Skip to main content
Data in Brief logoLink to Data in Brief
. 2019 Dec 13;28:104956. doi: 10.1016/j.dib.2019.104956

Single-crystal X-ray diffraction dataset for 3,5-difluoro-2,6-bis(4-iodophenoxy)-4-phenoxypyridine

Andrew J Peloquin a, Khadijutal Kobra a, Cynthia A Corley b, Colin D McMillen a, Timm A Knoerzer b, William T Pennington a, Scott T Iacono b,
PMCID: PMC6938893  PMID: 31909100

Abstract

The data in this article are related to the research article “Utilizing the Regioselectivity of Perfluoropyridine towards the Preparation of Phenyoxyacetylene Precursors for Partially Fluorinated Polymers of Diverse Architecture.”1 The X-ray structure analysis of 3,5-difluoro-2,6-bis(4-iodophenoxy)-4-phenoxypyridine has revealed an asymmetric unit containing two molecules, linked via both Type I and Type II C–I∙∙∙I–C halogen bonding interactions. The packing is further consolidated via Ar–H∙∙∙π interactions. This compound has been utilized for the synthesis of monomers for linear and network polymers.

Keywords: Pentafluoropyrinde, Perfluoropyridine, Halogen bonding, Solid state X-ray


Specifications table

Subject Organic Chemistry
Specific subject area Solid-state interactions in 3,5-difluror-2,6-bis(4-iodophenoxy)-4-phenoxypyridine
Type of data Tables of detailed X-ray crystal data and Cartesian coordinates
Figures of X-ray crystal packing
How data were acquired Single-crystal X-ray diffraction
Instrument: Bruker D8 Venture diffractometer equipped with Mo Kα radiation and a Photon 100 detector
Software: SHELXT 2014/5 and SHELXL 2016/6
Data format X-ray (raw and analysed)
Parameters for data collection Hemispheres of data were collected using strategies of scans about the omega and phi axes with frame widths of 0.5. Data collection, unit cell determination, data reduction, absorption correction, and scaling were performed using the Bruker Apex3 software suite: Apex3, AXScale and SAINT, version 2017.3-0; Bruker AXS Inc.: Madison, WI, 2017.
Data source location Department of Chemistry and Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO
Department of Chemistry, Clemson university, Clemson, SC
Data accessibility The Cambridge Crystallographic Data Centre no. CCDC 1947916 (http://www.ccdc.cam.ac.uk/conts/retrieving.html, email: deposit@ccdc.cam.ac.uk.).
Related research article C.A. Corley, K. Kobra, A.J. Peloquin, K. Salmon, L. Gumireddy, T.A. Knoerzer, C.D. McMillen, W.T. Pennington, A.M. Schoffstall, S.T. Iacono. Utilizing the Regioselectivity of Perfluoropyridine towards the Preparation of Phenyoxyacetylene Precursors for Partially Fluorinated Polymers of Diverse Architecture, J. Fluorine Chem., 2019, 228, IN PRESS, https://doi.org/10.1016/j.jfluchem.2019.109409.
Value of the Data
  • The data points to the intermolecular halogen bonding in the solid state of the title compound.

  • Halogen bonding, being a specific and directional interaction, can be used to rationally design and modify solid state packing.

  • This compound has been demonstrated to be a versatile starting point for the synthesis of monomeric materials for high performance polymers.

1. Data

The crystal packing of 3,5-difluoro-2,6-bis(4-iodophenoxy)-4-phenoxypyridine is shown, with C–I∙∙∙I–C Type I and Type II (Fig. 1) and Ar–H∙∙∙π (Fig. 2) interactions highlighted. What are also presented in the article are the detailed X-ray crystal data (Table 1, Table 2), atomic coordinates (Table 3), and bond lengths and angles (Table 4, Table 5, Table 6, Table 7).

Fig. 1.

Fig. 1

The crystal packing of D8_1390_PFPyPhI. Displacement ellipsoids are shown at the 50% probability level. Ar–I∙∙∙I interactions are shown as magenta dashed lines.

Fig. 2.

Fig. 2

Ar–H∙∙∙π interactions in D8_1390_PFPyPhI (shown as magenta dashed lines). Displacement ellipsoids are shown at the 50% probability level.

Table 1.

Sample and crystal data for D8_1390_PFPyPhI.

Identification code D8_1390_PFPyPhI
Chemical formula C23H13F2I2NO3
Formula weight 643.14 g/mol
Temperature 100 (2) K
Wavelength 0.71073 Å
Crystal size 0.067 × 0.088 × 0.450 mm
Crystal system orthorhombic
Space group P n n 2
Unit cell dimensions a = 23.9615 (11) Å α = 90°
b = 30.1347 (13) Å β = 90°
c = 5.8713 (2) Å γ = 90°
Volume 4239.5 (3) Å3
Z 8
Density (calculated) 2.015 g/cm3
Absorption coefficient 3.010 mm−1
F(000) 2448

Table 2.

Data collection and structure refinement for D8_1390_PFPyPhI.

Theta range for data collection 2.64–25.50°
Index ranges −29 ≤ h<=28, −36 ≤ k<=36, −6 ≤ l<=7
Reflections collected 34227
Independent reflections 7300 [R (int) = 0.0568]
Max. and min. transmission 1.0000 and 0.9225
Structure solution technique direct methods
Structure solution program SHELXT 2014/5 (Sheldrick, 2014)
Refinement method Full-matrix least-squares on F2
Refinement program SHELXL-2016/6 (Sheldrick, 2016)
Function minimized Σw (Fo2 - Fc2)2
Data/restraints/parameters 7300/1/559
Goodness-of-fit on F2 1.034
Δ/σmax 0.001
Final R indices 5749 data; I > 2σ(I) R1 = 0.0392, wR2 = 0.0928
all data R1 = 0.0584, wR2 = 0.1029
Weighting scheme w = 1/[σ2(Fo2) + (0.0458P)2 + 10.9478P]
where P = (Fo2 + 2Fc2)/3
Absolute structure parameter −0.009 (15)
Largest diff. peak and hole 2.878 and −0.918 eÅ−3
R.M.S. deviation from mean 0.137 eÅ−3

Table 3.

Atomic coordinates and equivalent isotropic atomic displacement parameters (Å2) for D8_1390_PFPyPhI. U (eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x/a y/b z/c U (eq)
I1 0.57328 (3) 0.45589 (2) 0.92494 (12) 0.02996 (18)
I2 0.77564 (4) 0.46501 (2) 0.52911 (17) 0.0435 (2)
I3 0.56985 (3) 0.54613 (2) 0.42247 (12) 0.03046 (18)
I4 0.77216 (3) 0.54987 (2) 0.02299 (17) 0.0400 (2)
F1 0.6935 (3) 0.2367 (2) 0.6209 (10) 0.0373 (16)
F2 0.5454 (3) 0.2084 (2) 0.1314 (12) 0.0384 (16)
F3 0.6689 (3) 0.7766 (2) 0.1299 (11) 0.0443 (18)
F4 0.5219 (3) 0.7947 (2) 0.6569 (13) 0.0477 (19)
O1 0.5822 (3) 0.2758 (2) 0.3963 (13) 0.0259 (16)
O2 0.7308 (3) 0.3016 (2) 0.9043 (13) 0.0272 (16)
O3 0.6013 (3) 0.1890 (3) 0.7198 (14) 0.039 (2)
O4 0.5648 (3) 0.7278 (2) 0.9081 (14) 0.0294 (16)
O5 0.7107 (3) 0.7100 (2) 0.3974 (13) 0.0286 (16)
O6 0.5721 (3) 0.8189 (3) 0.2461 (15) 0.045 (2)
N1 0.6573 (3) 0.2874 (3) 0.1526 (15) 0.0232 (19)
N2 0.6388 (3) 0.7205 (3) 0.6532 (15) 0.0239 (19)
C1 0.5781 (4) 0.3963 (3) 0.7419 (18) 0.023 (2)
C2 0.5554 (4) 0.3582 (3) 0.8307 (17) 0.022 (2)
C3 0.5593 (4) 0.3186 (3) 0.7111 (18) 0.022 (2)
C4 0.5851 (4) 0.3171 (3) 0.502 (2) 0.022 (2)
C5 0.6080 (4) 0.3558 (3) 0.4080 (18) 0.023 (2)
C6 0.6045 (4) 0.3951 (3) 0.526 (2) 0.023 (2)
C7 0.7624 (4) 0.4101 (3) 0.3158 (18) 0.026 (2)
C8 0.7812 (4) 0.3691 (4) 0.3850 (19) 0.032 (3)
C9 0.7701 (5) 0.3323 (3) 0.2490 (19) 0.031 (3)
C10 0.7418 (4) 0.3386 (3) 0.045 (2) 0.025 (2)
C11 0.7222 (4) 0.3786 (3) 0.9779 (18) 0.029 (3)
C12 0.7332 (4) 0.4156 (3) 0.1121 (18) 0.030 (3)
C13 0.6117 (4) 0.2651 (3) 0.2045 (18) 0.024 (2)
C14 0.6839 (4) 0.2779 (3) 0.9639 (16) 0.023 (2)
C15 0.6665 (4) 0.2439 (4) 0.8199 (18) 0.027 (2)
C16 0.6202 (5) 0.2196 (3) 0.877 (2) 0.030 (3)
C17 0.5924 (4) 0.2306 (3) 0.073 (2) 0.027 (3)
C18 0.5939 (4) 0.1451 (4) 0.777 (2) 0.030 (3)
C19 0.6181 (4) 0.1259 (4) 0.966 (2) 0.041 (3)
C20 0.6110 (5) 0.0809 (4) 0.004 (3) 0.041 (3)
C21 0.5812 (5) 0.0545 (4) 0.848 (3) 0.052 (4)
C22 0.5580 (5) 0.0749 (4) 0.661 (3) 0.050 (4)
C23 0.5641 (5) 0.1201 (4) 0.621 (2) 0.040 (3)
C24 0.5695 (4) 0.6063 (3) 0.2409 (18) 0.024 (2)
C25 0.5450 (4) 0.6429 (3) 0.3354 (18) 0.024 (2)
C26 0.5452 (4) 0.6831 (3) 0.2201 (18) 0.025 (2)
C27 0.5706 (4) 0.6863 (3) 0.010 (2) 0.023 (2)
C28 0.5963 (4) 0.6486 (3) 0.913 (2) 0.030 (2)
C29 0.5950 (4) 0.6091 (3) 0.030 (2) 0.028 (2)
C30 0.7535 (4) 0.6037 (4) 0.8061 (19) 0.029 (3)
C31 0.7249 (4) 0.5958 (4) 0.6057 (19) 0.034 (3)
C32 0.7106 (4) 0.6324 (3) 0.4692 (18) 0.030 (3)
C33 0.7251 (4) 0.6739 (3) 0.535 (2) 0.029 (2)
C34 0.7532 (5) 0.6814 (4) 0.7389 (19) 0.029 (3)
C35 0.7678 (4) 0.6461 (3) 0.8745 (18) 0.028 (2)
C36 0.5915 (4) 0.7407 (4) 0.7151 (19) 0.028 (2)
C37 0.6631 (4) 0.7324 (3) 0.4639 (17) 0.028 (3)
C38 0.6432 (5) 0.7665 (4) 0.3287 (19) 0.032 (3)
C39 0.5953 (4) 0.7879 (4) 0.393 (2) 0.035 (3)
C40 0.5696 (5) 0.7749 (4) 0.589 (2) 0.036 (3)
C41 0.5747 (4) 0.8642 (4) 0.295 (2) 0.033 (3)
C42 0.6020 (5) 0.8813 (4) 0.480 (2) 0.043 (3)
C43 0.6030 (5) 0.9271 (4) 0.507 (3) 0.049 (3)
C44 0.5775 (6) 0.9553 (5) 0.358 (3) 0.059 (5)
C45 0.5498 (6) 0.9366 (4) 0.168 (3) 0.059 (4)
C46 0.5475 (5) 0.8905 (4) 0.137 (2) 0.047 (3)

Table 4.

Bond lengths (Å) for D8_1390_PFPyPhI.

