S2 Video. Validation of time-series reconstruction of spherical beads.

    The graphs give the percentaged error between the expected ground-truth measurements and the reconstruction using regularized and non-regularized computations of the OPD.

    (GIF)

    Attachment

    Submitted filename: Plos response to reviewers.pdf

    Data Availability Statement

    All data and image processing algorithms can be found in the github repository: https://github.com/beniroquai/Tensorflow_Jamin-Lebedeff.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES