Skip to main content
BioMed Research International logoLink to BioMed Research International
. 2019 Dec 20;2019:5370823. doi: 10.1155/2019/5370823

Research Progress on Chemical Constituents of Zingiber officinale Roscoe

Yan Liu 1, Jincheng Liu 2, Yongqing Zhang 1,
PMCID: PMC6942719  PMID: 31930125

Abstract

Zingiber officinale Roscoe is commonly used in food and pharmaceutical products but can also be used in cosmetics and daily necessities. In recent years, many scholars have studied the chemical composition of Zingiber officinale Roscoe; therefore, it is necessary to comprehensively summarize the chemical composition of Zingiber officinale Roscoe in one article. The purpose of this paper is to provide a comprehensive review of the chemical constituents of Zingiber officinale Roscoe. The results show that Zingiber officinale Roscoe contains 194 types of volatile oils, 85 types of gingerol, and 28 types of diarylheptanoid compounds, which can lay a foundation for further applications of Zingiber officinale Roscoe.

1. Introduction

Zingiber officinale Roscoe (ZOR, also Shengjiang in Chinese) is a perennial herb from the Zingiberaceae family, native to the Pacific Islands. It can be found in the Chinese provinces of Shandong, Henan, Hubei, Yunnan, Guangdong, Sichuan, and Jiangsu. ZOR is the fresh root of ginger, which is not only an important condiment but also one of the most commonly used Chinese medicines in clinical practice. Traditional Chinese medicine believes that ZOR has effects of releasing exterior and dissipating cold, arresting vomiting, resolving phlegm, and relieving coughs and can be used to treat fish and crab poison, stomach colds and vomiting, and cold sputum cough [1]. Modern pharmacological studies have shown that ZOR can promote digestion, improve blood circulation, lower blood lipids, lower blood sugar, relieve vestibular stimulation, and provide anti-inflammatory, antitumor, antimicrobial, and antioxidant effects [25]. Due to its rich active constituents, ZOR has been used in cosmetics [6], toothpaste [7], and health foods [810].

All development and utilization of ZOR are based on its material composition. The chemical composition of ZOR is complex, includes more than 300 types of species, and can be broadly divided into three categories: volatile oils, gingerol, and diarylheptanoids [1113]. In this paper, the existing research literature of ZOR is systematically summarized, and each chemical composition and its chemical structure are listed in detail, with a view to providing references for quality control, cultivation production, and further development of ZOR.

2. Constituents

2.1. Volatile Oils

Volatile oils, also known as ginger essential oils, are generally composed of terpenoids [14]. Ginger essential oils give ZOR a unique aromatic smell [11]. The volatile oil composition varies based on where the ZOR is harvested. Currently, the ingredients identified in the volatile oils of ZOR and their chemical structures are shown in Table 1.

Table 1.

Volatile oils in ZOR.

No. Type Name Structure Reference
1 Terpene α-Terpinene graphic file with name BMRI2019-5370823.tab1.i001.jpg [15]
2 Terpene α-Terpineol graphic file with name BMRI2019-5370823.tab1.i002.jpg [15]
3 Terpene 4-Terpineol graphic file with name BMRI2019-5370823.tab1.i003.jpg [15]
4 Terpene Terpinolene graphic file with name BMRI2019-5370823.tab1.i004.jpg [15]
5 Terpene γ-Terpinolene graphic file with name BMRI2019-5370823.tab1.i005.jpg [15]
6 Alcohol Cineole graphic file with name BMRI2019-5370823.tab1.i006.jpg [15]
7 Alcohol β-Eudesmol graphic file with name BMRI2019-5370823.tab1.i007.jpg [15]
8 Alcohol Nerol graphic file with name BMRI2019-5370823.tab1.i008.jpg [15]
9 Alcohol trans-Nerolidol graphic file with name BMRI2019-5370823.tab1.i009.jpg [15]
10 Alcohol 4-Isopropylbenzyl alcohol graphic file with name BMRI2019-5370823.tab1.i010.jpg [15]
11 Alcohol 3,7-Dimethylocta-1,6-dien-3-ol graphic file with name BMRI2019-5370823.tab1.i011.jpg [15]
12 Alcohol 3,7-Dimethyloct-6-en-1-yn-3-ol graphic file with name BMRI2019-5370823.tab1.i012.jpg [15]
13 Alcohol 3-Methylhexan-2-ol graphic file with name BMRI2019-5370823.tab1.i013.jpg [15]
14 Alcohol cis-Piperitol graphic file with name BMRI2019-5370823.tab1.i014.jpg [15]
15 Alcohol Borneol graphic file with name BMRI2019-5370823.tab1.i015.jpg [15]
16 Alcohol Elemol graphic file with name BMRI2019-5370823.tab1.i016.jpg [15]
17 Alcohol tau-Muurolol graphic file with name BMRI2019-5370823.tab1.i017.jpg [15]
18 Alcohol 2-Methoxy-1,7,7-trimethylbicyclo[2.2.1]heptane graphic file with name BMRI2019-5370823.tab1.i018.jpg [15]
19 Alcohol 1-Isopropyl-4-methylcyclohex-3-enol graphic file with name BMRI2019-5370823.tab1.i019.jpg [15]
20 Alcohol 2-Tetradecanol graphic file with name BMRI2019-5370823.tab1.i020.jpg [15]
21 Alcohol Myrtenol graphic file with name BMRI2019-5370823.tab1.i021.jpg [15]
22 Alcohol Citronellol graphic file with name BMRI2019-5370823.tab1.i022.jpg [15]
23 Alcohol Geraniol graphic file with name BMRI2019-5370823.tab1.i023.jpg [15]
24 Alcohol cis-Linalool oxide graphic file with name BMRI2019-5370823.tab1.i024.jpg [15]
25 Alcohol 4-Ethoxybutan-1-ol graphic file with name BMRI2019-5370823.tab1.i025.jpg [15]
26 Alcohol α-Eudesmol graphic file with name BMRI2019-5370823.tab1.i026.jpg [15]
27 Alcohol Nerolidol graphic file with name BMRI2019-5370823.tab1.i027.jpg [15]
28 Alcohol Farnesol graphic file with name BMRI2019-5370823.tab1.i028.jpg [15]
29 Alcohol trans-4-Isopropyl-1-methyl-2-cyclohexen-1-ol graphic file with name BMRI2019-5370823.tab1.i029.jpg [15]
30 Alcohol cis-4-Isopropyl-1-methyl-2-cyclohexen-1-ol graphic file with name BMRI2019-5370823.tab1.i030.jpg [15]
31 Alcohol 2-Heptanol graphic file with name BMRI2019-5370823.tab1.i031.jpg [16]
32 Alcohol 1-Methoxy-2-methyl graphic file with name BMRI2019-5370823.tab1.i032.jpg [16]
33 Alcohol cis-Sesquisabinene hydrate graphic file with name BMRI2019-5370823.tab1.i033.jpg [17]
34 Alcohol cis-2-p-Menthen-1-ol graphic file with name BMRI2019-5370823.tab1.i034.jpg [17]
35 Alcohol endo-Borneol graphic file with name BMRI2019-5370823.tab1.i035.jpg [17]
36 Alcohol trans-Sabinene hydrate graphic file with name BMRI2019-5370823.tab1.i036.jpg [17]
37 Alcohol 2-Nonanol graphic file with name BMRI2019-5370823.tab1.i037.jpg [18]
38 Alcohol Propanol graphic file with name BMRI2019-5370823.tab1.i038.jpg [18]
39 Alcohol cis-β-Sesquiphellandrol graphic file with name BMRI2019-5370823.tab1.i039.jpg [18]
40 Alcohol trans-β-Sesquiphellandrol graphic file with name BMRI2019-5370823.tab1.i040.jpg [18]
41 Alcohol β-Santalol graphic file with name BMRI2019-5370823.tab1.i041.jpg [19]
42 Alcohol Zingiberol graphic file with name BMRI2019-5370823.tab1.i042.jpg [19]
43 Alcohol tau-Cadinol graphic file with name BMRI2019-5370823.tab1.i043.jpg [20]
44 Alcohol Zingiberenol graphic file with name BMRI2019-5370823.tab1.i044.jpg [21]
45 Alcohol 2-Pinen-5-ol graphic file with name BMRI2019-5370823.tab1.i045.jpg [21]
46 Alcohol Bornyl methyl ether graphic file with name BMRI2019-5370823.tab1.i046.jpg [21]
47 Alcohol Isoborneol graphic file with name BMRI2019-5370823.tab1.i047.jpg [22]
48 Alcohol 2-Decanol graphic file with name BMRI2019-5370823.tab1.i048.jpg [22]
49 Alcohol Fenchol graphic file with name BMRI2019-5370823.tab1.i049.jpg [22]
50 Alcohol Linalool graphic file with name BMRI2019-5370823.tab1.i050.jpg [23]
51 Alcohol Plinol graphic file with name BMRI2019-5370823.tab1.i051.jpg [23]
52 Alcohol Camphenol graphic file with name BMRI2019-5370823.tab1.i052.jpg [23]
53 Alcohol trans-2-Decen-1-ol graphic file with name BMRI2019-5370823.tab1.i053.jpg [23]
54 Alcohol Hentriacontanol graphic file with name BMRI2019-5370823.tab1.i054.jpg [24]
55 Alcohol 10-O-β-D-Glucopyranosyl-hydroxyl cineole graphic file with name BMRI2019-5370823.tab1.i055.jpg [25]
56 Aldoketone Butanal graphic file with name BMRI2019-5370823.tab1.i056.jpg [15]
57 Aldoketone Germacrone graphic file with name BMRI2019-5370823.tab1.i057.jpg [15]
58 Aldoketone 2,6-Dimethylhept-5-enal graphic file with name BMRI2019-5370823.tab1.i058.jpg [15]
59 Aldoketone 2-Heptanone graphic file with name BMRI2019-5370823.tab1.i059.jpg [15]
60 Aldoketone (E)-Citral graphic file with name BMRI2019-5370823.tab1.i060.jpg [15]
61 Aldoketone (Z)-Citral graphic file with name BMRI2019-5370823.tab1.i061.jpg [15]
62 Aldoketone 2-Nonanone graphic file with name BMRI2019-5370823.tab1.i062.jpg [15]
63 Aldoketone 3-((3E,5E)-Deca-3,5-dienyl)cyclopentanone graphic file with name BMRI2019-5370823.tab1.i063.jpg [15]
64 Aldoketone β-Cyclocitral graphic file with name BMRI2019-5370823.tab1.i064.jpg [15]
65 Aldoketone 2-Undecanone graphic file with name BMRI2019-5370823.tab1.i065.jpg [15]
66 Aldoketone 1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one graphic file with name BMRI2019-5370823.tab1.i066.jpg [15]
67 Aldoketone (1R)-()-Myrtenal graphic file with name BMRI2019-5370823.tab1.i067.jpg [15]
68 Aldoketone β-Citronellal graphic file with name BMRI2019-5370823.tab1.i068.jpg [15]
69 Aldoketone Crypton graphic file with name BMRI2019-5370823.tab1.i069.jpg [15]
70 Aldoketone 4-Isopropylcyclohex-2-enone graphic file with name BMRI2019-5370823.tab1.i070.jpg [15]
71 Aldoketone Camphor graphic file with name BMRI2019-5370823.tab1.i071.jpg [15]
72 Aldoketone 6-Methyl-5-hepten-2-one graphic file with name BMRI2019-5370823.tab1.i072.jpg [15]
73 Aldoketone trans,trans-Farnesal graphic file with name BMRI2019-5370823.tab1.i073.jpg [15]
74 Aldoketone Hexanal graphic file with name BMRI2019-5370823.tab1.i074.jpg [16]
75 Aldoketone Neral graphic file with name BMRI2019-5370823.tab1.i075.jpg [17]
76 Aldoketone Geranial graphic file with name BMRI2019-5370823.tab1.i076.jpg [17]
77 Aldoketone Octanal graphic file with name BMRI2019-5370823.tab1.i077.jpg [17]
78 Aldoketone Methyl heptenone graphic file with name BMRI2019-5370823.tab1.i078.jpg [18]
79 Aldoketone Nonyl aldehyde graphic file with name BMRI2019-5370823.tab1.i079.jpg [18]
80 Aldoketone Acetaldehyde graphic file with name BMRI2019-5370823.tab1.i080.jpg [18]
81 Aldoketone Propionaldehyde graphic file with name BMRI2019-5370823.tab1.i081.jpg [18]
82 Aldoketone Valeraldehyde graphic file with name BMRI2019-5370823.tab1.i082.jpg [18]
83 Aldoketone Perillal graphic file with name BMRI2019-5370823.tab1.i083.jpg [19]
84 Aldoketone (E)-Dodec-2-enal graphic file with name BMRI2019-5370823.tab1.i084.jpg [21]
85 Aldoketone (Z)-3,7-Dimethylocta-3,6-dienal graphic file with name BMRI2019-5370823.tab1.i085.jpg [21]
86 Aldoketone (E)-3,7-Dimethylocta-3,6-dienal graphic file with name BMRI2019-5370823.tab1.i086.jpg [21]
87 Aldoketone (E)-Dec-2-enal graphic file with name BMRI2019-5370823.tab1.i087.jpg [21]
88 Aldoketone Decanal graphic file with name BMRI2019-5370823.tab1.i088.jpg [23]
89 Aldoketone Citronella graphic file with name BMRI2019-5370823.tab1.i089.jpg [23]
90 Aldoketone 2-Octenal graphic file with name BMRI2019-5370823.tab1.i090.jpg [21]
91 Aldoketone Octanal graphic file with name BMRI2019-5370823.tab1.i091.jpg [26]
92 Aldoketone Acetone graphic file with name BMRI2019-5370823.tab1.i092.jpg [26]
93 Acid L-Bornyl acetate graphic file with name BMRI2019-5370823.tab1.i093.jpg [15]
94 Acid Geranic acid graphic file with name BMRI2019-5370823.tab1.i094.jpg [15]
95 Acid Undecanoic acid graphic file with name BMRI2019-5370823.tab1.i095.jpg [16]
96 Ester Neryl acetate graphic file with name BMRI2019-5370823.tab1.i096.jpg [15]
97 Ester Methyl 11-(cyclopent-2-enyl)undecanoate graphic file with name BMRI2019-5370823.tab1.i097.jpg [15]
98 Ester Geranyl propionate graphic file with name BMRI2019-5370823.tab1.i098.jpg [15]
99 Ester endo-Bornyl acetate graphic file with name BMRI2019-5370823.tab1.i099.jpg [15]
100 Ester sec-Butyl acetate graphic file with name BMRI2019-5370823.tab1.i100.jpg [15]
101 Ester 3,7-Dimethyl-2,6-octadienyl acetate graphic file with name BMRI2019-5370823.tab1.i101.jpg [15]
102 Ester Neryl propionate graphic file with name BMRI2019-5370823.tab1.i102.jpg [15]
103 Ester Geraniol formate graphic file with name BMRI2019-5370823.tab1.i103.jpg [15]
104 Ester Myrtenyl acetate graphic file with name BMRI2019-5370823.tab1.i104.jpg [15]
105 Ester Geranyl acetate graphic file with name BMRI2019-5370823.tab1.i105.jpg [15]
106 Ester Formic acid ethyl ester graphic file with name BMRI2019-5370823.tab1.i106.jpg [16]
107 Ester Ethyl butanoate graphic file with name BMRI2019-5370823.tab1.i107.jpg [17]
108 Ester Citronellyl acetate graphic file with name BMRI2019-5370823.tab1.i108.jpg [17]
109 Ester Heptyl acetate graphic file with name BMRI2019-5370823.tab1.i109.jpg [17]
110 Ester Methyl acetate graphic file with name BMRI2019-5370823.tab1.i110.jpg [18]
111 Ester Ethyl acetate graphic file with name BMRI2019-5370823.tab1.i111.jpg [18]
112 Ester Butyl acetate graphic file with name BMRI2019-5370823.tab1.i112.jpg [21]
113 Ester 2-Octyl acetate graphic file with name BMRI2019-5370823.tab1.i113.jpg [21]
114 Fat hydrocarbon allo-Aromadendrene graphic file with name BMRI2019-5370823.tab1.i114.jpg [15]
115 Fat hydrocarbon β-Sesquiphellandrene graphic file with name BMRI2019-5370823.tab1.i115.jpg [15]
116 Fat hydrocarbon α-Cedrene graphic file with name BMRI2019-5370823.tab1.i116.jpg [15]
117 Fat hydrocarbon β-Thujene graphic file with name BMRI2019-5370823.tab1.i117.jpg [15]
118 Fat hydrocarbon Cadina-5,8-diene graphic file with name BMRI2019-5370823.tab1.i118.jpg [15]
119 Fat hydrocarbon Bicyclo[2.2.1]heptane graphic file with name BMRI2019-5370823.tab1.i119.jpg [15]
120 Fat hydrocarbon (E)-2,7-Dimethyloct-3-en-5-yne graphic file with name BMRI2019-5370823.tab1.i120.jpg [15]
121 Fat hydrocarbon (Z)-2,6-Dimethylocta-2,6-diene graphic file with name BMRI2019-5370823.tab1.i121.jpg [15]
122 Fat hydrocarbon (E)-3,7-Dimethylocta-1,3,6-triene graphic file with name BMRI2019-5370823.tab1.i122.jpg [15]
123 Fat hydrocarbon β-Phellandrene graphic file with name BMRI2019-5370823.tab1.i123.jpg [15]
124 Fat hydrocarbon α-Bergamotene graphic file with name BMRI2019-5370823.tab1.i124.jpg [15]
125 Fat hydrocarbon α-Gurjunene graphic file with name BMRI2019-5370823.tab1.i125.jpg [15]
126 Fat hydrocarbon Sabinene graphic file with name BMRI2019-5370823.tab1.i126.jpg [15]
127 Fat hydrocarbon (+)-Cyclosativene graphic file with name BMRI2019-5370823.tab1.i127.jpg [15]
128 Fat hydrocarbon (Z)-β-Farnesene graphic file with name BMRI2019-5370823.tab1.i128.jpg [15]
129 Fat hydrocarbon (E)-β-Farnesene graphic file with name BMRI2019-5370823.tab1.i129.jpg [15]
130 Fat hydrocarbon (Z,Z)-Farnesene graphic file with name BMRI2019-5370823.tab1.i130.jpg [15]
131 Fat hydrocarbon Zingiberene graphic file with name BMRI2019-5370823.tab1.i131.jpg [15]
132 Fat hydrocarbon α-Farnesene graphic file with name BMRI2019-5370823.tab1.i132.jpg [15]
133 Fat hydrocarbon (E)-5-Methylocta-1,6-diene graphic file with name BMRI2019-5370823.tab1.i133.jpg [15]
134 Fat hydrocarbon 5-Methyloct-3-yne graphic file with name BMRI2019-5370823.tab1.i134.jpg [15]
135 Fat hydrocarbon 7-Methylocta-3,4-diene graphic file with name BMRI2019-5370823.tab1.i135.jpg [15]
136 Fat hydrocarbon γ-Elemene graphic file with name BMRI2019-5370823.tab1.i136.jpg [15]
137 Fat hydrocarbon γ-Humulene graphic file with name BMRI2019-5370823.tab1.i137.jpg [15]
138 Fat hydrocarbon Thujopsene graphic file with name BMRI2019-5370823.tab1.i138.jpg [15]
139 Fat hydrocarbon β-Elemene graphic file with name BMRI2019-5370823.tab1.i139.jpg [15]
140 Fat hydrocarbon β-Bisabolene graphic file with name BMRI2019-5370823.tab1.i140.jpg [15]
141 Fat hydrocarbon α-Pinene graphic file with name BMRI2019-5370823.tab1.i141.jpg [15]
142 Fat hydrocarbon β-Pinene graphic file with name BMRI2019-5370823.tab1.i142.jpg [15]
143 Fat hydrocarbon Caryophyllene graphic file with name BMRI2019-5370823.tab1.i143.jpg [15]
144 Fat hydrocarbon β-Caryophyllene graphic file with name BMRI2019-5370823.tab1.i144.jpg [15]
145 Fat hydrocarbon Tricyclene graphic file with name BMRI2019-5370823.tab1.i145.jpg [15]
146 Fat hydrocarbon Moslene graphic file with name BMRI2019-5370823.tab1.i146.jpg [15]
147 Fat hydrocarbon Cedrene graphic file with name BMRI2019-5370823.tab1.i147.jpg [15]
148 Fat hydrocarbon ()-allo-Aromadendrene graphic file with name BMRI2019-5370823.tab1.i148.jpg [15]
149 Fat hydrocarbon Neoclovene graphic file with name BMRI2019-5370823.tab1.i149.jpg [15]
150 Fat hydrocarbon 3-Octyne graphic file with name BMRI2019-5370823.tab1.i150.jpg [15]
151 Fat hydrocarbon 1-Octene graphic file with name BMRI2019-5370823.tab1.i151.jpg [15]
152 Fat hydrocarbon β-Myrcene graphic file with name BMRI2019-5370823.tab1.i152.jpg [15]
153 Fat hydrocarbon β-Eudesmene graphic file with name BMRI2019-5370823.tab1.i153.jpg [15]
154 Fat hydrocarbon Eudesma-3,7(11)-diene graphic file with name BMRI2019-5370823.tab1.i154.jpg [15]
155 Fat hydrocarbon Caryophyllene graphic file with name BMRI2019-5370823.tab1.i155.jpg [15]
156 Fat hydrocarbon Bicyclo[3.1.1]heptane graphic file with name BMRI2019-5370823.tab1.i156.jpg [15]
157 Fat hydrocarbon 1-Cyclopropylpentane graphic file with name BMRI2019-5370823.tab1.i157.jpg [15]
158 Fat hydrocarbon 3-Carene graphic file with name BMRI2019-5370823.tab1.i158.jpg [15]
159 Fat hydrocarbon 2-Carene graphic file with name BMRI2019-5370823.tab1.i159.jpg [15]
160 Fat hydrocarbon (+)-Aromadendrene graphic file with name BMRI2019-5370823.tab1.i160.jpg [15]
161 Fat hydrocarbon Fenchene graphic file with name BMRI2019-5370823.tab1.i161.jpg [16]
162 Fat hydrocarbon δ-Elemene graphic file with name BMRI2019-5370823.tab1.i162.jpg [17]
163 Fat hydrocarbon D-Limonene graphic file with name BMRI2019-5370823.tab1.i163.jpg [18, 22]
164 Fat hydrocarbon β-Phellandrene graphic file with name BMRI2019-5370823.tab1.i164.jpg [18, 26]
165 Fat hydrocarbon 10-Epizonarene graphic file with name BMRI2019-5370823.tab1.i165.jpg [18]
166 Fat hydrocarbon Octane graphic file with name BMRI2019-5370823.tab1.i166.jpg [18]
167 Fat hydrocarbon Nonane graphic file with name BMRI2019-5370823.tab1.i167.jpg [18]
168 Fat hydrocarbon α-Bergamotene graphic file with name BMRI2019-5370823.tab1.i168.jpg [19]
169 Fat hydrocarbon β-Bisabolene graphic file with name BMRI2019-5370823.tab1.i169.jpg [20]
170 Fat hydrocarbon τ-Epi-α-selinene graphic file with name BMRI2019-5370823.tab1.i170.jpg [20]
171 Fat hydrocarbon 4-Carene graphic file with name BMRI2019-5370823.tab1.i171.jpg [22]
172 Fat hydrocarbon Camphene graphic file with name BMRI2019-5370823.tab1.i172.jpg [23]
173 Fat hydrocarbon α-Phellandrene graphic file with name BMRI2019-5370823.tab1.i173.jpg [23]
174 Fat hydrocarbon (Z)-3,7-Dimethylocta-1,3,6-triene graphic file with name BMRI2019-5370823.tab1.i174.jpg [27]
175 Fat hydrocarbon Germacrene graphic file with name BMRI2019-5370823.tab1.i175.jpg [27]
176 Fat hydrocarbon δ-Cadinene graphic file with name BMRI2019-5370823.tab1.i176.jpg [26]
177 Fat hydrocarbon α-Cubebene graphic file with name BMRI2019-5370823.tab1.i177.jpg [26]
178 Fat hydrocarbon α-Copaene graphic file with name BMRI2019-5370823.tab1.i178.jpg [26]
179 Arene α-Curcumene graphic file with name BMRI2019-5370823.tab1.i179.jpg [15]
180 Arene 2-Isopropyltoluene graphic file with name BMRI2019-5370823.tab1.i180.jpg [15]
181 Arene o-Cymene graphic file with name BMRI2019-5370823.tab1.i181.jpg [15]
182 Arene Styrene graphic file with name BMRI2019-5370823.tab1.i182.jpg [17]
183 Arene Methylbenzene graphic file with name BMRI2019-5370823.tab1.i183.jpg [17]
184 Arene Cumene graphic file with name BMRI2019-5370823.tab1.i184.jpg [18]
185 Arene p-Cymene graphic file with name BMRI2019-5370823.tab1.i185.jpg [19]
186 Others p-Cymen-8-ol graphic file with name BMRI2019-5370823.tab1.i186.jpg [15]
187 Others 2-Acetoxy-1,8-cineole graphic file with name BMRI2019-5370823.tab1.i187.jpg [17]
188 Others Diethyl sulphide graphic file with name BMRI2019-5370823.tab1.i188.jpg [18]
189 Others Ethyl isopropyl sulphide graphic file with name BMRI2019-5370823.tab1.i189.jpg [18]
190 Others Methyl allyl sulphide graphic file with name BMRI2019-5370823.tab1.i190.jpg [18]
191 Others Dibutyl phthalate graphic file with name BMRI2019-5370823.tab1.i191.jpg [20]
192 Others 2-(3′-Methyl-2′-butenyl)-3-methylfuran graphic file with name BMRI2019-5370823.tab1.i192.jpg [21]
193 Others Isoeugenol graphic file with name BMRI2019-5370823.tab1.i193.jpg [21]
194 Others 2-(2′,3′-Epoxy-3′-methylbutyl)-3-methylfuran graphic file with name BMRI2019-5370823.tab1.i194.jpg [21]

2.2. Gingerol

Gingerol is the spicy component of ZOR. It is a mixture of various substances, all of which contain the 3-methoxy-4-hydroxyphenyl functional group. Gingerols can be divided into gingerols, shogaols, paradols, zingerones, gingerdiones, and gingerdiols, according to the different fatty chains connected by this functional group [28, 29]. The structural formulas are given in Table 2.

Table 2.

Gingerols in ZOR.

No. Name Structure R R1 R2 n Reference
195 3-Gingerol graphic file with name BMRI2019-5370823.tab2.i001.jpg H H 1 [30]
196 4-Gingerol H H 2 [30]
197 5-Gingerol H H 3 [30]
198 6-Gingerol H H 4 [31, 32]
199 8-Gingerol H H 6 [31, 33]
200 10-Gingerol H H 8 [33]
201 12-Gingerol H H 10 [31, 32]
202 5-Methoxy-6-gingerol H CH3 4 [34]
203 Acetoxy-4-gingerol H COCH3 2 [34]
204 Acetoxy-6-gingerol H COCH3 4 [35]
205 Acetoxy-8-gingerol H COCH3 6 [34]
206 Acetoxy-10-gingerol H COCH3 8 [34]
207 4-Gingeryl methyl ether CH3 H 2 [34]
208 6-Gingeryl methyl ether CH3 H 4 [34]
209 6-Gingeryl methyl ether acetate CH3 COCH3 4 [34]
210 6-Gingeryl diacetate COCH3 COCH3 4 [36]
211 8-Gingeryl diacetate COCH3 COCH3 6 [36]
212 10-Gingeryl diacetate COCH3 COCH3 8 [36]
213 Zingerone graphic file with name BMRI2019-5370823.tab2.i002.jpg H 0 [36]
214 1-Paradol H 1 [20]
215 2-Paradol H 2 [20]
216 3-Paradol H 3 [20]
217 4-Paradol H 4 [20]
218 6-Paradol H 6 [36, 37]
219 7-Paradol H 7 [20]
220 8-Paradol H 8 [36]
221 9-Paradol H 9 [20]
222 10-Paradol H 10 [36]
223 11-Paradol H 11 [34]
224 13-Paradol H 13 [34]
225 Methyl-6-paradol CH3 6 [34, 38]
226 Methyl-8-paradol CH3 8 [39]
227 Zingerone acetate COCH3 0 [36]
228 6-Paradyl monoacetate COCH3 6 [34]
229 8-Paradyl monoacetate COCH3 8 [36]
230 6-Paradyl benzoate COPh 6 [36]
231 1-Dehydro-3-gingerdione graphic file with name BMRI2019-5370823.tab2.i003.jpg 1 [34]
232 1-Dehydro-6-gingerdione 4 [35, 40]
233 1-Dehydro-8-gingerdione 6 [35, 41]
234 1-Dehydro-10-gingerdione 8 [37, 42]
235 12-Dehydrogingerdione 10 [43]
236 6-Gingerdione graphic file with name BMRI2019-5370823.tab2.i004.jpg 4 [44]
237 10-Gingerdione 8 [45]
238 4-Shogaol graphic file with name BMRI2019-5370823.tab2.i005.jpg H 2 [30, 44]
239 5-Shogaol H 3 [39]
240 6-Shogaol H 4 [35, 37]
241 8-Shogaol H 6 [36, 37]
242 10-Shogaol H 8 [36, 37]
243 12-Shogaol H 10 [30, 44]
244 Methyl-4-shogaol CH3 2 [39]
245 Methyl-6-shogaol CH3 4 [34]
246 Methyl-8-shogaol CH3 6 [34]
247 4-Gingerdiol graphic file with name BMRI2019-5370823.tab2.i006.jpg H H H 2 [30]
248 6-Gingerdiol H H H 4 [44]
249 8-Gingerdiol H H H 6 [44]
250 10-Gingerdiol H H H 8 [44]
251 5-Acetoxy-4-gingerdiol H COCH3 H 2 [34]
252 5-Acetoxy-6-gingerdiol H COCH3 H 4 [46]
253 5-Acetoxy-7-gingerdiol H COCH3 H 5 [34]
254 Diacetoxy-4-gingerdiol H COCH3 COCH3 2 [46, 47]
255 Diacetoxy-6-gingerdiol H COCH3 COCH3 4 [46, 47]
256 Methyl-5-acetoxy-4-gingerdiol CH3 COCH3 H 2 [34]
257 Methyl-5-acetoxy-6-gingerdiol CH3 COCH3 H 4 [34]
258 Methyl diacetoxy-4-gingerdiol CH3 COCH3 COCH3 2 [34]
259 Methyl diacetoxy-6-gingerdiol CH3 COCH3 COCH3 4 [34]
260 Methyl diacetoxy-10-gingerdiol CH3 COCH3 COCH3 8 [34]
261 6-Dihydroparadol graphic file with name BMRI2019-5370823.tab2.i007.jpg H 6 [34]
262 Acetoxy-6-dihydroparadol Ac 6 [34]
263 1-(4′-Hydroxy-3′-methoxypheny-l)-7-octen-3-one graphic file with name BMRI2019-5370823.tab2.i008.jpg H [34]
264 1-(4′-Hydroxy-3′-methoxypheny-l)-7-decen-3-one CH2CH3 [34]
265 1-(4′-Hydroxy-3′-methoxypheny-l)-7-dodecen-3-one (CH2)3CH3 [34]
266 4-Isogingerol graphic file with name BMRI2019-5370823.tab2.i009.jpg H 2 [34]
267 6-Isogingerol H 4 [48]
268 Methyl-6-isogingerol CH3 4 [34]
269 6-Zingerine graphic file with name BMRI2019-5370823.tab2.i010.jpg 4 [49]
270 8-Zingerine 6 [49]
271 10-Zingerine 8 [49]
272 3-Dihydro-6-demethoxy shogaol graphic file with name BMRI2019-5370823.tab2.i011.jpg [34]
273 6-Isoshogaol graphic file with name BMRI2019-5370823.tab2.i012.jpg [44]
274 Dehydrozingerone graphic file with name BMRI2019-5370823.tab2.i013.jpg [36]
275 1-Dehydro-3-dihydro-10-gingerdione graphic file with name BMRI2019-5370823.tab2.i014.jpg [34, 44]
276 (Z)-10-Isoshogaol graphic file with name BMRI2019-5370823.tab2.i015.jpg [48]
277 (E)-10-Isoshogaol graphic file with name BMRI2019-5370823.tab2.i016.jpg [48]
278 β-Sitosterol graphic file with name BMRI2019-5370823.tab2.i017.jpg [50, 51]
279 Tetracosanoic acid graphic file with name BMRI2019-5370823.tab2.i018.jpg [50, 52]

2.3. Diarylheptanoids

Diarylheptanoid is a group of compounds with 1,7-disubstituted phenyl groups and heptane skeletons in its parent structure. Currently, it can be divided into linear diphenyl heptane and cyclic diphenyl heptane compounds with antioxidant activity [53]. The structural formulas are shown in Table 3.

Table 3.

Diarylheptanoids in ZOR.

No. Name Structure R1 R2 R3 Reference
280 5-Hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-7-(4″-hydroxyphenyl)heptan-3-one graphic file with name BMRI2019-5370823.tab3.i001.jpg H H H [32]
281 5-Hydroxy-1,7-bis(4′-hydroxy-3′-methoxyphenyl)heptan-3-one H OCH3 H [32]
282 7-(3′,4′-Dihydroxy-5′-methoxyphenyl)-5-hydroxy-1-(4″-hydroxy-3″-methoxyphenyl)heptan-3-one H OCH3 OH [54]
283 5-Hydroxy-7-(4′-hydroxy-3′,5′-dimethoxyphenyl)-1-(4″-hydroxy-3″-methoxyphenyl)heptan-3-one H OCH3 OCH3 [32]
284 5-Hydroxy-1-(4′-hydroxy-3′,5′-dimethoxyphenyl)-7-(4″-hydroxy-3″-methoxyphenyl)heptan-3-one OCH3 OCH3 H [55]
285 5-Hydroxy-1,7-bis(4′-hydroxy-3′,5′-dimethoxyphenyl)heptan-3-one OCH3 OCH3 OCH3 [32]
286 (E)-7-(3′,4′-Dihydroxyphenyl)-1-(4″-hydroxy-3″-methoxyphenyl)hept-4-en-3-one graphic file with name BMRI2019-5370823.tab3.i002.jpg H V [55]
287 1,7-bis(4′-Hydroxy-3′-methoxyphenyl)-4-heptene-3-one CH3 [55, 56]
288 3,5-Dihydroxy-1,7-bis(4′-hydroxy-3′-methoxyphenyl)heptane graphic file with name BMRI2019-5370823.tab3.i003.jpg H H CH3 [5456]
289 1,7-bis(3′,4′-Dihydroxyphenyl)-3,5-diacetate heptane COCH3 H H [55]
290 1,7-bis(4′-Hydroxy-3′-methoxyphenyl)-3,5-diacetate heptane COCH3 H CH3 [5557]
291 1,7-bis(4′-Methoxy-3′-acetatephenyl)-3,5-diacetate heptane COCH3 CH3 COCH3 [55]
292 1,7-bis(3′,4′-Diacetatephenyl)-3,5-diacetate heptane COCH3 COCH3 COCH3 [55]
293 5-(6-(4-Hydroxy-3-methoxyphenethyl)-4-hydroxy-tetrahydro-2H-pyran-2-yl)-3-methoxybenzene-1,2-diol graphic file with name BMRI2019-5370823.tab3.i004.jpg H [54, 58]
294 2-(4′-Hydroxy-3′-methoxyphenethyl)-6-(3″,4″-dihydroxy-5″-methoxyphenyl)-tetrahydro-2H-pyran-4-yl acetate COCH3 [58]
295 7-(3′,4′-Dihydroxyphenyl)-1-(4″-hydroxy-3″-methoxyphenyl)-3,5-diacetate heptane graphic file with name BMRI2019-5370823.tab3.i005.jpg H H [55]
296 7-(4′-Hydroxy-3′-methoxyphenyl)-1-(4″,5″-dihydroxy-3″-methoxyphenyl)-3,5-diacetate heptane OH CH3 [54]
297 7-(4′-Hydroxy-3′-methoxyphenyl)-1-(4″-hydroxy-5″-methyl-3″-methoxyphenyl)-3,5-diacetate heptane CH3 CH3 [55]
298 7-(4′-Hydroxy-3′-methoxyphenyl)-1-(4″-hydroxy-3″,5″-dimethoxyphenyl)-3,5-diacetate heptane OCH3 CH3 [55, 56]
299 5-(6-(4-Hydroxyphenethyl)-4-hydroxy-tetrahydro-2H-pyran-2-yl)-3-methoxybenzene-1,2-diol graphic file with name BMRI2019-5370823.tab3.i006.jpg H H H [25]
300 5-(6-(4-Hydroxy-3-methoxyphenethyl)-4-hydroxy-tetrahydro-2H-pyran-2-yl)-3-methoxybenzene-1,2-diol H H OCH3 [54, 58]
301 5-(6-(4-Hydroxy-3-methoxyphenethyl)-4-hydroxy-tetrahydro-2H-pyran-2-yl)-2-hydroxy-3-methoxyphenyl acetate H COCH3 OCH3 [58]
302 2-(4′-Hydroxy-3′-methoxyphenethyl)-6-(3″,4″-dihydroxy-5″-methoxyphenyl)-tetrahydro-2H-pyran-4-yl acetate COCH3 H OCH3 [58]
303 1,7-bis(4′-Hydroxy-3′-methoxyphenyl)-5-oxoheptan-3-yl acetate graphic file with name BMRI2019-5370823.tab3.i007.jpg H [57]
304 1,7-bis(3′-Methoxy-4′-acetatephenyl)-5-oxoheptan-3-yl acetate COCH3 [57]
305 1,7-bis(4′-Hydroxy-3′-methoxyphenyl)-3,5-heptadione graphic file with name BMRI2019-5370823.tab3.i008.jpg [34]
306 (1E,6E)-1,7-bis(4-Hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione graphic file with name BMRI2019-5370823.tab3.i009.jpg [56]
307 2,4-bis(3,4-Dihydroxyphenethyl)pentanedioic acid graphic file with name BMRI2019-5370823.tab3.i010.jpg [59]

2.4. Others

2.4.1. Proteins and Amino Acids

ZOR contains a variety of amino acids, including glutamate, aspartic acid, serine, glycine, threonine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, proline [22, 60], and tryptophan [51].

2.4.2. Sugars

ZOR also contains polysaccharides [44], cellulose, and soluble sugar.

2.4.3. Organic Acids

ZOR contains oxalic acid, tartaric acid, lactic acid, acetic acid, citric acid, succinic acid, formic acid, and malonic acid [61].

2.4.4. Inorganic Elements

ZOR has been shown to contain more than 20 inorganic elements such as K, Mg, Ga, Mn, P, Al, Zn, Fe, and Ba [44].

3. Discussion

Various gingers have different regions and chemical compositions. Jolad [30] conducted quantitative analysis on the extracts of dichloromethane from Chinese white ginger and Japanese turmeric and found that the highest content of 6-gingerol was 28% and 34%, respectively. The next highest concentrations were 8-gingerol and 10-gingerol, and the lowest content of 6-shogaol was only 0.35%. Onyenekwe [62] determined that the main components of the volatile oils of Nigerian ginger were terpenoids such as zingiberene (29.5%) and β-sesquiphellandrene (18.4%), which were quite different from those of ginger grown in other regions. Another study showed the volatile oil content of ginger grown in five different areas of China (Shandong Laiwu, Anhui Tongling, Shandong Anqiu, Guangdong Guangzhou, and Hunan Rucheng) was 0.13%, 0.23%, 0.30%, 0.14%, and 0.17% [63], respectively. 6-Gingerol is often the quality standard for ginger, where the ginger found in Qianwei, Sichuan Province, shows a higher effective content of 6-gingerol than that of the pharmacopoeia standard of the People's Republic of China [64, 65]. The concentrations of 6-gingerol and 6-zingiberol of ginger grown in different regions of China vary greatly, which may be related to the growth environment [66]. Mature and fresh ginger extracts contain the same chemical components, but the difference is in the relative content of each component. Ginger oleoresin in mature ginger is significantly higher than that in fresh ginger. In aromatic terpenoids, the contents of 2-acetoxy-1,8-cineole, β-citronellal, citral, geraniol, geranyl acetate, and zingiberene in mature ginger are lower than those in fresh ginger. The relative content of α-curcumene in mature ginger was higher than that in fresh ginger. In spicy gingerol compounds, the relative content of gingerol in mature ginger is higher than that in fresh ginger, which may be the result of further synthesis and accumulation of gingerol components in the process of continued growth of mature ginger in the second year [48]. The varieties of ginger with the highest oil content are Laiwu ginger, Japanese ginger, Shannong 1 ginger, Shannong 2 ginger, and Anqiu big ginger, with concentrations of 4.56%, 4.42%, 4.52%, 4.50%, and 4.35%, respectively. Average oil contents of 3.45% and 3.16% were found in Jinchang ginger and Chinger, respectively. The lowest oil extraction rates were found in Anqiu small ginger, Fangzhou ginger, and Jinshi ginger, which were 2.95%, 2.60%, and 1.55%, respectively [48].

Ginger, as a kind of food and medicine, has many functions, such as antioxidant, anti-inflammatory, antimicrobial, anticancer, antiobesity, antidiabetic, antinausea, antiemetic, antiallergic, neuroprotective, hepatoprotective, cardiovascular protective, and respiratory protective activities [67]. Currently, most studies of the bioactive components of ginger focus on ginger volatile oil, gingerol, shogaol, and zingerone compounds. Ginger essential oil can effectively improve the antioxidant capacity of the liver, reduce inflammatory response, and protect against fatty liver [68]. The antioxidant compounds in ginger are primarily gingerol and diarylheptanoid. Substituents on alkyl chains contribute to free radical scavenging and oxidation inhibition of lipids [69]. Antioxidant activity is typically derived from gingerols, shogaols, and some related phenolic ketone derivatives [70]. Gingerols are spicy ingredients in which 6-gingerol shows the highest biological activity, so 6-gingerol is often used as an indicator of ginger quality [71]. 6-Gingerol has been used to inhibit angiogenesis in vivo and in vitro [72]. It has been shown to have anticancer and antigastric ulcer properties while suppressing central nervous stimulation and various pharmacological activities [73, 74]. 6-Gingerol has been used to treat tumors by regulating the apoptosis gene by reversing the abnormal expression of tumor cell genes. It can also affect the apoptosis signal transduction pathway and induce apoptosis [75]. 8-Gingerol and 10-gingerol have good inhibitory effects on the activity of various tumor cells, where the inhibitory effects are somewhat different. The two may affect the phosphorylation level of the MAPK pathway proteins ERK and P38, leading to G1 phase arrest of breast cancer cells, thus applying inhibitory effects on the proliferation of tumor cells [76]. The main components of strong heart are gingerol and 6-shogaol [77]. The effects of 6-gingerol and 6-shogaol on blood pressure have been shown to induce a hypotensive effect at low doses, while high doses have shown a three-phase reaction. Initially, blood pressure drops rapidly, then rises, and then provides a hypotensive effect at later stages [78]. Ginger polysaccharide has biological activities such as antitumor, hypoglycemic, lipid-lowering, immune regulation, antivirus, and antifatigue [79].

4. Conclusion

ZOR is a widely used drug and food in clinical and daily life and has been used in the prevention and treatment of the digestive, circulatory, respiratory, and central nervous system diseases and other diseases. In this paper, the chemical constituents found in ZOR in recent years are summarized, and the results show that more than 300 chemical constituents are identified from the extracts of ZOR, including 194 types of volatile oil, 85 types of gingerol, and 28 types of diarylheptanoids compounds. From this, it can be clearly observed that ZOR has a complex chemical composition. The interactions between the components provide the clinical effects; therefore, it is necessary to further study the chemical composition and pharmacological action of ginger, for further applications. Exploring the mechanism by which different components perform the same effects is a new way to develop drugs in the future; for example, 4-terpineol and beta-sitosterol can act on the two targets of the 5-hydroxytryptamine receptor 3A and the mu-type opioid receptor, respectively, and provide corresponding therapeutic effects on diarrhea and dysentery. This can provide ideas for the research and development of new drugs and lay a foundation for further applications of ZOR.

Acknowledgments

This work was financially supported by the Key Research and Development Technology of Shandong Province (Industry Key Technology) (2016CYJS08A01).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  • 1.National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: 2015 Edition. Beijing, China: China Pharmaceutical Science and Technology Press; 2015. [Google Scholar]
  • 2.Wang X. F., Wu G. T., Niu T. H., et al. Chemistry, pharmacology and application of ginger. Chinese Fruit and Vegetable. 2016;36(6):23–29. [Google Scholar]
  • 3.Hu W. Y., Zhang R. P., Tang L. P., et al. Advances in chemical and pharmacological research on ginger. Chinese Folk Medicine. 2008;9:10–14. [Google Scholar]
  • 4.Zhu M. M., Liu D., Lu K. X., et al. Research progress on pharmacological action of ginger horseradish. Journal of Hubei Institute of Medicine. 2018;37(4):390–394. [Google Scholar]
  • 5.Sun Y. J. Research progress on pharmacological action of Ginger. Modern Journal of Integrated Chinese and Western Medicine. 2007;16(4):561–564. [Google Scholar]
  • 6.Chen Y., Ni Y. Y., Cai T. Y. Study on comprehensive utilization and deep processing of ginger extract. Food Industry Technology. 2000;21(4):76–78. [Google Scholar]
  • 7.Li J. P. Application of ginger extract in toothpaste. Toothpaste Industry. 2008;(2):10–11. [Google Scholar]
  • 8.Peng Z. Y., Huang W., Guan Y. F., et al. Development of ginger health jelly. Food and Fermentation Technology. 2009;45(4):74–76. [Google Scholar]
  • 9.Dong W. M., Tang Q. Y., Yuan W. Study on processing technology of ginger brown sugar Beverage. Modern Food Technology. 2007;23(2):57–58. [Google Scholar]
  • 10.Zhan B., Wang F. Z. Processing technology of Ginger Beverage series products. Agro-Processing. 2013;1:p. 77. [Google Scholar]
  • 11.Wohlmuth H., Smith M. K., Brooks L. O., Myers S. P., Leach D. N. Essential oil composition of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe) grown in Australia. Journal of Agricultural and Food Chemistry. 2006;54(4):1414–1419. doi: 10.1021/jf0521799. [DOI] [PubMed] [Google Scholar]
  • 12.He W. S., Yan Y. X., Guo B. J. General situation of study on chemical constituents and bioactivity of ginger. Chinese Herbal Medicine. 2001;24(5):376–379. [Google Scholar]
  • 13.Jolad S. D., Lantz R. C., Chen G. J., Bates R. B., Timmermann B. N. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry. 2005;66(13):1614–1635. doi: 10.1016/j.phytochem.2005.05.007. [DOI] [PubMed] [Google Scholar]
  • 14.Langner E., Greifenberg S., Gruenwald J. Ginger: history and use. Advances in Therapy. 1998;15:25–44. [PubMed] [Google Scholar]
  • 15.Tan J. N. GC-MS Study on chemical constituents of volatile oils from ginger in different producing areas. Asia-Pacific Traditional Medicine. 2011;7(4):23–25. [Google Scholar]
  • 16.Zhang H., Yan J. C., Zhanget H. G., et al. Extraction of volatile oil from ginger and analysis of its chemical constituents by gas chromatography-mass spectrometry. Analytical Chemistry. 1996;24(3):348–352. [Google Scholar]
  • 17.Pang X., Cao J., Wang D., Qiu J., Kong F. Identification of ginger (Zingiber officinale Roscoe) volatiles and localization of aroma-active constituents by GC-olfactometry. Journal of Agricultural and Food Chemistry. 2017;65(20):4140–4145. doi: 10.1021/acs.jafc.7b00559. [DOI] [PubMed] [Google Scholar]
  • 18.Govindarajan V. S., Connell D. W. Ginger—chemistry, technology, and quality evaluation: Part 1. CRC Critical Reviews in Food Science and Nutrition. 1983;17(1):1–96. doi: 10.1080/10408398209527343. [DOI] [PubMed] [Google Scholar]
  • 19.Lin Z. K., Hua Y. F. Study on chemical constituents of ginger essential oil in Sichuan. Organic Chemistry. 1987;6:444–448. [Google Scholar]
  • 20.Li J. P., Wang Y. S., Ma H., et al. Comparative study on the main chemical components of dried ginger and ginger. Chinese Journal of Chinese Medicine. 2001;26(11):748–751. [Google Scholar]
  • 21.Nishimura O. Identification of the characteristic odorants in fresh Rhizomes of ginger (Zingiber officinale Roscoe) using aroma extract dilution analysis and modified multidimensional gas chromatography-mass spectroscopy. Journal of Agricultural and Food Chemistry. 1995;43(11):2941–2945. doi: 10.1021/jf00059a031. [DOI] [Google Scholar]
  • 22.Jia T., Xiao R. L., Jiao H. Analysis of volatile components in rhizome zingibers, Zingiber officinale Roscoe and ginger pee by GC-MS and chemometric resolution. JCMRD. 2012;1(2):47–53. [Google Scholar]
  • 23.Wu J. F., Zhang C., Zhang X. M., et al. Extraction and composition analysis of ginger flavor substances. Deep Processing of Fruits and Vegetables. 2006;22(3):94–99. [Google Scholar]
  • 24.Xuan W. D., Bian J., Yuan B., et al. Study on chemical constituents of ginger. Chinese Herbal Medicine. 2008;39(11):1616–1619. [Google Scholar]
  • 25.Zhao Y., Tao Q. F., Zhang R. P., et al. Two new compounds from Zingiber officinale. Chinese Chemical Letters. 2007;18(10):1247–1249. doi: 10.1016/j.cclet.2007.08.002. [DOI] [Google Scholar]
  • 26.Kim M. K., Na M. S., Hong J., Jung S. T. Volatile flavor components of Korean ginger (Zingiber officinale Roscoe) extracted with liquid carbon. Hanguk Nonghwa Hakhorchi. 1992;35(1):59–63. [Google Scholar]
  • 27.Cui Q. X., Dong Y. GC-MS analysis of chemical constituents of ginger volatile oil. Journal of Liaocheng University (Natural Science Edition) 2006;19(2):43–45. [Google Scholar]
  • 28.Lu C. J., Ou M., Wang N. S. Summary of chemical composition analysis of ginger. New Drugs and Clinical Pharmacology of Traditional Chinese Medicine. 2003;14(3):215–217. [Google Scholar]
  • 29.Luo H. L. Anhui, China: Anhui Agricultural University; 2010. Extraction, separation and component study of the efficacy components of ginger. M.S. dissertation. [Google Scholar]
  • 30.Xiong H. Sichuan, China: Xihua University; 2006. Comparative study of components in ginger extracts by different extraction methods. M.S. dissertation. [Google Scholar]
  • 31.Vernin G., Parkanyl C. Chemistry of ginger. In: Ravindran P. N., Nirmal Babu K., editors. Ginger: The Genus Zingiber. New York, NY, USA: CRC Press; 2005. pp. 87–180. [DOI] [Google Scholar]
  • 32.Huang X. S., Yan R. A., Wu J. Z. A review of the bioactivity of ginger phenol. Journal of Jinan University. 2005;26(3):434–435. [Google Scholar]
  • 33.Katsuya E., Emi K., Yoshiteru O. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogin-gerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry. 1990;29(3):797–799. doi: 10.1016/0031-9422(90)80021-8. [DOI] [Google Scholar]
  • 34.Jolad S. D., Lantz R. C., Solyom A. M., Chen G. J., Bates R. B., Timmermann B. N. Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry. 2004;65(13):1937–1954. doi: 10.1016/j.phytochem.2004.06.008. [DOI] [PubMed] [Google Scholar]
  • 35.Wang L., Fang L., Zhao H. Q., et al. High performance liquid chromatography-electrospray four-stage mass spectrometry analysis of ginger horseradish compounds in ginger. Chinese Journal of Traditional Chinese Medicine. 2011;36(24):3467–3471. [Google Scholar]
  • 36.Connell D. W., McLachlan R. Natural pungent compounds: IV. Examination of the gingerols, shogaols, paradols and related compounds by thin-layer and gas chromatography. Journal of Chromatography A. 1972;67(1):29–35. doi: 10.1016/s0021-9673(01)97144-4. [DOI] [Google Scholar]
  • 37.Zhang J., Chang Y. S., Zeng C., et al. Study on chemical constituents in ginger extract. Anhui Agricultural Science. 2015;43(25):287–290. [Google Scholar]
  • 38.Galal A. M. Antimicrobial activity of 6-paradol and related compounds. International Journal of Pharmacognosy. 1996;34(1):64–69. doi: 10.1076/phbi.34.1.64.13172. [DOI] [Google Scholar]
  • 39.Tan S. B. Gansu, China: Lanzhou University of Technology; 2017. Study on water-soluble chemical constituents of ginger and shear. M.S. dissertation. [Google Scholar]
  • 40.Charles R., Garg S. N., Kumar S. New gingerdione from the rhizomes of Zingiber officinale. Fitoterapia. 2000;71(6):716–718. doi: 10.1016/s0367-326x(00)00215-x. [DOI] [PubMed] [Google Scholar]
  • 41.Masanori K., Kaoru U. U., Tatsuo H., et al. Cell differentiation inducers and antiandrogenic active compounds from Zingiberis rhizome. Natural Medicines. 2002;56(2):47–50. [Google Scholar]
  • 42.He X.-G., Bernart M. W., Lian L.-Z., Lin L.-Z. High-performance liquid chromatography-electrospray mass spectrometric analysis of pungent constituents of ginger. Journal of Chromatography A. 1998;796(2):327–334. doi: 10.1016/s0021-9673(97)01013-3. [DOI] [Google Scholar]
  • 43.Han Y. A., Song C. W., Koh W. S., et al. Anti-inflammatory effects of theZingiber officinaleroscoe constituent 12-dehydrogingerdione in lipopolysaccharide-stimulated raw 264.7 cells. Phytotherapy Research. 2013;27(8):1200–1205. doi: 10.1002/ptr.4847. [DOI] [PubMed] [Google Scholar]
  • 44.Zhao W. Z., Zhang R. X., Yu Z. P., et al. Research progress on chemical constituents and bioactivity of Ginger. Food Industry Technology. 2016;37(11):383–387. [Google Scholar]
  • 45.Koh E., Kim H., Kim S., et al. Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Medica. 2009;75(02):148–151. doi: 10.1055/s-0028-1088347. [DOI] [PubMed] [Google Scholar]
  • 46.Kikuzaki H., Tsai S.-M., Nakatani N. Gingerdiol related compounds from the rhizomes of Zingiber officinale. Phytochemistry. 1992;31(5):1783–1786. doi: 10.1016/0031-9422(92)83147-q. [DOI] [Google Scholar]
  • 47.Masada Y., Inoue T., Hashimoto K., Fujioka M., Uchino C. Studies on the constituents of ginger (Zingiber officinale Roscoe) by GC-MS. Yakugaku Zasshi. 1974;94(6):735–738. doi: 10.1248/yakushi1947.94.6_735. [DOI] [PubMed] [Google Scholar]
  • 48.Zhan K. Y. Shandong, China: Shandong Agricultural University; 2009. Chemical composition analysis of ginger oil and study on isolation and purification of ginger horseradish. M.S. dissertation. [Google Scholar]
  • 49.Juan J., Zhang H. P., Prisinzano T. E., Mitscher L. A., Timmermann B. N. Identification of unprecedted purine-containing compounds, the zingerines, from ginger rhizomes(Zingiber officinale Roscoe)using a phase-trafficking approach. Phytochemistry. 2011;72(9):935–941. doi: 10.1016/j.phytochem.2011.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Purseglove J. W., Brown E. G., Green C. L., Robbins S. R. J. New York, NY, USA: Longman; 1981. Spices. M.S. dissertation. [Google Scholar]
  • 51.Li J. Henan, China: Henan College of Traditional Chinese Medicine; 2007. Processing principle of ginger. M.S. dissertation. [Google Scholar]
  • 52.Liu D., Zhang C. H., An R. H., et al. Research progress on extraction and application of main bioactive components of ginger. Food Industry Science and Technology. 2016;37(20):391–393. [Google Scholar]
  • 53.Wang X. Research progress on active sites and components of ginger. Research on Traditional Chinese Medicine. 2009;22(12):53–55. [Google Scholar]
  • 54.Yang L. X., Zhou C. X., Huang K. X., et al. Study on antioxidant and cytotoxic activity of diphenyl heptane compounds in Ginger. Chinese Journal of Traditional Chinese Medicine. 2009;34(3):319–322. [Google Scholar]
  • 55.Kikuzaki H., Kobayashi M., Nakatani N. Diarylheptanoids from rhizomes of Zingiber officinale. Phytochemistry. 1991;30(11):3647–3651. doi: 10.1016/0031-9422(91)80085-f. [DOI] [Google Scholar]
  • 56.Kikuzaki H., Nakatani N. Antioxidant effects of some ginger constituents. Journal of Food Science. 1993;58(6):1407–1410. doi: 10.1111/j.1365-2621.1993.tb06194.x. [DOI] [Google Scholar]
  • 57.Ma J. P., Jin X. L., Yang L., et al. Two new diarylheptanoids from the rhizomes of zingiber officinale. Chinese Chemical Letters. 2004;15(11):1306–1308. doi: 10.1016/j.phytochem.2004.03.007. [DOI] [PubMed] [Google Scholar]
  • 58.Kikuzaki H., Nakatani N. Cyclic diarylheptanoids from rhizomes of Zingiber officinale. Phytochemistry. 1996;43(1):273–277. doi: 10.1016/0031-9422(96)00214-2. [DOI] [Google Scholar]
  • 59.Luo J. C., Feng Y. F., Ji X. Research progress of natural linear diphenyl heptane compounds. Chinese Herbal Medicine. 2012;39(12):1913–1916. [Google Scholar]
  • 60.Zhang Y. F., Ma Z. C. Ingredients and applications of ginger. Chemistry Teaching. 2012;8:73–80. [Google Scholar]
  • 61.Li S. H., Chen F. Z., Liu Z., et al. Determination of Vc, nitrate, nitrite, total sugar, organic acid content in greenhouse ginger. Anhui Agricultural Science. 2006;34(14):3346–3347. [Google Scholar]
  • 62.Onyenekwe P. C., Hashimoto S. The composition of the essential oil of dried Nigerian ginger (Zingiber officinale Roscoe) European Food Research and Technology. 1999;209(6):407–410. doi: 10.1007/s002170050517. [DOI] [Google Scholar]
  • 63.Zhang W. M., Jiang H. F., Zhang J. Study on gas chromatographic fingerprints of different aromatic parts of ginger. China Wild Plant Resources. 2003;22(5):53–55. doi: 10.1021/om030291v. [DOI] [Google Scholar]
  • 64.National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (Part I) Beijing, China: China Medical Science and Technology Press; 2015. [Google Scholar]
  • 65.Liao X. F., Ying Y. Y., Guo W. Y., et al. Analysis of the characteristics of qianwei ginger and determination of its main components. Chinese Journal of Traditional Chinese Medicine. 2019;34(6):2680–2683. [Google Scholar]
  • 66.Xuan W. D., Bian J., Wang C. W., et al. Comparison of extraction methods and quality control of 6-gingerol in ginger. Chinese Journal of Pharmacy of the People’s Liberation Army. 2008;24(4):329–331. [Google Scholar]
  • 67.Mao Q.-Q., Xu X.-Y., Cao S.-Y., et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe) Foods. 2019;8(6):p. 185. doi: 10.3390/foods8060185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Lai Y.-S., Lee W.-C., Lin Y.-E., et al. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. Journal of Agricultural and Food Chemistry. 2016;64(10):2062–2071. doi: 10.1021/acs.jafc.5b06159. [DOI] [PubMed] [Google Scholar]
  • 69.Masuda Y., Ikuzaki H., Hisamoto M., Nakatani N. Antioxidant properties of gingerol related compounds from ginger. Biofactors. 2004;21(1–4):293–296. doi: 10.1002/biof.552210157. [DOI] [PubMed] [Google Scholar]
  • 70.Liu N., Huo G. C., Zhang L. Effects of ginger on lipid peroxidation in hyperlipidemia rats. Health Research. 2003;32(1):22–23. [PubMed] [Google Scholar]
  • 71.Zhang X. H., Liu H. X. Research progress of gingerol. Journal of Guangxi Normal University. 2009;26(1):110–113. [Google Scholar]
  • 72.Kim E.-C., Min J.-K., Kim T.-Y., et al. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochemical and Biophysical Research Communications. 2005;335(2):300–308. doi: 10.1016/j.bbrc.2005.07.076. [DOI] [PubMed] [Google Scholar]
  • 73.Lantz R. C., Chen G. J., Sarihan M., Sólyom A. M., Jolad S. D., Timmermann B. N. The effect of extracts from ginger rhizome on vegetation. Phytomedicine. 2007;14(2-3):123–128. doi: 10.1016/j.phymed.2006.03.003. [DOI] [PubMed] [Google Scholar]
  • 74.Qian H. M., Wang M., Su Z. X. Preliminary experimental study on anti-tumor effects of ginger extract. Jiangsu Pharmaceutical & Clinical Research. 1999;7(3):14–16. [Google Scholar]
  • 75.Xu J. Research progress on anti-tumor effects of ginger. Journal of Youjiang Medical College for Nationalities. 2015;37(3):496–497. [Google Scholar]
  • 76.Liu X., Zhang H. W., Fu R. Q., et al. Anti-tumor effects and mechanism of active components of gingerol in ginger. Journal of Third Military Medical University. 2017;39(9):884–890. [Google Scholar]
  • 77.Lu C. J., Ou M., Wang N. S. Pharmacological effects of ginger on cardiovascular and cerebrovascular system. Chinese Medicine New Drug and Clinical Pharmacology. 2003;14(5):356–357. [Google Scholar]
  • 78.Suekawa M., Ishige A., Yuasa K., Sudo K., Aburada M., Hosoya E. Pharmacological studies on Ginger. I. Pharmacological actions of pungent constituents, (6)-gingerol and (6)-shogaol. Journal of Pharmacobio-Dynamics. 1984;7(11):836–848. doi: 10.1248/bpb1978.7.836. [DOI] [PubMed] [Google Scholar]
  • 79.Wu J. A., Wang X. Y., Wang K. L., et al. Research progress on nutritional value and pharmacological action of ginger. Food Industry. 2019;40(2):237–239. [Google Scholar]

Articles from BioMed Research International are provided here courtesy of Wiley

RESOURCES