I1–C1 2.095 (9) I1–C2 3.026 (10)
I1–C6 3.065 (11) I1–I3 3.9919 (9)
I2–C7 2.099 (10) I2–C8 3.015 (11)
I2–C12 3.041 (11) I2–I4 3.8673 (12)
I3–C24 2.104 (10) I3–C25 3.019 (10)
I3–C29 3.046 (12) I4–C30 2.109 (11)
I4–C35 3.031 (11) I4–C31 3.033 (12)
F1–C15 1.353 (11) F2–C17 1.356 (12)
F3–C38 1.354 (13) F4–C40 1.351 (13)
O1–C13 1.369 (12) O1–C4 1.393 (11)
O2–C14 1.377 (12) O2–C10 1.413 (13)
O3–C18 1.377 (13) O3–C16 1.379 (13)
O4–C36 1.358 (13) O4–C27 1.393 (12)
O5–C37 1.381 (13) O5–C33 1.400 (14)
O6–C39 1.388 (13) O6–C41 1.394 (14)
N1–C14 1.310 (13) N1–C13 1.319 (13)
N2–C37 1.305 (13) N2–C36 1.337 (14)
C1–C2 1.374 (14) C1–C6 1.416 (16)
C2–C3 1.387 (14) C2–H2 0.95
C3–C4 1.375 (15) C3–H3 0.95
C4–C5 1.402 (14) C5–C6 1.375 (14)
C5–H5 0.95 C6–H6 0.95
C7–C8 1.377 (14) C7–C12 1.396 (15)
C8–C9 1.390 (16) C8–H8 0.95
C9–C10 1.388 (17) C9–H9 0.95
C10–C11 1.355 (13) C11–C12 1.389 (14)
C11–H11 0.95 C12–H12 0.95
C13–C17 1.372 (14) C14–C15 1.392 (14)
C15–C16 1.372 (16) C16–C17 1.374 (15)
C18–C19 1.379 (16) C18–C23 1.384 (16)
C19–C20 1.383 (15) C19–H19 0.95
C20–C21 1.406 (19) C20–H20 0.95
C21–C22 1.38 (2) C21–H21 0.95
C22–C23 1.388 (17) C22–H22 0.95
C23–H23 0.95 C24–C25 1.365 (14)
C24–C29 1.385 (16) C25–C26 1.388 (14)
C25–H25 0.95 C26–C27 1.377 (16)
C26–H26 0.95 C27–C28 1.413 (14)
C28–C29 1.372 (14) C28–H28 0.95
C29–H29 0.95 C30–C31 1.382 (15)
C30–C35 1.385 (15) C31–C32 1.407 (15)
C31–H31 0.95 C32–C33 1.353 (14)
C32–H32 0.95 C33–C34 1.392 (18)
C34–C35 1.374 (15) C34–H34 0.95
C35–H35 0.95 C36–C40 1.372 (15)
C37–C38 1.384 (15) C38–C39 1.367 (16)
C39–C40 1.366 (16) C41–C42 1.370 (17)
C41–C46 1.384 (16) C42–C43 1.388 (16)
C42–H42 0.95 C43–C44 1.36 (2)
C43–H43 0.95 C44–C45 1.42 (2)
C44–H44 0.95 C45–C46 1.404 (17)
C45–H45 0.95 C46–H46 0.95

Table 5.

Bond angles (°) for D8_1390_PFPyPhI.

C1–I1–C2 23.2 (4) C1–I1–C6 23.5 (3)
C2–I1–C6 46.6 (3) C1–I1–I3 163.8 (3)
C2–I1–I3 142.52 (19) C6–I1–I3 166.18 (17)
C7–I2–C8 23.6 (4) C7–I2–C12 23.5 (4)
C8–I2–C12 47.1 (3) C7–I2–I4 164.9 (3)
C8–I2–I4 147.7 (2) C12–I2–I4 156.99 (19)
C24–I3–C25 23.2 (4) C24–I3–C29 23.1 (4)
C25–I3–C29 46.3 (3) C24–I3–I1 102.5 (3)
C25–I3–I1 122.5 (2) C29–I3–I1 82.3 (2)
C30–I4–C35 23.6 (4) C30–I4–C31 23.4 (4)
C35–I4–C31 47.0 (3) C30–I4–I2 93.4 (3)
C35–I4–I2 114.70 (19) C31–I4–I2 72.8 (2)
C13–O1–C4 123.5 (8) C14–O2–C10 114.4 (7)
C18–O3–C16 121.5 (9) C36–O4–C27 124.7 (8)
C37–O5–C33 114.8 (8) C39–O6–C41 120.9 (9)
C14–N1–C13 119.1 (9) C37–N2–C36 119.0 (10)
C2–C1–C6 119.6 (9) C2–C1–I1 120.0 (8)
C6–C1–I1 120.4 (7) C1–C2–C3 120.0 (10)
C1–C2–I1 36.9 (5) C3–C2–I1 156.8 (7)
C1–C2–H2 120.0 C3–C2–H2 120.0
I1–C2–H2 83.2 C4–C3–C2 120.7 (9)
C4–C3–H3 119.7 C2–C3–H3 119.7
C3–C4–O1 113.8 (9) C3–C4–C5 120.0 (9)
O1–C4–C5 126.0 (10) C6–C5–C4 119.5 (10)
C6–C5–H5 120.2 C4–C5–H5 120.2
C5–C6–C1 120.1 (9) C5–C6–I1 156.2 (8)
C1–C6–I1 36.1 (5) C5–C6–H6 119.9
C1–C6–H6 119.9 I1–C6–H6 83.8
C8–C7–C12 121.5 (10) C8–C7–I2 118.9 (8)
C12–C7–I2 119.6 (8) C7–C8–C9 119.0 (10)
C7–C8–I2 37.6 (6) C9–C8–I2 156.4 (8)
C7–C8–H8 120.5 C9–C8–H8 120.5
I2–C8–H8 83.0 C10–C9–C8 118.7 (9)
C10–C9–H9 120.7 C8–C9–H9 120.7
C11–C10–C9 122.8 (11) C11–C10–O2 117.8 (11)
C9–C10–O2 119.3 (9) C10–C11–C12 118.8 (10)
C10–C11–H11 120.6 C12–C11–H11 120.6
C11–C12–C7 119.1 (9) C11–C12–I2 155.9 (7)
C7–C12–I2 36.9 (5) C11–C12–H12 120.4
C7–C12–H12 120.4 I2–C12–H12 83.6
N1–C13–O1 119.8 (9) N1–C13–C17 122.4 (10)
O1–C13–C17 117.8 (9) N1–C14–O2 119.9 (9)
N1–C14–C15 122.0 (10) O2–C14–C15 118.1 (9)
F1–C15–C16 120.6 (10) F1–C15–C14 120.0 (10)
C16–C15–C14 119.2 (10) C15–C16–C17 117.7 (10)
C15–C16–O3 117.5 (11) C17–C16–O3 124.4 (10)
F2–C17–C13 120.9 (10) F2–C17–C16 119.6 (9)
C13–C17–C16 119.5 (10) O3–C18–C19 123.0 (10)
O3–C18–C23 115.3 (11) C19–C18–C23 121.5 (11)
C18–C19–C20 119.1 (12) C18–C19–H19 120.4
C20–C19–H19 120.4 C19–C20–C21 120.9 (13)
C19–C20–H20 119.5 C21–C20–H20 119.5
C22–C21–C20 117.9 (12) C22–C21–H21 121.0
C20–C21–H21 121.0 C21–C22–C23 122.1 (12)
C21–C22–H22 118.9 C23–C22–H22 118.9
C18–C23–C22 118.3 (12) C18–C23–H23 120.8
C22–C23–H23 120.8 C25–C24–C29 120.3 (10)
C25–C24–I3 119.4 (8) C29–C24–I3 120.2 (7)
C24–C25–C26 120.3 (10) C24–C25–I3 37.4 (5)
C26–C25–I3 157.7 (8) C24–C25–H25 119.8
C26–C25–H25 119.8 I3–C25–H25 82.5
C27–C26–C25 119.9 (10) C27–C26–H26 120.0
C25–C26–H26 120.0 C26–C27–O4 113.9 (9)
C26–C27–C28 119.7 (10) O4–C27–C28 126.3 (10)
C29–C28–C27 119.2 (10) C29–C28–H28 120.4
C27–C28–H28 120.4 C28–C29–C24 120.5 (10)
C28–C29–I3 157.1 (8) C24–C29–I3 36.6 (5)
C28–C29–H29 119.7 C24–C29–H29 119.7
I3–C29–H29 83.1 C31–C30–C35 121.9 (11)
C31–C30–I4 119.1 (8) C35–C30–I4 118.8 (8)
C30–C31–C32 118.1 (10) C30–C31–I4 37.4 (6)
C32–C31–I4 155.4 (7) C30–C31–H31 121.0
C32–C31–H31 121.0 I4–C31–H31 83.6
C33–C32–C31 120.0 (10) C33–C32–H32 120.0
C31–C32–H32 120.0 C32–C33–C34 121.4 (11)
C32–C33–O5 119.3 (11) C34–C33–O5 119.3 (9)
C35–C34–C33 119.7 (10) C35–C34–H34 120.2
C33–C34–H34 120.2 C34–C35–C30 119.0 (10)
C34–C35–I4 156.4 (8) C30–C35–I4 37.6 (6)
C34–C35–H35 120.5 C30–C35–H35 120.5
I4–C35–H35 83.0 N2–C36–O4 119.8 (9)
N2–C36–C40 121.3 (10) O4–C36–C40 119.0 (10)
N2–C37–O5 118.4 (9) N2–C37–C38 122.6 (11)
O5–C37–C38 119.1 (9) F3–C38–C39 120.8 (10)
F3–C38–C37 120.3 (11) C39–C38–C37 118.8 (10)
C40–C39–C38 118.4 (11) C40–C39–O6 122.5 (11)
C38–C39–O6 118.9 (11) F4–C40–C39 120.2 (11)
F4–C40–C36 119.9 (11) C39–C40–C36 119.9 (11)
C42–C41–C46 122.7 (12) C42–C41–O6 123.7 (10)
C46–C41–O6 113.6 (11) C41–C42–C43 118.1 (12)
C41–C42–H42 120.9 C43–C42–H42 120.9
C44–C43–C42 122.8 (15) C44–C43–H43 118.6
C42–C43–H43 118.6 C43–C44–C45 117.9 (13)
C43–C44–H44 121.0 C45–C44–H44 121.0
C46–C45–C44 120.8 (12) C46–C45–H45 119.6
C44–C45–H45 119.6 C41–C46–C45 117.7 (13)
C41–C46–H46 121.2 C45–C46–H46 121.2

Table 6.

Anisotropic atomic displacement parameters (Å2) for D8_1390_PFPyPhI. The anisotropic atomic displacement factor exponent takes the form: 2π2 [h2 a*2 U11 + ... + 2 h k a* b* U12].

U11 U22 U33 U23 U13 U12
I1 0.0390 (4) 0.0297 (3) 0.0212 (4) −0.0053 (4) 0.0019 (4) 0.0059 (3)
I2 0.0665 (5) 0.0345 (4) 0.0295 (4) 0.0000 (5) −0.0012 (5) −0.0088 (4)
I3 0.0388 (4) 0.0310 (3) 0.0216 (4) 0.0018 (4) 0.0017 (4) −0.0062 (3)
I4 0.0577 (5) 0.0340 (4) 0.0282 (4) −0.0037 (5) 0.0000 (4) 0.0005 (3)
F1 0.044 (4) 0.052 (4) 0.016 (3) −0.006 (3) −0.001 (3) 0.020 (3)
F2 0.036 (4) 0.040 (4) 0.039 (4) −0.012 (3) 0.004 (3) −0.007 (3)
F3 0.041 (4) 0.067 (5) 0.025 (4) 0.017 (3) −0.005 (3) −0.020 (3)
F4 0.036 (4) 0.059 (4) 0.048 (5) 0.013 (4) −0.003 (4) 0.016 (3)
O1 0.032 (4) 0.027 (3) 0.019 (4) −0.005 (3) 0.005 (3) 0.001 (3)
O2 0.022 (4) 0.037 (4) 0.022 (4) −0.002 (4) 0.007 (4) 0.007 (3)
O3 0.049 (5) 0.045 (5) 0.024 (5) −0.011 (4) −0.011 (4) 0.006 (4)
O4 0.026 (4) 0.038 (4) 0.025 (4) 0.009 (4) 0.007 (4) 0.004 (3)
O5 0.029 (4) 0.036 (4) 0.021 (4) 0.007 (3) 0.002 (3) −0.012 (3)
O6 0.053 (6) 0.047 (5) 0.035 (5) 0.010 (4) −0.023 (4) −0.006 (4)
N1 0.025 (5) 0.027 (5) 0.018 (5) −0.002 (4) 0.000 (4) 0.008 (4)
N2 0.021 (5) 0.035 (5) 0.016 (5) 0.001 (4) −0.004 (4) −0.009 (4)
C1 0.027 (6) 0.027 (5) 0.015 (6) −0.005 (4) 0.000 (4) 0.010 (4)
C2 0.028 (5) 0.028 (5) 0.010 (5) 0.004 (4) 0.002 (4) 0.011 (4)
C3 0.022 (5) 0.026 (5) 0.019 (6) 0.005 (4) 0.004 (4) 0.003 (4)
C4 0.020 (5) 0.027 (5) 0.020 (6) −0.002 (5) 0.002 (4) 0.008 (4)
C5 0.028 (5) 0.033 (5) 0.009 (5) −0.001 (5) 0.001 (5) 0.003 (4)
C6 0.023 (5) 0.026 (5) 0.021 (5) 0.005 (6) 0.003 (5) 0.000 (4)
C7 0.032 (6) 0.026 (6) 0.022 (6) −0.001 (4) 0.003 (5) −0.005 (5)
C8 0.029 (6) 0.047 (6) 0.020 (7) 0.009 (5) 0.000 (5) 0.010 (5)
C9 0.042 (7) 0.025 (6) 0.026 (6) 0.006 (5) 0.007 (5) 0.018 (5)
C10 0.024 (5) 0.030 (5) 0.023 (6) 0.008 (6) 0.011 (5) 0.000 (4)
C11 0.028 (6) 0.035 (6) 0.022 (8) 0.008 (4) 0.001 (4) 0.002 (4)
C12 0.029 (6) 0.030 (6) 0.031 (7) 0.011 (4) 0.004 (5) 0.004 (5)
C13 0.019 (5) 0.034 (6) 0.019 (6) −0.003 (4) 0.002 (4) 0.008 (5)
C14 0.022 (5) 0.031 (5) 0.015 (6) 0.001 (4) 0.002 (4) 0.012 (4)
C15 0.036 (6) 0.035 (6) 0.010 (5) −0.002 (4) 0.000 (5) 0.020 (5)
C16 0.035 (6) 0.026 (5) 0.029 (7) −0.010 (5) −0.008 (5) 0.007 (5)
C17 0.025 (6) 0.027 (5) 0.029 (8) −0.003 (5) −0.004 (5) −0.001 (4)
C18 0.026 (6) 0.030 (6) 0.034 (7) −0.009 (5) −0.003 (5) 0.005 (5)
C19 0.026 (6) 0.047 (7) 0.049 (10) −0.009 (6) −0.001 (5) 0.003 (5)
C20 0.035 (6) 0.046 (7) 0.043 (8) 0.000 (7) −0.002 (6) 0.004 (5)
C21 0.039 (7) 0.034 (7) 0.084 (13) −0.013 (7) 0.010 (7) −0.010 (6)
C22 0.047 (8) 0.047 (8) 0.056 (10) −0.023 (7) −0.006 (7) −0.010 (6)
C23 0.034 (7) 0.051 (8) 0.034 (8) −0.011 (6) −0.008 (5) 0.007 (6)
C24 0.024 (6) 0.032 (6) 0.016 (6) 0.003 (4) −0.001 (4) −0.003 (4)
C25 0.019 (5) 0.035 (6) 0.018 (6) −0.003 (4) −0.002 (4) −0.002 (4)
C26 0.023 (5) 0.035 (6) 0.017 (6) −0.001 (4) −0.005 (4) 0.003 (5)
C27 0.015 (5) 0.031 (5) 0.024 (6) −0.002 (5) 0.004 (5) −0.003 (4)
C28 0.032 (6) 0.044 (6) 0.015 (6) 0.005 (5) 0.004 (6) −0.007 (5)
C29 0.033 (6) 0.033 (5) 0.019 (5) −0.002 (6) −0.004 (6) −0.005 (4)
C30 0.027 (6) 0.039 (6) 0.021 (6) −0.001 (5) 0.003 (5) 0.000 (5)
C31 0.033 (6) 0.040 (6) 0.030 (7) −0.016 (5) 0.002 (5) −0.011 (5)
C32 0.023 (5) 0.047 (6) 0.020 (7) −0.013 (5) −0.002 (4) −0.009 (5)
C33 0.023 (5) 0.042 (6) 0.022 (5) −0.005 (7) 0.014 (5) −0.011 (4)
C34 0.035 (6) 0.032 (6) 0.021 (6) 0.000 (5) 0.003 (5) −0.016 (5)
C35 0.028 (6) 0.040 (6) 0.016 (6) −0.009 (5) 0.002 (4) −0.011 (5)
C36 0.026 (6) 0.037 (6) 0.021 (6) 0.011 (5) −0.003 (5) −0.008 (5)
C37 0.026 (6) 0.040 (6) 0.018 (7) 0.002 (4) −0.002 (4) −0.014 (5)
C38 0.039 (7) 0.043 (7) 0.016 (6) 0.011 (5) −0.008 (5) −0.017 (5)
C39 0.028 (6) 0.045 (7) 0.032 (8) 0.019 (6) −0.013 (6) −0.009 (5)
C40 0.036 (7) 0.042 (7) 0.029 (8) 0.003 (5) −0.008 (5) 0.002 (5)
C41 0.026 (6) 0.038 (6) 0.034 (8) 0.013 (5) −0.001 (5) −0.003 (5)
C42 0.035 (7) 0.057 (7) 0.038 (9) 0.020 (6) −0.011 (5) −0.001 (5)
C43 0.030 (6) 0.050 (7) 0.067 (10) −0.008 (8) −0.002 (7) −0.003 (5)
C44 0.052 (9) 0.048 (8) 0.078 (14) 0.013 (7) −0.006 (8) 0.011 (7)
C45 0.070 (10) 0.041 (8) 0.065 (11) 0.023 (7) −0.012 (8) 0.002 (7)
C46 0.037 (7) 0.074 (10) 0.032 (7) 0.017 (7) −0.006 (6) −0.011 (7)

Table 7.

Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å2) for D8_1390_PFPyPhI.

x/a y/b z/c U (eq)
H2 0.5370 0.3590 0.9741 0.027
H3 0.5439 0.2923 0.7741 0.027
H5 0.6258 0.3549 0.2635 0.028
H6 0.6198 0.4214 0.4632 0.028
H8 0.8013 0.3659 0.5235 0.039
H9 0.7818 0.3035 0.2946 0.037
H11 0.7012 0.3814 −0.1587 0.034
H12 0.7210 0.4442 0.0657 0.035
H19 0.6394 0.1433 0.0689 0.049
H20 0.6264 0.0678 0.1363 0.05
H21 0.5772 0.0235 −0.1283 0.063
H22 0.5371 0.0576 −0.4437 0.06
H23 0.5483 0.1335 −0.5106 0.048
H25 0.5278 0.6408 1.4807 0.029
H26 0.5279 0.7084 1.2859 0.03
H28 0.6143 0.6505 0.7695 0.036
H29 0.6117 0.5835 0.9649 0.034
H31 0.7152 0.5664 0.5615 0.041
H32 0.6909 0.6281 0.3307 0.036
H34 0.7623 0.7108 0.7840 0.035
H35 0.7875 0.6508 1.0129 0.034
H42 0.6197 0.8624 0.5878 0.052
H43 0.6222 0.9393 0.6334 0.059
H44 0.5783 0.9865 0.3813 0.071
H45 0.5325 0.9556 0.0591 0.071
H46 0.5280 0.8777 0.0123 0.057

2. Experimental design, materials, and methods

Compound 3 was successfully crystallized through slow evaporation of an ethanol solution. Single crystal X-ray diffraction data were obtained at 100 K using a Bruker D8 Venture diffractometer equipped with Mo Kα radiation and a Photon 100 detector. Structure solution and refinement were performed using SHELXT 2014/5 and SHELXL 2016/6. All non-hydrogen atoms were refined anisotropically, while hydrogen atoms were placed geometrically and refined using riding models.

The structure was test-refined in Ccc2, with that model consisting of one unique molecule having highly correlated thermal ellipsoids, some of which should be split, suggesting disorder or lower symmetry than Ccc2. Furthermore, there are 6631 systematic absence violations (many for hkl, h + k = odd) in the Ccc2 model, versus 0 in the Pnn2 model. Thus, the current model in Pnn2 would seem to better fit the true symmetry of the system, having two unique molecules in the asymmetric unit with well-behaved ADPs.

CCDC contains the supplementary crystallographic data for this paper. The CCDC reference number is 1947916. These data can be viewed free of charge via http://www.ccdc.cam.ac.uk/cont/retrieving.html or from the CCDC, 12 Union Road, Cambridge CB21EZ, UK. Fax: +44 1223 336033. E-mail: deposit@ccdc.cam.ac.uk.

Acknowledgments

STI acknowledge financial support from the Defense Threat Reduction Agency (DTRA) and the Air Force Office of Scientific Research (AFOSR).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.


Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES