Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2019 Dec 20;39(12):1515–1520. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2019.12.19

CRISPR技术发展及其在骨和软骨组织工程中的应用

Development of CRISPR technology and its application in bone and cartilage tissue engineering

陈 果 1, 程 度 2, 陈 滨 1,*
PMCID: PMC6942994  PMID: 31907146

Abstract

由Cas9核酸酶和单向导RNA(sgRNA)组成的CRISPR/Cas9系统,可对sgRNA靶向的DNA序列进行缺失、插入和点突变等基因重编程操作,是新兴的基因编辑技术。此外,CRISPR/dCas9(Cas9核酸酶活性丧失的突变体),仍保留sgRNA靶向结合DNA的能力,dCas9蛋白融合转录激活物(CRISPRa)后可激活目标基因表达,也可通过融合转录阻遏物(CRISPRi)抑制目标基因表达。CRISPR/Cas9系统的高效输送是限制其临床广泛应用的主要问题之一。病毒载体被广泛用于递送CRISPR/Cas9元件;但就安全性、简便性和灵活性而言,非病毒载体研究更具吸引力。本文主要总结了CRISPR技术的原理和研究进展,包括CRISPR/Cas9的递送载体,递送模式以及递送过程的障碍,并回顾基于CRISPR技术在骨和软骨组织工程中的研究进展,讨论CRISPR技术在骨和软骨组织工程应用中面临的挑战和未来。

Keywords: CRISPR, 基因编辑, 骨组织工程, 软骨组织工程


基于成簇间隔短回文重复序列(CRISPR)/Cas9系统的基因编辑技术已广泛应用于哺乳动物细胞基因组编辑,本文综述CRISPR技术的原理和研究进展,包括它们的递送载体研究进展,并回顾它们在骨和软骨组织工程中的研究进展,旨在揭示CRISPR技术在骨和软骨组织工程中应用的可行性,为骨科相关疾病的防治开辟新的思路。

1. CRISPR/Cas9技术

CRISPR/Cas9系统是多种细菌和古细菌的适应性免疫机制,保护自己免受外源性核酸侵害[1]。在适应阶段,入侵的外源DNA片段[30~45个核苷酸,也称为原型间隔子(PAM)]作为新的间隔子被整合到CRISPR阵列中。在表达阶段,CRISPR阵列被转录加工为CRISPR RNA(crRNA)。在干扰阶段,Cas9核酸酶与两个不同的RNA分子,即crRNA和反式激活的crRNA(tracrRNA)形成功能性的RNA:Cas9复合物[2],在crRNA上间隔子向导下识别原间隔子序列。随后,Cas9中的催化结构域将染色体DNA切割成双链断裂(DSB)的平末端DNA。双链断裂DNA可以通过两种途径修复,在没有同源模板DNA时,通过非同源末端连接(NHEJ)途径修复,该途径将断裂的DNA末端直接连接,容易产生插入或缺失突变破坏靶基因,导致mRNA降解或产生非功能性蛋白质[3]。当存在同源模板DNA时,DSB通过同源定向修复(HDR)途径,根据模板供体DNA序列在预定位点精确整合、删除或编辑DNA序列[3]。该方法类似于传统同源重组(HR),但核酸酶诱导的DSB可以将HR的效率显着提高几个数量级[4]

自2013年首次应用于哺乳动物细胞以来[5-6],因其对活细胞内进行基因组编辑的能力,基于RNA向导的CRISPR/Cas9基因编辑技术推动了生命科学领域的飞速发展,用于修复致病突变[7-9]、高通量筛选[10-11]和研究单基因疾病及建立多基因疾病模型[12-14]等。用于哺乳动物基因组编辑的天然CRISPR核酸酶中,最常用的变体是化脓性链球菌(SpCas9)1368个残基Cas9蛋白。天然Cas9核酸酶与两个不同的RNA分子,即crRNA和tracrRNA形成RNA:Cas9复合物,而单向导RNA(sgRNA)可代替crRNA和tracrRNA的发现,仅需一种蛋白质和一个RNA分子即可完成RNA程序化的DNA切割,进一步简化了CRISPR/Cas9系统的使用[15]。CRISPR/Cas9作为RNA引导的DNA核酸内切酶系统,显著降低了基因组编辑中对每个新的靶位点需要设计和构建新的核酸酶的障碍。在该系统中,功能性的RNA:Cas9复合物遵循向导RNA与基因组DNA碱基互补配对原则定位到目标DNA序列。但目标DNA序列与向导RNA互补必须包含“原间隔子基序”(PAM),PAM是与所使用的特定Cas蛋白相容的短DNA序列,例如,SpCas9和金黄色葡萄球菌Cas9(SaCas9)分别需要5'-NGG-3'和5'-NNGRRT-3' [16],而NGG相对简单的PAM要求,有助于SpCas9成为基因组编辑中应用最广泛的同系物。尽管由于PAM的要求,适度限制了这项新技术可进行基因组编辑的基因组位点数量,但相较于传统基因组编辑方法(ZFN和TALEN)需要设计新的复杂蛋白质,CRISPR/Cas9更易于操作,并且只需更改sgRNA中的间隔序列即可进行新位点的编辑。因此,CRISPR/Cas9已取代ZFN和TALEN,成为基因组编辑新的选择[4, 17]。此外,新开发的CRISPR/Cas13a被称为RNA向导的RNA靶向技术,可介导RNA的结合和敲除。该技术相较于RNA干扰更适用于治疗应用,并且由于其可逆性,相比于DNA编辑具有更低的风险[18]

2. CRISPRa和CRISPRi

在CRISPR/Cas9技术用于基因组编辑后不久,出现将Cas9的催化结构域突变以产生保留结合但不切割DNA的催化失活Cas9(dCas9)[19],当融合转录激活因子时称为CRISPR激活(CRISPRa)系统[20],或者融合转录阻遏物成为CRISPR干扰(CRISPRi)系统[21]

CRISPRa系统由dCas9与转录激活因子,比如转录激活VP64结构域(由四个串联复制的单纯疱疹病毒蛋白16(VP16)组成)与dCas9的C末端融合,可用于增加多种不同基因的表达[22]。为进一步增强激活效果,SunTag系统将dCas9与肽串联阵列(称为SunTag阵列)融合[23],可募集多个VP64效应分子,增强基因激活作用。此外,将dCas9与嵌合激活剂VPR[24](由VP64,p65和Rta串联组成)或p300融合[25],通过这些不同的构建体可以在多种哺乳动物细胞类型中提供强大的基因激活作用。

CRISPRi系统中,dCas9可单独[19]或与Krüppel关联盒(KRAB)转录阻遏物融合[26]用于抑制靶基因转录,利用dCas9对目标DNA的高亲和力和阻断转录机制组分,dCas9/sgRNA复合物与靶基因结合并抑制转录,CRISPRi系统已用于多种细菌和真核生物细胞的基因表达和代谢工程[27-29]。基于CRISPR系统的基因编辑可以同时将多个sgRNA传递到转录起始位点或附近,因此,通过随意组合使用激活(CRISPRa)或抑制(CRISPRi)技术,研究人员能够在几个数量级的动态范围内可逆地调节基因表达[21, 30]

3. CRISPR系统递送载体

CRISPR系统递送载体的选择对基因编辑效率非常重要,CRISPR系统可以通过病毒或非病毒方法递送到细胞内。病毒载体如慢病毒、腺病毒、腺伴随病毒和杆状病毒等被广泛应用于CRISPR组分递送,并在体外转导和体内靶器官施用探索中被证明有效[31-33]。慢病毒能够感染非分裂细胞,包装极限约为8.5 kb,足以包装大多数CRISPR组分,但慢病毒会把DNA整合到宿主基因组中,可能导致随机插入诱变,对于治疗而言是不可取的。腺病毒能够感染分裂和非分裂细胞,且不会将其DNA整合到宿主细胞基因组中,但可能引起强烈的免疫反应。而为基因治疗设计的腺伴随病毒变异体可以感染分裂和非分裂细胞,且不会将其DNA整合到宿主基因组中,也不会在宿主中引起明显的免疫反应,但腺伴随病毒的DNA包装极限约为4.5 kb [34]。因此,通常难以将编码SpCas9(4.3 kb),sgRNA以及相关启动子和调控序列的基因组分包装到腺伴随病毒中。而杆状病毒具有较大的包装能力(约38 kb),此外,杆状病毒对于包括BMSC和ASC在内的各种干细胞同样具有很高的转染效率[35]。但由于杆状病毒的非复制特性,只能介导短期(< 7 d)的基因表达,这限制了其指导干细胞分化的能力。

非病毒方法递送CRISPR组分包括电穿孔[36]、微流体膜变形[37]、流体动力学注射[13]和各种非病毒转染载体等。非病毒载体主要包括阳离子脂质体[38]、金纳米颗粒[39]、细胞穿膜肽[40],树突状聚合物[41]、自组装纳米颗粒[42]和病毒样颗粒[43]等。CRISPR/Cas9系统主要以3种形式递送,第1种是递送编码Cas9和sgRNA的质粒,质粒DNA产生的Cas9核酸酶相对稳定且成本低廉。第2种是递送mRNA和sgRNA元件,通过细胞质中的翻译过程将mRNA转化为Cas9核酸酶。第3种是递送Cas9蛋白与sgRNA复合形成核糖核蛋白(RNP)复合物。在CRISPR/Cas9系统研究初期,由于质粒递送简单且对细胞系有高转染效率,Cas9和sgRNA使用质粒递送[15]。但在原代细胞和干细胞中,质粒转染效率通常不高[44],且如果没有适当控制,Cas9可能持续表达数天或数周,引起脱靶效应和体内免疫反应[45]。而通过将Cas9蛋白与sgRNA复合形成核糖核蛋白(RNP)复合物进行递送可以解决相应的问题[46],由于RNP复合物在导入后12~ 24 h内切割染色体DNA,并且Cas9蛋白在24~48 h内迅速降解。因此,使用RNP复合物可以提高基因编辑效率并减少脱靶效应[47-48]。但由于Cas9蛋白很大(≈ 160 000)带有正电荷,而sgRNA带有强负电荷,这使得目前有效递送Cas9 RNP/sgRNA复合物仍然困难[49-50],此外,体内递送Cas9蛋白也存在潜在的细胞毒性和诱导体液免疫等问题[51-52]

4. 骨组织工程

大范围的骨缺损,包括由创伤、肿瘤切除和感染导致的骨缺损治疗仍然是临床工作的一大挑战。在临床实践中,自体骨移植是骨缺损治疗的“金标准”,但存在移植物供体部位治疗时间延长,显著疼痛和治疗成本增加等问题[53]。同种异体骨移植具有一些固有的缺点,包括免疫排斥和供体疾病传播的风险[54]。此外,金属骨植入物也受到骨整合不良等缺点的限制[55]。因此,开发基于基因疗法与细胞疗法相结合的组织工程骨具有广阔的前景。

干细胞,包括胚胎干细胞(ESC),骨髓间充质干细胞(BMSC),脂肪源性干细胞(ASC)和造血多能干细胞等。由于具有增殖、分化和分泌细胞因子的能力,可以重塑局部微环境并刺激组织再生,因此成为再生医学中重要的细胞来源。其中,BMSC和ASC可以分化为脂肪细胞,软骨细胞或骨细胞,常用于骨和软骨的再生[56]。这些自体干细胞可以通过化学,生物学以及遗传学方法进行操作,指导细胞分化或重新编程。其中,BMSC被广泛用于骨组织工程,但不适合长期培养。基于CRISPR/Cas9同源定向修复(HDR)机制,Hu等[57]将永生化癌基因SV40T靶向整合到小鼠Rosa26基因座,建立了永生化的BMSC,当使用腺病毒载体转染BMP-9后可以有效地诱导异位成骨。在颅骨缺损模型研究中,Truong等[58]开发的基于CRISPRai系统,可同时激活Sox9基因并抑制PPAR-γ基因,激活Sox9基因可促进BMSC成软骨分化,而抑制PPAR-γ基因可抑制BMSC成脂分化,基于CRISPRai系统实现了刺激软骨形成并促进大鼠颅骨愈合。此外,基于CRISPRa SAM系统介导的共激活大鼠BMSCs中Wnt10b和Foxc2基因,可增强体外成骨细胞分化,并显着改善体内颅骨骨修复[59]。这些工作共同揭示了应用CRISPR/Cas9介导的基因组编辑的组织工程骨在骨再生治疗中的可行性。

5. 软骨组织工程

软骨的自我修复能力有限,基于细胞和组织工程疗法的软骨生成剂(CPs)在软骨修复中获得了广泛应用。CPs在多数情况下由于分化方法控制不善,容易产生异质细胞群。而人类诱导多能干细胞(hiPSC)可分化为特定的组织类型,例如透明软骨,常用于再生医学研究。因此,Adkar等[60]通过CRISPR-Cas9基因组编辑设计了COL2A1-GFP报告基因敲入hiPSC品系。由于软骨形成时Col2A1高表达,因此EGFP可以监测软骨形成,通过分选纯化后CPs具有更好的促软骨形成能力。

促炎性细胞因子(例如白介素(IL)-1,IL-6和肿瘤坏死因子α(TNF-α))在骨性关节炎(OA)的发生发展中起重要作用。关节软骨细胞和干细胞受促炎性细胞因子水平升高因素及其他因素影响,导致干细胞软骨分化抑制,并导致干细胞衍生的软骨快速降解,这可能影响关节中组织工程替代物植入的治疗潜力。因此,Brunger等[61]使用CRISPR/Cas9特异性敲除小鼠iPSC中的IL-1I基因(IL-1RI),通过敲除IL-1信号通路来设计抗炎性鼠类诱导多能干细胞(iPSC),并在体外骨关节炎模型中证明了经工程改造后的干细胞对促炎性细胞因子(即IL-1)具有免疫力,可作为软骨组织工程的潜在细胞来源。另一项研究中,Farhang等[62]通过CRISPRi技术靶向抑制人类脂肪干细胞(hADSCs)中炎性因子受体TNFR1和IL1R1的表达,编辑后的hADSCs在存在TNF-α或IL-1β的情况下显示软骨分化能力得到改善。总的来说,这些工作展示了通过基因组编辑调节应用到炎性环境的工程细胞对炎症信号的应答,促进细胞在炎症条件下的存活,由此产生的工程软骨可能更适合植入治疗。

神经生长因子(NGF)和白介素1β(IL-1β)在OA中上调表达,而MMP13是OA软骨中主要表达的胶原酶,它们在OA的病理生理中均起着关键作用[63]。Zhao等[64]通过CRISPR技术靶向敲除IL-1β或MMP13后可以减轻结构损伤,降低创伤后OA(PTOA)的进展。单独敲除NGF可明显减轻疼痛,但会加重关节损伤。而NGF,MMP13和IL-1β的多重缺失在疼痛管理和关节结构维持上均提供了好处,这项工作展示了体内应用CRISPR/Cas9介导的基因组编辑在骨关节炎治疗中的可行性。

6. 讨论

近年来,CRISPR/Cas9技术已经广泛应用于医学、生物学、遗传学等领域,并展现出巨大的治疗潜力。基于CRISPR/Cas9技术的临床试验也正在开展,例如CTX001是一种基于CRISPR基因编辑的疗法,通过切割抑制胎儿血红蛋白生成的BCL11A基因,可增加患者红细胞中的胎儿血红蛋白含量,改善β地中海贫血或镰状细胞贫血患者症状,目前该研究正在1/2期临床试验中[65]。尽管可预见CRISPR/Cas9技术能为遗传性疾病带来巨大治疗潜力,但在基于CRISPR系统的基因组编辑广泛应用于临床之前,仍面临一些实际问题和技术挑战。

首先,脱靶效应,即sgRNA与脱靶基因组位点之间即使不完全互补也可能触发Cas9核酸酶活性,这些脱靶效应对基因组编辑的临床应用提出了巨大挑战。因此,如何改善其特异性,以及如何降低研究和治疗中的脱靶效应是需要考虑的关键因素。已研究的各种方法提高特异性并降低脱靶效应包括通过蛋白质工程修饰Cas9结构,以在保持蛋白活性的同时降低脱靶效应[66-67]。通过截短sgRNA的长度[68]或修饰sgRNA结构[69-70]也可以减少脱靶效应。由于Cas9持续过表达会增加脱靶效应[71],另一种策略是通过设计特异性启动子调控Cas9的表达时间,比如将Cas9设计为无活性形式变体,仅在诱导剂刺激后才表达或激活Cas9。类似的系统包括光响应Cas9变体[72],拆分Cas9变体[73]和小分子诱导Cas9 [74]等,已经证明可以显著改善基因组编辑特异性并减少脱靶效应。

其次,编辑效率,基因编辑的效率取决于许多因素,包括细胞类型和靶向基因座。如何将CRISPR系统组分有效递送至特定细胞类型,组织或器官以获得治疗效果是面临的另一个主要挑战。尽管近年来以RNP形式进行递送的研究越来越流行,但目前这种方法递送效率仍然较低[44]。实际上,由于病毒载体的高转染效率,目前基因疗法的临床试验中约70%使用病毒载体来递送基因[75]。但病毒载体存在着相关局限性,比如致癌、免疫原性以及有限的DNA包装能力和载体生产难度等[75]。非病毒载体可以解决这些局限性,特别是在安全性、更低的免疫原性和更大的有效载荷等方面,并且非病毒载体相较于病毒载体更容易合成。因此,开发新的递送方法对于体内治疗应用是必不可少的。

总而言之,CRISPR技术提供了强大的操纵基因组序列和调控基因表达的能力,成为骨和软骨组织工程的理想选择。但在临床应用之前,仍需开发更有效的CRISPR系统和更安全的体内递送载体。毫无疑问,随着科学研究的迅速发展,更有效的CRISPR系统和体内递送载体将在不久的将来可用。

Biography

陈果,在读博士研究生,E-mail: chenguo12@smu.edu.cn

Funding Statement

广东省自然科学基金(2016A030313554)

Contributor Information

陈 果 (Guo CHEN), Email: chenguo12@smu.edu.cn.

陈 滨 (Bin CHEN), Email: chb@smu.edu.cn.

References

  • 1.van der Oost J, Westra ER, Jackson RN, et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014;12(7):479–92. doi: 10.1038/nrmicro3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature. 2011;471(7340):602. doi: 10.1038/nature09886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017;16(6):387–99. doi: 10.1038/nrd.2016.280. [DOI] [PubMed] [Google Scholar]
  • 4.Komor AC, Badran AH, Liu DR. CRISPR-Based technologies for the manipulation of eukaryotic genomes. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52e0895ee55948be84281a61ea195ae0. Cell. 2017;168(1/2):20–36. doi: 10.1016/j.cell.2016.10.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. doi: 10.1126/science.1231143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Mali P, Yang LH, Esvelt KM, et al. RNA-Guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. doi: 10.1126/science.1232033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Yin H, Xue W, Chen SD, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32(6):551–3. doi: 10.1038/nbt.2884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24(3):556–63. doi: 10.1038/mt.2015.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Park CY, Kim DH, Son JS, et al. Functional correction of large factor Ⅷ gene chromosomal inversions in hemophilia a PatientDerived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213–20. doi: 10.1016/j.stem.2015.07.001. [DOI] [PubMed] [Google Scholar]
  • 10.Sanjana NE. Genome-scale CRISPR pooled screens. http://www.sciencedirect.com/science/article/pii/S0003269716300896. Anal Biochem. 2017;532(11):95–9. doi: 10.1016/j.ab.2016.05.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Shalem O, Sanjana NE, Hartenian E, et al. Genome-Scale CRISPRCas9 knockout screening in human cells. Science. 2014;343(6166):84–7. doi: 10.1126/science.1247005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Fujii M, Clevers H, Sato T. Modeling human digestive diseases with CRISPR-Cas9-Modified organoids. Gastroenterology. 2019;156(3):562–76. doi: 10.1053/j.gastro.2018.11.048. [DOI] [PubMed] [Google Scholar]
  • 13.Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514(7522):380–4. doi: 10.1038/nature13589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62. doi: 10.1038/nm.3802. [DOI] [PubMed] [Google Scholar]
  • 15.Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(696):816–21. doi: 10.1126/science.1225829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91. doi: 10.1038/nature14299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78. doi: 10.1016/j.cell.2014.05.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b is a type Ⅵ-B CRISPR-Associated RNA-Guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell. 2017;65(4):618–30. doi: 10.1016/j.molcel.2016.12.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-Guided platform for Sequence-Specific control of gene expression. Cell. 2013;152(5):1173–83. doi: 10.1016/j.cell.2013.02.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Perez-Pinera P, Kocak DD, Vockley CM, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10(10):973–6. doi: 10.1038/nmeth.2600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-Scale CRISPR-Mediated control of gene repression and activation. Cell. 2014;159(3):647–61. doi: 10.1016/j.cell.2014.09.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Maeder ML, Linder SJ, Cascio VM, et al. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10(10):977–9. doi: 10.1038/nmeth.2598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Tanenbaum ME, Gilbert LA, Qi LS, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46. doi: 10.1016/j.cell.2014.09.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326–8. doi: 10.1038/nmeth.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Hilton IB, D'ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–U225. doi: 10.1038/nbt.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Gilbert LA, Larson MH, Morsut L, et al. CRISPR-Mediated modular RNA-Guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51. doi: 10.1016/j.cell.2013.06.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Li H, Shen CR, Huang CH, et al. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd1a26228237f99345a290e3955f17ac. Metab Eng. 2016;38(4):293–302. doi: 10.1016/j.ymben.2016.09.006. [DOI] [PubMed] [Google Scholar]
  • 28.Sung LY, Wu MY, Lin MW, et al. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli. Biotechnol Bioeng. 2019;116(5):1066–79. doi: 10.1002/bit.26915. [DOI] [PubMed] [Google Scholar]
  • 29.Shen CC, Sung LY, Lin SY, et al. Enhancing protein production yield from Chinese hamster ovary cells by CRISPR interference. ACS Synth Biol. 2017;6(8):1509–19. doi: 10.1021/acssynbio.7b00020. [DOI] [PubMed] [Google Scholar]
  • 30.Larouche J, Aguilar CA. New technologies to enhance in vivo reprogramming for regenerative medicine. Trends Biotechnol. 2019;37(6):604–17. doi: 10.1016/j.tibtech.2018.11.003. [DOI] [PubMed] [Google Scholar]
  • 31.Gori JL, Hsu PD, Maeder ML, et al. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Hum Gene Ther. 2015;26(7):443–51. doi: 10.1089/hum.2015.074. [DOI] [PubMed] [Google Scholar]
  • 32.Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=385e5efa76d652828d88123eb9f0a3d2. Nature. 2014;510(754):235–40. doi: 10.1038/nature13420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Koike-Yusa H, Li YL, Tan EP, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32(3):267–73. doi: 10.1038/nbt.2800. [DOI] [PubMed] [Google Scholar]
  • 34.Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18(1):80–6. doi: 10.1038/mt.2009.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Sung LY, Chen CL, Lin SY, et al. Efficient gene delivery into cell lines and stem cells using baculovirus. Nat Protoc. 2014;9(8):1882–99. doi: 10.1038/nprot.2014.130. [DOI] [PubMed] [Google Scholar]
  • 36.Mandal PK, Ferreira LM, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15(5):643–52. doi: 10.1016/j.stem.2014.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Han X, Liu Z, Jo MC, et al. CRISPR-Cas9 delivery to hard-totransfect cells via membrane deformation. Science advances. 2015;1(7):e1500454. doi: 10.1126/sciadv.1500454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Liang X, Potter J, Kumar S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235178478/ J Biotechnol. 2015;208(2):44–53. doi: 10.1016/j.jbiotec.2015.04.024. [DOI] [PubMed] [Google Scholar]
  • 39.Mout R, Ray M, Yesilbag Tonga G, et al. Direct cytosolic delivery of CRISPR/Cas9-Ribonucleoprotein for efficient gene editing. ACS Nano. 2017;11(3):2452–8. doi: 10.1021/acsnano.6b07600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Ramakrishna S, Kwaku Dad AB, Beloor J, et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020–7. doi: 10.1101/gr.171264.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kretzmann JA, Ho D, Evans CW, et al. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci. 2017;8(4):2923–30. doi: 10.1039/C7SC00097A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sun W, Ji W, Hall JM, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015;54(41):12029–33. doi: 10.1002/anie.201506030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Mangeot PE, Risson V, Fusil F, et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat Commun. 2019;10(1):45. doi: 10.1038/s41467-018-07845-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9- based genome editing: Challenges and opportunities. http://www.sciencedirect.com/science/article/pii/S0142961218302862. Biomaterials. 2018;171(4):207–18. doi: 10.1016/j.biomaterials.2018.04.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6. doi: 10.1038/nbt.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–2. doi: 10.1038/nbt.2507. [DOI] [PubMed] [Google Scholar]
  • 47.Schumann K, Lin S, Boyer E, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA. 2015;112(33):10437–42. doi: 10.1073/pnas.1512503112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Kim S, Kim D, Cho SW, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9. doi: 10.1101/gr.171322.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Zuris JA, Thompson DB, Shu YL, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. doi: 10.1038/nbt.3081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Mout R, Ray M, Lee YW, et al. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem. 2017;28(4):880–4. doi: 10.1021/acs.bioconjchem.7b00057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Chew WL, Tabebordbar M, Cheng JK, et al. A multifunctional AAVCRISPR-Cas9 and its host response. Nat Methods. 2016;13(10):868–74. doi: 10.1038/nmeth.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Wang D, Mou H, Li S, et al. Adenovirus-Mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9- Specific immune responses. Hum Gene Ther. 2015;26(7):432–42. doi: 10.1089/hum.2015.087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Schwartz CE, Martha JF, Kowalski P, et al. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_686a8c445da7905df2b091772a2f2a2b. Health Qual Life Outcomes. 2009;7(2):49. doi: 10.1186/1477-7525-7-49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Calori GM, Mazza E, Colombo M, et al. The use of bone-graft substitutes in large bone defects: any specific needs? http://www.sciencedirect.com/science/article/pii/S0020138311002488. Injury. 2011;42(Suppl 2):S56–63. doi: 10.1016/j.injury.2011.06.011. [DOI] [PubMed] [Google Scholar]
  • 55.Berner A, Reichert JC, Müller MB, et al. Treatment of long bone defects and non-unions: from research to clinical practice. Cell Tissue Res. 2012;347(3):501–19. doi: 10.1007/s00441-011-1184-8. [DOI] [PubMed] [Google Scholar]
  • 56.Phinney DG, Prockop DJ. Concise review: mesenchymal stem/ multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells. 2007;25(11):2896–902. doi: 10.1634/stemcells.2007-0637. [DOI] [PubMed] [Google Scholar]
  • 57.Hu X, Li L, Yu X, et al. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762364/ Oncotarget. 2017;8(67):111847–65. doi: 10.18632/oncotarget.22915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Truong VA, Hsu MN, Kieu Nguyen NT, et al. CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res. 2019;47(13):e74. doi: 10.1093/nar/gkz267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Hsu MN, Chang YH, Truong VA, et al. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv. 2019;37(8):107447. doi: 10.1016/j.biotechadv.2019.107447. [DOI] [PubMed] [Google Scholar]
  • 60.Adkar SS, Wu CL, Willard VP, et al. Step-Wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cells. 2019;37(1):65–76. doi: 10.1002/stem.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Brunger JM, Zutshi A, Willard VP, et al. CRISPR/Cas9 editing of murine induced pluripotent stem cells for engineering Inflammation-Resistant tissues. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47c84de45cbfa6a50dc09d803747e645. Arthritis & rheumatology (Hoboken, N.J.) 2017;69(5):1111–21. doi: 10.1002/art.39982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Farhang N, Brunger JM, Stover JD, et al. CRISPR-Based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1dbf8f0593f36cd11dbe99ea7c3cbcb. Tissue Eng Part A. 2017;23(15/16):738–49. doi: 10.1089/ten.tea.2016.0441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol. 2013;9(7):400–10. doi: 10.1038/nrrheum.2013.44. [DOI] [PubMed] [Google Scholar]
  • 64.Zhao L, Huang J, Fan Y, et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann Rheum Dis. 2019;78(5):676–82. doi: 10.1136/annrheumdis-2018-214724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Li Y, Kang XJ, Pang JKS, et al. Human germline editing: Insights to future clinical treatment of diseases. Protein Cell. 2019;10(7):470–5. doi: 10.1007/s13238-018-0594-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–8. doi: 10.1126/science.aad5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Vakulskas CA, Dever DP, Rettig GR, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24(8):1216–24. doi: 10.1038/s41591-018-0137-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84. doi: 10.1038/nbt.2808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kocak DD, Josephs EA, Bhandarkar V, et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. 2019;37(6):657–66. doi: 10.1038/s41587-019-0095-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Ryan DE, Taussig D, Steinfeld I, et al. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 2018;46(2):792–803. doi: 10.1093/nar/gkx1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet. 2016;17(5):300–12. doi: 10.1038/nrg.2016.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Nihongaki Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. 2015;33(7):755–60. doi: 10.1038/nbt.3245. [DOI] [PubMed] [Google Scholar]
  • 73.Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. 2015;33(2):139–42. doi: 10.1038/nbt.3149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Dow LE, Fisher J, O'rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33(4):390–4. doi: 10.1038/nbt.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55. doi: 10.1038/nrg3763. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES