Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):18–24. doi: 10.1107/S2056989019016050

Crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les

Sadashivamurthy Shamanth a, Kempegowda Mantelingu a, Haruvegowda Kiran Kumar a, Hemmige S Yathirajan a,*, Sabine Foro b, Christopher Glidewell c
PMCID: PMC6944076  PMID: 31921446

In the crystals of three new 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les (where aryl is phenyl, 4-fluoro­phenyl or 4-bromo­phen­yl), the mol­ecules are linked by a combination of N—H⋯N and C—H⋯π inter­actions to form chains when the 6-aryl substituent is phenyl or 4-fluoro­phenyl and a three-dimensional framework when the 6-aryl group is 4-bromo­phenyl.

Keywords: synthesis; heterocyclic compounds; imidazo[2,1-b][1,3,4]thia­diazo­les; crystal structure; disorder; mol­ecular conformation; hydrogen bonding; supra­molecular assembly

Abstract

Three title compounds, namely, 2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole, C26H19ClN4S, (I), 2-(4-chloro­benz­yl)-6-(4-fluoro­phen­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18ClFN4S, (II), and 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18BrClN4S, (III), have been prepared using a reductive condensation of indole with the corresponding 6-aryl-2-(4-chloro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehydes (aryl = phenyl, 4-fluoro­phenyl or 4-bromo­phen­yl), and their crystal structures have been determined. The asymmetric unit of compound (I) consists of two independent mol­ecules and one of the mol­ecules exhibits disorder of the 4-chloro­benzyl substituent with occupancies 0.6289 (17) and 0.3711 (17). Each type of mol­ecule forms a C(8) chain motif built from N—H⋯N hydrogen bonds, which for the fully ordered mol­ecule is reinforced by C—H⋯π inter­actions. In compound (II), the chloro­benzyl unit is again disordered, with occupancies 0.822 (6) and 0.178 (6), and the mol­ecules form C(8) chains similar to those in (I), reinforced by C—H⋯π inter­actions involving only the major disorder component. The chloro­benzyl unit in compound (III) is also disordered with occupancies of 0.839 (5) and 0.161 (5). The mol­ecules are linked by a combination of one N—H⋯N hydrogen bond and four C—H⋯π inter­actions, forming a three-dimensional framework.

Chemical context  

Imidazo[2,1-b][1,3,4]thia­diazole is a versatile nucleus for the elaboration of novel heterocyclic compounds as it can readily be substituted at any position of 2, 5 or 6 (Khazi et al., 2011). A wide range of such derivatives have been evaluated for their biological activities, which encompass anti-cancer, anti-convulsant, anti-fungal, anti-inflammatory and anti-microbial activity, as well as analgesic and anaesthetic properties (Bhongade et al., 2016). The recently reported indolinone derivative, 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-ind­o­lin-2-one-3-yl)methyl­idene]imidazo[2,1-b][1,3,4]thia­diazole (disarib), has been shown to act as a powerful inhibitor of the anti-apoptotic protein BCL2, and to cause significant tumour regression without any significant side effects (Iyer et al., 2016; Vartak et al., 2016). With these observations in mind, we have synthesized analogues of disarib, replacing the indolinone substituent with an indolylmethyl unit, while at the same time varying the substituent in the 6-aryl ring, and here we report the preparation, and the mol­ecular and supra­molecular structures of the title three compounds (I)–(III) as shown in Figs. 1–3 .graphic file with name e-76-00018-scheme1.jpg

Figure 1.

Figure 1

The structures of the two independent mol­ecules of compound (I), showing the atom-labelling scheme and the disorder in one of the mol­ecules. Displacement ellipsoids are drawn at the 30% probability level, and in the disordered fragment, the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom-labelling scheme and the disorder. Displacement ellipsoids are drawn at the 30% probability level, and in the disordered fragment, the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines.

Figure 3.

Figure 3

The mol­ecular structure of compound (III), showing the atom-labelling scheme and the disorder. Displacement ellipsoids are drawn at the 30% probability level, and in the disordered fragment, the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines.

Structural commentary  

Although compounds (I) and (II) crystallize in the same space group (P21/c) with Z′ = 2 and 1, respectively, compound (III) crystallizes in the non-centrosymmetric space group (P212121). Despite the close similarity in the chemical constitution of compounds (I)–(III), no two of these compounds are isomorphous. None of the mol­ecules exhibits any inter­nal symmetry, so that all of them are conformationally chiral. The centrosymmetric space group for the compounds (I) and (II) show that these have crystallized as conformational racemates. On the other hand, all of the mol­ecules in the crystal of compound (III) in the Sohncke space group have the same conformation; there is no reason to suppose that the crystallization of (III) has involved conformational resolution so that this compound has probably crystallized as a conformational conglomerate (Bernal et al., 1996). In this conformational enanti­omer, the torsion angle of C5—C6—C61—C62 is −41.3 (6)°, and the reference mol­ecules in (I) and (II) have the same negative sign for this torsion angle (Table 1).

Table 1. Selected torsion angles (°) for compounds (I)–(III).

Parameter (I) type 1 (I) type 2 (II) (III)
  x = 1 x = 2 x = nul x = nul
Sx1—Cx2—Cx27—Cx21 −4.1 (6) −26.9 (4) −23.4 (5) −89.6 (7)
Sx1—Cx2—Cx37—Cx31 −9.7 (11)   −19.8 (17) −98 (2)
Cx2—Cx27—Cx21—Cx22 82.4 (18) 111.2 (3) 91.7 (4) 87 (2)
Cx2—Cx37—Cx31—Cx32 71 (3)   96.2 (17) 63 (10)
Nx4—Cx5—Cx51—Cx53 −83.8 (3) −84.2 (3) −86.4 (3) 66.0 (5)
Cx5—Cx51—Cx53—Cx52 21.5 (4) 14.9 (3) 27.4 (4) −133.1 (4)
Cx5—Cx6—Cx61—Cx62 −24.7 (4) −33.7 (3) −27.0 (4) −41.3 (6)

The asymmetric unit of compound (I) consists of two independent mol­ecules, types 1 and 2, containing atoms S11 and S21, respectively. In the type 1 mol­ecule of compound (I) and in compounds (II) and (III), the 4-chloro­benzyl substituents are each disordered over two sets of atomic sites (Figs. 1–3 ), having occupancies 0.6289 (17) and 0.3711 (17) for (I), 0.822 (6) and 0.178 (6) for (II), and 0.839 (5) and 0.161 (5) for (III).

The orientation of the chloro­benzyl unit relative to that of the central imidazo[2,1-b][1,3,4]thia­diazole ring system differs quite significantly between compounds (I) and (II) on the one hand and with that in compound (III) on the other, as indicated by the torsion angles Sx1—Cx2—Cx27—Cx21/Cx31 (Table 1). This may be associated with the observation that this unit in (I) and (II) acts as a hydrogen-bond donor but not as an acceptor, while in (III) as an acceptor but not a donor (Table 2). Similarly, the orientation of the indole­methyl­ene group relative to the imidazo[2,1-b][1,3,4]thia­diazole unit shows considerable differences between compounds (I) and (II) on the one hand and compound (III) on the other, as shown by the torsion angles Nx4—Cx5—Cx51—Cx53 and Cx5—Cx51—Cx53—Cx52 (Table 1), although the indole unit acts as both a donor and an acceptor of hydrogen bonds in all three compounds (Table 2). A small change in a single mono-atomic substituent thus effects significant changes in both the crystallization characteristics and the mol­ecular conformations in compounds (I)–(III).

Table 2. Hydrogen bond geometries (Å, °) for compounds (I)–(III).

Cg1–Cg7 represent the centroids of the C15A/C154–C157/C15B, C25A/C254–C257/C25B, C261–C266, C53A/C54–C57/C57A, N51/C52/C53/C53AC54/C57A, C21–C26 and C31–C36 rings, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N151—H151⋯N17i 0.83 (3) 2.11 (3) 2.912 (3) 162 (3)
  N251—H251⋯N27ii 0.83 (3) 2.27 (3) 3.087 (3) 167 (3)
  C135—H135⋯Cg1i 0.93 2.52 3.272 (11) 138
  C225—H225⋯Cg2ii 0.93 2.87 3.568 (4) 133
  C252—H252⋯Cg3ii 0.93 2.77 3.568 (3) 134
(II) N51—H51⋯N7i 0.86 (3) 2.27 (3) 3.102 (3) 165 (3)
  C25—H25⋯Cg4i 0.93 2.75 3.637 (5) 161
(III) N51—H51⋯N7iii 0.99 (5) 1.97 (5) 2.941 (5) 166 (4)
  C51—H51ACg4iv 0.97 2.97 3.699 (5) 133
  C62—H62⋯Cg5iv 0.93 2.91 3.757 (5) 152
  C65—H65⋯Cg6v 0.93 2.82 3.412 (7) 123
  C62—H62⋯Cg7v 0.93 2.91 3.60 (3) 131

Symmetry codes: (i) 1 − x, −Inline graphic + y, Inline graphic − z; (ii) 2 − x, −Inline graphic + y, Inline graphic − z; (iii) x, 1 + y, z; (iv) −Inline graphic + x, Inline graphic − y, 1 − z; (v) Inline graphic − x, 1 − y, −Inline graphic + z.

Supra­molecular features  

In the crystal of compound (I), the mol­ecules of type 1, which are related by a 21 screw axis, are linked by N—H⋯N hydrogen bonds, forming a C(8) chain motif running along [010] (Fig. 4). Similarly, the type 2 mol­ecules, which are related by another 21 screw axis, form a second C(8) chain along [010]. These chains differ in that the second chain is reinforced by two C—H⋯π inter­actions, whereas in the first chain, only the minor disorder component takes part in such an inter­action; in the major disorder component, the shortest inter­molecular H⋯Cg distance exceeds 3.3 Å [H126⋯Cg1i = 3.33 Å; Cg1 is the centroid of the ring C15A/C154–C157/C15B; symmetry code: (i) 1 − x, −Inline graphic + y, Inline graphic − z] .

Figure 4.

Figure 4

Part of the crystal structure of compound (I), showing two C(8) chains running along the [010] direction, one built from N—H⋯N hydrogen bonds and the other from N—H⋯N and C—H⋯π inter­actions shown as dashed lines. For the sake of clarity, the minor disorder component and the H atoms not involved in the inter­actions have been omitted.

In the crystal of compound (II), there are an N—H⋯N hydrogen bond and a C—H⋯π inter­action (Table 2); the C—H⋯π inter­action is present only for the major disorder component. The N—H⋯N hydrogen bond links the mol­ecules, which are related by a 21 screw axis, into a C(8) chain running along [010]. This hydrogen bond is augmented by the C—H⋯π inter­action (Fig. 5). There are no direction-specific inter­actions between adjacent chains, so that the supra­molecular aggregation is one-dimensional.

Figure 5.

Figure 5

Part of the crystal structure of compound (II), showing a mol­ecular chain running along the [010] direction formed via N—H⋯N and C—H⋯π inter­actions (dashed lines). The minor disorder component and the H atoms not involved in the inter­actions have been omitted.

The supra­molecular structure of compound (III) contains an N—H⋯N hydrogen bond, as in (I) and (II), along with four C—H⋯π inter­actions, which have rather long H⋯Cg distances (Table 2). The N—H⋯N hydrogen bond links mol­ecules, which are related by translation, to form a C(8) chain along [010] (Fig. 6). Two C—H⋯π inter­actions, involving atoms C51 and C62 (Table 2), cooperatively link mol­ecules, which are related by a 21 screw axis along the x axis, to form a chain along the [100] direction (Fig. 7). Finally, two C—H⋯π inter­actions involving atoms C65 and C62 form similar contacts to the aryl rings of both disorder components, generating a chain of mol­ecules related by a 21 screw axis running along [001] (Fig. 8). The combination of chains running along the [100], [010] and [001] directions suffices to link all of the mol­ecules into a three-dimensional framework structure. As with the crystallization characteristics and the mol­ecular conformations, simple changes of substituent between (I), (II) and (III) effect marked changes in the supra­molecular aggregation.

Figure 6.

Figure 6

Part of the crystal structure of compound (III), showing a C(8) chain running along the [010] direction built from N—H⋯N hydrogen bonds (dashed lines). The minor disorder component and the H atoms bonded to C atoms have been omitted.

Figure 7.

Figure 7

Part of the crystal structure of compound (III), showing a chain running along the [100] direction built from C—H⋯π inter­actions (dashed lines). The minor disorder component and the H atoms not involved in the motif have been omitted.

Figure 8.

Figure 8

Part of the crystal structure of compound (III), showing a chain running along the [001] direction built from C—H⋯π inter­actions (dashed lines). The minor disorder component and the H atoms not involved in the motif have been omitted.

Database survey  

The structures of a number of analogues of the inter­mediates, (B) in Fig. 9, have been reported. These include 2-(4-fluoro­benz­yl)-6-(4-nitro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2010b ), 2-6-(4-bromo­phen­yl)-(4-fluoro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu, Begum et al., 2011), 2-(4-fluoro­benz­yl)-6-(4-meth­oxy­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2013), 2-(4-fluoro­benz­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2014), 6-(4-chloro­phen­yl)-(4-fluoro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2014), which is isostructural with the 6-(4-bromo­phen­yl) analogue (Banu et al., 2011) and 2-benzyl-6-(4-chloro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole (Anil Kumar & Kokila, 2016). The structures of two 5-carbaldehyde derivatives have also been reported, which are analogues of the inter­mediates, (C) in Fig. 9, namely, 2-cyclo­hexyl-6-(4-bro­mo­phenyl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde (Shahina Begum et al., 2008) and 2-(4-fluoro­benz­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole-5-cabaldehyde (Banu et al., 2010a ). The reported structures for analogues of the products (I)–(III) carrying heterocyclic substituents at position 5 are few, but they include 5-(morpholin-4-ylmeth­yl)-2-(phen­oxy­meth­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole (Da et al., 2012) and 2-(4-fluoro­benz­yl)-6-(4-meth­oxy­phen­yl)-5-(morpholin-4-ylmeth­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2013). Finally, we note an isostructural pair of compounds carrying 1,2-benzoxazole substituents at position 2 of the imidazo[2,1-b][1,3,4]thia­diazole unit, namely, 3-{[6-(4-chloro­phen­yl)imid­azo[2,1-b][1,3,4]thia­diazol-2-yl]meth­yl}-1,2-benzoxazole (Banu, Ziaulla et al., 2011b ) and its 6-(4-bromo­phen­yl) analogue (Banu, Ziaulla et al., 2011a ).

Figure 9.

Figure 9

The reaction sequence used for the synthesis of compounds (I)–(III).

Synthesis and crystallization  

The title compounds, C26H18ClXN4S (X = H, F, Br), were prepared in a three-step sequence, as shown in Fig. 9, from the readily accessible precursor 2-amino-5-(4-chloro­benz­yl)-[1,3,4]thia­diazole, (A), using an established methodology (Appleton et al., 1993; Karki et al., 2011; Iyer et al., 2016) by means of successive condensation with a substituted phenacyl bromide to form the 2,5-disubstituted imidazo[2,1-b][1,3,4]thia­diazo­les, (B), followed by Vilsmeier–Haack formyl­ation to give the corresponding 5-carbaldehydes, (C), and finally reductive condensation with indole in the presence of tri­ethyl­silane and tri­fluoro­acetic acid (Appleton et al., 1993) to form the products (I)–(III). We have also prepared the 4-chloro­phenyl analogue (X = Cl), but unfortunately no crystals of this compound have yet been obtained, only a viscous gum.

Compound (I), X = H: yield 58%, m.p. 493–495 K; HRMS found 455.0000. C26H19 35ClN4S requires for (M + H)+ 455.1019. Compound (II), X = F: yield 48%, m.p. 483–485 K; HRMS found 473.0620, C26H18 35ClFN4S requires for (M + H)+ 473. 0925. Compound (III), X = Br: yield 52%, m.p. 393–395 K; HRMS found 532.8687, C26H18 79Br35ClN4S requires for (M + H)+ 533.0124. Crystals of (I)–(III) suitable for single-crystal X-ray diffraction were grown by slow evaporation in the presence of air of solutions in ethyl acetate at ambient temperature. 4-Chloro­phenyl analogue (X = Cl): yield 48%, m.p. 503–505 K; HRMS found 488.914, C26H18 35Cl2N4S requires for (M + H)+ 489.0629.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. In each compound, the chloro­benzyl unit was disordered over two sets of atomic sites having unequal occupancies. In each case, the bond lengths and the 1,3-distances in the minor disorder component were restrained to be the same as the equivalent distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively, and the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be equal. In addition, it was found necessary to constrain the minor component of the disordered chloro­benzyl group in (II) to be planar. Apart from those in the minor disorder components, all H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (aromatic and heteroaromatic) or 0.97 Å (CH2), and with U iso(H) = 1.2U eq(C). For the H atoms bonded to N atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N), giving refined N—H distances of 0.83 (3)–0.99 (5) Å. On this basis, the refined occupancies of the disorder components were 0.6289 (17) and 0.3711 (17) for (I), 0.822 (6) and 0.178 (6) for (II), and 0.839 (5) and 0.161 (5) for (III).

Table 3. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C26H19ClN4S C26H18ClFN4S C26H18BrClN4S
M r 454.96 472.95 533.85
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Orthorhombic, P212121
Temperature (K) 302 296 296
a, b, c (Å) 16.456 (7), 10.420 (2), 26.391 (7) 15.340 (1), 11.1619 (7), 15.385 (1) 9.5735 (8), 9.6860 (9), 25.644 (2)
α, β, γ (°) 90, 90.031 (12), 90 90, 119.48 (1), 90 90, 90, 90
V3) 4525 (2) 2293.2 (3) 2377.9 (4)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.28 0.29 1.95
Crystal size (mm) 0.33 × 0.31 × 0.28 0.46 × 0.44 × 0.20 0.48 × 0.44 × 0.44
 
Data collection
Diffractometer Bruker SMART X2S benchtop Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.845, 0.924 0.768, 0.944 0.368, 0.424
No. of measured, independent and observed [I > 2σ(I)] reflections 55921, 10420, 7091 16612, 5041, 3161 10501, 4645, 3140
R int 0.036 0.025 0.030
(sin θ/λ)max−1) 0.651 0.651 0.658
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.060, 0.177, 1.02 0.050, 0.131, 1.01 0.045, 0.100, 1.02
No. of reflections 10420 5041 4645
No. of parameters 605 323 323
No. of restraints 18 23 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.60 0.26, −0.24 0.40, −0.51
Absolute structure Flack x determined using 943 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.014 (5)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2017), CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989019016050/is5527sup1.cif

e-76-00018-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016050/is5527Isup2.hkl

e-76-00018-Isup2.hkl (826.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019016050/is5527IIsup3.hkl

e-76-00018-IIsup3.hkl (401.3KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989019016050/is5527IIIsup5.hkl

e-76-00018-IIIsup5.hkl (370KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016050/is5527Isup5.cml

Supporting information file. DOI: 10.1107/S2056989019016050/is5527IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989019016050/is5527IIIsup7.cml

CCDC references: 1968781, 1968780, 1968779

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

SS thanks the University of Mysore for research facilities. HSY thanks Professor S. Kabilan and Dr. Elancheran, Annamalai University, TN, for the X-ray data collection for compound (I).

supplementary crystallographic information

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Crystal data

C26H19ClN4S F(000) = 1888
Mr = 454.96 Dx = 1.336 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.456 (7) Å Cell parameters from 12458 reflections
b = 10.420 (2) Å θ = 2.1–29.5°
c = 26.391 (7) Å µ = 0.28 mm1
β = 90.031 (12)° T = 302 K
V = 4525 (2) Å3 Block, colourless
Z = 8 0.33 × 0.31 × 0.28 mm

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Data collection

Bruker SMART X2S benchtop diffractometer 10420 independent reflections
Radiation source: fine-focus sealed tube 7091 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 7.3910 pixels mm-1 θmax = 27.6°, θmin = 2.1°
φ and ω scans h = −21→21
Absorption correction: multi-scan (SADABS; Bruker, 2017) k = −12→13
Tmin = 0.845, Tmax = 0.924 l = −34→34
55921 measured reflections

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0741P)2 + 2.5289P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
10420 reflections Δρmax = 0.77 e Å3
605 parameters Δρmin = −0.59 e Å3
18 restraints

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S11 0.31032 (5) 0.27517 (7) 0.84740 (2) 0.0673 (2)
C12 0.30411 (19) 0.1424 (2) 0.80654 (10) 0.0657 (7)
N13 0.31605 (14) 0.16395 (19) 0.75885 (8) 0.0592 (5)
N14 0.33131 (12) 0.29274 (18) 0.75295 (7) 0.0500 (4)
C15 0.35023 (13) 0.3678 (2) 0.71151 (8) 0.0479 (5)
C16 0.36495 (13) 0.4871 (2) 0.73223 (8) 0.0481 (5)
N17 0.35301 (12) 0.48713 (18) 0.78480 (7) 0.0516 (4)
C17A 0.33304 (14) 0.3679 (2) 0.79516 (8) 0.0514 (5)
C127 0.2866 (3) 0.0098 (3) 0.82642 (12) 0.1004 (12) 0.6289 (17)
H12A 0.3290 −0.0485 0.8154 0.121* 0.6289 (17)
H12B 0.2354 −0.0203 0.8126 0.121* 0.6289 (17)
C121 0.2822 (7) 0.009 (2) 0.88341 (16) 0.0601 (19) 0.6289 (17)
C122 0.2095 (4) 0.0462 (10) 0.90440 (18) 0.0712 (12) 0.6289 (17)
H122 0.1672 0.0698 0.8830 0.085* 0.6289 (17)
C123 0.1973 (4) 0.0495 (6) 0.95558 (18) 0.0795 (15) 0.6289 (17)
H123 0.1480 0.0776 0.9687 0.095* 0.6289 (17)
C124 0.2583 (4) 0.0110 (5) 0.98740 (18) 0.0750 (16) 0.6289 (17)
Cl14 0.23860 (15) 0.0201 (2) 1.05325 (5) 0.1395 (8) 0.6289 (17)
C125 0.3307 (5) −0.0285 (9) 0.9695 (3) 0.098 (2) 0.6289 (17)
H125 0.3724 −0.0508 0.9916 0.118* 0.6289 (17)
C126 0.3419 (5) −0.0352 (11) 0.9164 (2) 0.0913 (19) 0.6289 (17)
H126 0.3897 −0.0696 0.9034 0.110* 0.6289 (17)
C137 0.2866 (3) 0.0098 (3) 0.82642 (12) 0.1004 (12) 0.3711 (17)
H13A 0.2334 −0.0154 0.8141 0.121* 0.3711 (17)
H13B 0.3258 −0.0484 0.8115 0.121* 0.3711 (17)
C131 0.2878 (12) −0.010 (4) 0.8818 (3) 0.0601 (19) 0.3711 (17)
C132 0.2312 (7) 0.0348 (19) 0.9149 (3) 0.0712 (12) 0.3711 (17)
H132 0.1853 0.0761 0.9023 0.085* 0.3711 (17)
C133 0.2404 (7) 0.0206 (11) 0.9664 (3) 0.0795 (15) 0.3711 (17)
H133 0.2012 0.0485 0.9892 0.095* 0.3711 (17)
C134 0.3110 (8) −0.0370 (14) 0.9822 (3) 0.0750 (16) 0.3711 (17)
Cl34 0.3237 (3) −0.0678 (4) 1.04645 (9) 0.1395 (8) 0.3711 (17)
C135 0.3710 (6) −0.0735 (11) 0.9502 (4) 0.098 (2) 0.3711 (17)
H135 0.4177 −0.1122 0.9630 0.118* 0.3711 (17)
C136 0.3629 (8) −0.053 (2) 0.8992 (4) 0.0913 (19) 0.3711 (17)
H136 0.4059 −0.0679 0.8770 0.110* 0.3711 (17)
C151 0.34906 (14) 0.3156 (2) 0.65887 (8) 0.0530 (5)
H15A 0.3398 0.3856 0.6354 0.064*
H15B 0.3040 0.2562 0.6557 0.064*
N151 0.54541 (16) 0.1450 (2) 0.64974 (10) 0.0714 (6)
H151 0.582 (2) 0.102 (3) 0.6632 (12) 0.086*
C152 0.48211 (17) 0.1970 (3) 0.67633 (10) 0.0632 (6)
H152 0.4780 0.1975 0.7115 0.076*
C153 0.42624 (15) 0.2478 (2) 0.64434 (9) 0.0511 (5)
C15A 0.45586 (16) 0.2239 (2) 0.59416 (9) 0.0556 (6)
C154 0.4266 (2) 0.2512 (3) 0.54534 (10) 0.0778 (8)
H154 0.3778 0.2946 0.5409 0.093*
C155 0.4714 (3) 0.2129 (5) 0.50439 (13) 0.1129 (14)
H155 0.4522 0.2300 0.4719 0.135*
C156 0.5450 (3) 0.1491 (5) 0.51017 (15) 0.1260 (16)
H156 0.5738 0.1243 0.4815 0.151*
C157 0.5760 (2) 0.1219 (4) 0.55721 (15) 0.0997 (11)
H157 0.6256 0.0800 0.5609 0.120*
C15B 0.53082 (18) 0.1590 (3) 0.59925 (11) 0.0659 (7)
C161 0.39381 (14) 0.6037 (2) 0.70655 (9) 0.0523 (5)
C162 0.43854 (18) 0.5967 (3) 0.66191 (11) 0.0734 (8)
H162 0.4498 0.5172 0.6476 0.088*
C163 0.4663 (2) 0.7074 (4) 0.63880 (14) 0.0967 (11)
H163 0.4949 0.7016 0.6085 0.116*
C164 0.4523 (2) 0.8252 (3) 0.65985 (14) 0.0920 (10)
H164 0.4714 0.8991 0.6440 0.110*
C165 0.41005 (19) 0.8339 (3) 0.70429 (13) 0.0774 (8)
H165 0.4013 0.9136 0.7191 0.093*
C166 0.38022 (16) 0.7241 (2) 0.72725 (11) 0.0613 (6)
H166 0.3505 0.7312 0.7571 0.074*
S21 0.81319 (5) 0.26550 (6) 0.36890 (2) 0.06146 (19)
C22 0.79667 (16) 0.1410 (2) 0.32528 (9) 0.0556 (6)
N23 0.80388 (12) 0.16982 (18) 0.27773 (7) 0.0521 (5)
N24 0.82302 (11) 0.29774 (17) 0.27438 (7) 0.0464 (4)
C25 0.83901 (13) 0.3782 (2) 0.23401 (8) 0.0454 (5)
C26 0.85977 (13) 0.4923 (2) 0.25691 (9) 0.0471 (5)
N27 0.85510 (12) 0.48486 (17) 0.30993 (7) 0.0510 (4)
C27A 0.83258 (14) 0.3658 (2) 0.31816 (8) 0.0488 (5)
C227 0.7712 (2) 0.0096 (3) 0.34268 (10) 0.0756 (8)
H27A 0.7934 −0.0536 0.3195 0.091*
H27B 0.7124 0.0038 0.3409 0.091*
C221 0.79792 (17) −0.0234 (2) 0.39582 (9) 0.0581 (6)
C222 0.7412 (2) −0.0349 (3) 0.43409 (12) 0.0789 (8)
H222 0.6865 −0.0214 0.4270 0.095*
C223 0.7651 (2) −0.0666 (3) 0.48308 (12) 0.0879 (10)
H223 0.7265 −0.0758 0.5086 0.105*
C224 0.8451 (2) −0.0840 (3) 0.49320 (11) 0.0752 (8)
Cl24 0.87453 (9) −0.12121 (10) 0.55515 (3) 0.1245 (4)
C225 0.9020 (2) −0.0732 (3) 0.45637 (12) 0.0780 (8)
H225 0.9567 −0.0858 0.4638 0.094*
C226 0.87801 (19) −0.0434 (3) 0.40794 (11) 0.0699 (7)
H226 0.9171 −0.0366 0.3827 0.084*
C251 0.82542 (14) 0.3397 (2) 0.18012 (8) 0.0495 (5)
H25A 0.8160 0.4166 0.1602 0.059*
H25B 0.7765 0.2880 0.1784 0.059*
N251 1.00742 (14) 0.1509 (2) 0.14489 (9) 0.0629 (6)
H251 1.0492 (18) 0.111 (3) 0.1531 (11) 0.075*
C252 0.95708 (15) 0.2074 (2) 0.17995 (9) 0.0544 (6)
H252 0.9652 0.2060 0.2148 0.065*
C253 0.89371 (14) 0.2656 (2) 0.15627 (8) 0.0465 (5)
C25A 0.90401 (16) 0.2437 (2) 0.10308 (9) 0.0514 (5)
C254 0.8607 (2) 0.2795 (3) 0.05983 (10) 0.0694 (7)
H254 0.8129 0.3268 0.0625 0.083*
C255 0.8900 (3) 0.2433 (3) 0.01311 (11) 0.0889 (11)
H255 0.8618 0.2675 −0.0159 0.107*
C256 0.9603 (3) 0.1721 (3) 0.00835 (12) 0.0948 (12)
H256 0.9782 0.1488 −0.0238 0.114*
C257 1.0041 (2) 0.1350 (3) 0.04969 (12) 0.0810 (9)
H257 1.0512 0.0867 0.0462 0.097*
C25B 0.97612 (17) 0.1717 (2) 0.09748 (10) 0.0589 (6)
C261 0.88792 (14) 0.6111 (2) 0.23229 (9) 0.0517 (5)
C262 0.93528 (16) 0.6056 (3) 0.18874 (10) 0.0625 (6)
H262 0.9476 0.5264 0.1744 0.075*
C263 0.96429 (19) 0.7166 (3) 0.16649 (12) 0.0762 (8)
H263 0.9953 0.7115 0.1371 0.091*
C264 0.9476 (2) 0.8343 (3) 0.18741 (14) 0.0822 (9)
H264 0.9676 0.9088 0.1725 0.099*
C265 0.9009 (2) 0.8412 (3) 0.23078 (14) 0.0802 (9)
H265 0.8896 0.9206 0.2452 0.096*
C266 0.87069 (16) 0.7304 (2) 0.25296 (11) 0.0631 (7)
H266 0.8387 0.7361 0.2819 0.076*

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S11 0.1014 (5) 0.0572 (4) 0.0434 (3) −0.0198 (3) 0.0077 (3) −0.0023 (3)
C12 0.094 (2) 0.0527 (14) 0.0504 (14) −0.0186 (13) 0.0030 (13) −0.0018 (11)
N13 0.0783 (14) 0.0487 (11) 0.0505 (11) −0.0157 (10) 0.0016 (10) −0.0024 (9)
N14 0.0599 (11) 0.0476 (10) 0.0425 (10) −0.0103 (9) 0.0012 (8) −0.0028 (8)
C15 0.0486 (12) 0.0510 (12) 0.0440 (11) −0.0023 (10) 0.0021 (9) 0.0002 (9)
C16 0.0457 (11) 0.0505 (12) 0.0480 (12) −0.0026 (9) 0.0028 (9) 0.0013 (9)
N17 0.0580 (11) 0.0484 (10) 0.0482 (10) −0.0080 (9) 0.0040 (8) −0.0035 (8)
C17A 0.0587 (13) 0.0510 (13) 0.0445 (12) −0.0105 (10) 0.0028 (10) −0.0044 (10)
C127 0.178 (4) 0.0584 (18) 0.0645 (19) −0.034 (2) 0.018 (2) 0.0031 (14)
C121 0.086 (2) 0.035 (7) 0.0592 (15) −0.0090 (16) −0.0037 (14) 0.0072 (15)
C122 0.066 (4) 0.082 (3) 0.065 (3) −0.003 (3) −0.018 (2) 0.023 (3)
C123 0.087 (4) 0.095 (4) 0.056 (3) −0.020 (3) −0.001 (3) 0.024 (2)
C124 0.104 (5) 0.070 (3) 0.052 (2) −0.031 (3) −0.022 (3) 0.022 (2)
Cl14 0.213 (2) 0.1510 (16) 0.0543 (6) −0.0869 (14) −0.0184 (10) 0.0230 (8)
C125 0.115 (7) 0.078 (4) 0.102 (6) 0.000 (4) −0.035 (4) 0.024 (4)
C126 0.076 (4) 0.076 (4) 0.121 (5) 0.015 (3) 0.005 (4) 0.022 (5)
C137 0.178 (4) 0.0584 (18) 0.0645 (19) −0.034 (2) 0.018 (2) 0.0031 (14)
C131 0.086 (2) 0.035 (7) 0.0592 (15) −0.0090 (16) −0.0037 (14) 0.0072 (15)
C132 0.066 (4) 0.082 (3) 0.065 (3) −0.003 (3) −0.018 (2) 0.023 (3)
C133 0.087 (4) 0.095 (4) 0.056 (3) −0.020 (3) −0.001 (3) 0.024 (2)
C134 0.104 (5) 0.070 (3) 0.052 (2) −0.031 (3) −0.022 (3) 0.022 (2)
Cl34 0.213 (2) 0.1510 (16) 0.0543 (6) −0.0869 (14) −0.0184 (10) 0.0230 (8)
C135 0.115 (7) 0.078 (4) 0.102 (6) 0.000 (4) −0.035 (4) 0.024 (4)
C136 0.076 (4) 0.076 (4) 0.121 (5) 0.015 (3) 0.005 (4) 0.022 (5)
C151 0.0577 (13) 0.0603 (14) 0.0409 (11) −0.0030 (11) −0.0025 (10) −0.0014 (10)
N151 0.0752 (16) 0.0659 (14) 0.0733 (16) 0.0193 (12) −0.0010 (12) 0.0093 (12)
C152 0.0718 (16) 0.0667 (16) 0.0511 (14) 0.0077 (13) 0.0001 (12) 0.0065 (12)
C153 0.0605 (14) 0.0484 (12) 0.0445 (12) −0.0014 (10) −0.0005 (10) 0.0005 (9)
C15A 0.0670 (15) 0.0509 (13) 0.0488 (13) −0.0002 (11) 0.0047 (11) 0.0002 (10)
C154 0.094 (2) 0.093 (2) 0.0467 (14) 0.0082 (17) 0.0049 (14) 0.0025 (14)
C155 0.130 (3) 0.156 (4) 0.0524 (18) 0.025 (3) 0.015 (2) −0.001 (2)
C156 0.142 (4) 0.161 (4) 0.075 (2) 0.040 (3) 0.035 (3) −0.016 (3)
C157 0.100 (3) 0.105 (3) 0.094 (3) 0.031 (2) 0.024 (2) −0.015 (2)
C15B 0.0782 (18) 0.0537 (14) 0.0657 (16) 0.0070 (13) 0.0097 (14) −0.0016 (12)
C161 0.0487 (12) 0.0536 (13) 0.0546 (13) −0.0038 (10) −0.0002 (10) 0.0062 (10)
C162 0.0811 (19) 0.0667 (17) 0.0724 (18) −0.0116 (14) 0.0222 (15) 0.0034 (14)
C163 0.116 (3) 0.092 (3) 0.082 (2) −0.021 (2) 0.035 (2) 0.0145 (19)
C164 0.107 (3) 0.070 (2) 0.099 (3) −0.0243 (18) 0.007 (2) 0.0288 (19)
C165 0.088 (2) 0.0534 (16) 0.091 (2) −0.0062 (14) −0.0023 (17) 0.0095 (15)
C166 0.0637 (15) 0.0519 (14) 0.0682 (16) −0.0022 (11) 0.0015 (12) 0.0043 (12)
S21 0.0877 (5) 0.0533 (3) 0.0434 (3) −0.0120 (3) −0.0005 (3) −0.0058 (2)
C22 0.0720 (16) 0.0473 (12) 0.0476 (13) −0.0083 (11) −0.0047 (11) −0.0031 (10)
N23 0.0657 (12) 0.0418 (10) 0.0489 (11) −0.0065 (9) −0.0043 (9) −0.0037 (8)
N24 0.0547 (10) 0.0406 (9) 0.0438 (10) −0.0061 (8) −0.0006 (8) −0.0058 (7)
C25 0.0476 (12) 0.0429 (11) 0.0457 (11) 0.0008 (9) −0.0009 (9) −0.0029 (9)
C26 0.0456 (11) 0.0432 (11) 0.0524 (12) 0.0004 (9) 0.0006 (9) −0.0034 (9)
N27 0.0597 (11) 0.0442 (10) 0.0490 (10) −0.0041 (8) −0.0002 (9) −0.0089 (8)
C27A 0.0570 (13) 0.0468 (12) 0.0424 (11) −0.0033 (10) −0.0019 (9) −0.0066 (9)
C227 0.114 (2) 0.0543 (15) 0.0585 (16) −0.0228 (15) −0.0099 (15) 0.0050 (12)
C221 0.0779 (17) 0.0439 (12) 0.0524 (13) −0.0079 (11) 0.0025 (12) −0.0008 (10)
C222 0.0716 (18) 0.089 (2) 0.0762 (19) −0.0084 (16) 0.0064 (15) 0.0005 (16)
C223 0.110 (3) 0.093 (2) 0.0607 (18) −0.013 (2) 0.0310 (18) 0.0006 (16)
C224 0.116 (3) 0.0518 (15) 0.0579 (16) −0.0069 (16) −0.0052 (17) 0.0053 (12)
Cl24 0.2214 (13) 0.0858 (6) 0.0662 (5) −0.0033 (7) −0.0249 (6) 0.0174 (4)
C225 0.089 (2) 0.0626 (17) 0.083 (2) 0.0063 (15) −0.0084 (17) 0.0093 (15)
C226 0.0783 (19) 0.0632 (16) 0.0682 (17) 0.0017 (14) 0.0153 (14) 0.0066 (13)
C251 0.0540 (12) 0.0501 (12) 0.0446 (11) 0.0001 (10) −0.0048 (9) −0.0019 (9)
N251 0.0663 (13) 0.0551 (12) 0.0671 (14) 0.0146 (10) 0.0065 (11) 0.0045 (10)
C252 0.0621 (14) 0.0533 (13) 0.0480 (12) 0.0060 (11) 0.0009 (11) 0.0044 (10)
C253 0.0586 (13) 0.0399 (11) 0.0411 (11) −0.0010 (9) −0.0007 (9) −0.0005 (8)
C25A 0.0741 (15) 0.0360 (11) 0.0442 (12) −0.0035 (10) 0.0008 (11) −0.0020 (9)
C254 0.105 (2) 0.0556 (15) 0.0473 (14) −0.0033 (14) −0.0139 (14) −0.0021 (11)
C255 0.153 (3) 0.0666 (19) 0.0467 (15) −0.014 (2) −0.0099 (18) −0.0047 (13)
C256 0.165 (4) 0.0663 (19) 0.0535 (17) −0.023 (2) 0.025 (2) −0.0167 (15)
C257 0.116 (3) 0.0515 (15) 0.075 (2) −0.0059 (16) 0.0346 (18) −0.0122 (14)
C25B 0.0802 (17) 0.0389 (12) 0.0576 (14) −0.0028 (11) 0.0119 (12) −0.0022 (10)
C261 0.0474 (12) 0.0454 (12) 0.0622 (14) −0.0030 (10) −0.0060 (10) 0.0011 (10)
C262 0.0636 (15) 0.0569 (14) 0.0669 (16) −0.0066 (12) 0.0022 (12) 0.0014 (12)
C263 0.0725 (18) 0.076 (2) 0.080 (2) −0.0145 (15) 0.0040 (15) 0.0146 (16)
C264 0.0770 (19) 0.0629 (18) 0.107 (3) −0.0158 (15) −0.0132 (18) 0.0284 (17)
C265 0.083 (2) 0.0448 (14) 0.113 (3) −0.0007 (13) −0.0102 (19) 0.0030 (15)
C266 0.0616 (15) 0.0455 (13) 0.0822 (18) 0.0015 (11) 0.0001 (13) −0.0013 (12)

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Geometric parameters (Å, º)

S11—C17A 1.725 (2) C164—C165 1.366 (5)
S11—C12 1.757 (3) C164—H164 0.9300
C12—N13 1.293 (3) C165—C166 1.384 (4)
C12—C127 1.505 (4) C165—H165 0.9300
N13—N14 1.374 (3) C166—H166 0.9300
N14—C17A 1.362 (3) S21—C27A 1.728 (2)
N14—C15 1.380 (3) S21—C22 1.755 (2)
C15—C16 1.379 (3) C22—N23 1.296 (3)
C15—C151 1.492 (3) C22—C227 1.504 (3)
C16—N17 1.401 (3) N23—N24 1.372 (2)
C16—C161 1.471 (3) N24—C27A 1.364 (3)
N17—C17A 1.314 (3) N24—C25 1.381 (3)
C127—C121 1.506 (5) C25—C26 1.376 (3)
C127—H12A 0.9700 C25—C251 1.494 (3)
C127—H12B 0.9700 C26—N27 1.403 (3)
C121—C122 1.373 (6) C26—C261 1.473 (3)
C121—C126 1.392 (6) N27—C27A 1.313 (3)
C122—C123 1.366 (6) C227—C221 1.509 (4)
C122—H122 0.9300 C227—H27A 0.9700
C123—C124 1.368 (7) C227—H27B 0.9700
C123—H123 0.9300 C221—C226 1.372 (4)
C124—C125 1.345 (10) C221—C222 1.380 (4)
C124—Cl14 1.771 (5) C222—C223 1.391 (4)
C125—C126 1.416 (8) C222—H222 0.9300
C125—H125 0.9300 C223—C224 1.356 (5)
C126—H126 0.9300 C223—H223 0.9300
C131—C132 1.360 (9) C224—C225 1.355 (5)
C131—C136 1.392 (8) C224—Cl24 1.748 (3)
C132—C133 1.377 (8) C225—C226 1.373 (4)
C132—H132 0.9300 C225—H225 0.9300
C133—C134 1.371 (11) C226—H226 0.9300
C133—H133 0.9300 C251—C253 1.502 (3)
C134—C135 1.353 (13) C251—H25A 0.9700
C134—Cl34 1.739 (8) C251—H25B 0.9700
C135—C136 1.371 (10) N251—C25B 1.370 (3)
C135—H135 0.9300 N251—C252 1.374 (3)
C136—H136 0.9300 N251—H251 0.83 (3)
C151—C153 1.503 (3) C252—C253 1.358 (3)
C151—H15A 0.9700 C252—H252 0.9300
C151—H15B 0.9700 C253—C25A 1.432 (3)
N151—C15B 1.362 (4) C25A—C254 1.397 (3)
N151—C152 1.368 (4) C25A—C25B 1.411 (4)
N151—H151 0.82 (3) C254—C255 1.377 (4)
C152—C153 1.355 (3) C254—H254 0.9300
C152—H152 0.9300 C255—C256 1.380 (5)
C153—C15A 1.433 (3) C255—H255 0.9300
C15A—C154 1.404 (4) C256—C257 1.363 (5)
C15A—C15B 1.413 (4) C256—H256 0.9300
C154—C155 1.368 (4) C257—C25B 1.396 (4)
C154—H154 0.9300 C257—H257 0.9300
C155—C156 1.389 (6) C261—C266 1.387 (3)
C155—H155 0.9300 C261—C262 1.390 (4)
C156—C157 1.372 (5) C262—C263 1.382 (4)
C156—H156 0.9300 C262—H262 0.9300
C157—C15B 1.391 (4) C263—C264 1.373 (5)
C157—H157 0.9300 C263—H263 0.9300
C161—C166 1.386 (4) C264—C265 1.381 (5)
C161—C162 1.391 (4) C264—H264 0.9300
C162—C163 1.382 (4) C265—C266 1.386 (4)
C162—H162 0.9300 C265—H265 0.9300
C163—C164 1.367 (5) C266—H266 0.9300
C163—H163 0.9300
C17A—S11—C12 87.89 (12) C165—C164—H164 120.2
N13—C12—C127 121.8 (2) C163—C164—H164 120.2
N13—C12—S11 116.85 (19) C164—C165—C166 120.1 (3)
C127—C12—S11 121.3 (2) C164—C165—H165 119.9
C12—N13—N14 107.92 (19) C166—C165—H165 119.9
C17A—N14—N13 118.21 (18) C165—C166—C161 121.2 (3)
C17A—N14—C15 108.51 (19) C165—C166—H166 119.4
N13—N14—C15 133.20 (19) C161—C166—H166 119.4
C16—C15—N14 103.65 (19) C27A—S21—C22 88.11 (11)
C16—C15—C151 134.4 (2) N23—C22—C227 122.2 (2)
N14—C15—C151 121.9 (2) N23—C22—S21 116.74 (18)
C15—C16—N17 111.61 (19) C227—C22—S21 121.03 (18)
C15—C16—C161 128.2 (2) C22—N23—N24 107.96 (18)
N17—C16—C161 120.1 (2) C27A—N24—N23 118.44 (18)
C17A—N17—C16 103.93 (18) C27A—N24—C25 108.43 (18)
N17—C17A—N14 112.3 (2) N23—N24—C25 133.07 (18)
N17—C17A—S11 138.63 (18) C26—C25—N24 103.45 (18)
N14—C17A—S11 109.09 (17) C26—C25—C251 133.4 (2)
C12—C127—C121 111.2 (9) N24—C25—C251 122.88 (19)
C12—C127—H12A 109.4 C25—C26—N27 112.13 (19)
C121—C127—H12A 109.4 C25—C26—C261 127.6 (2)
C12—C127—H12B 109.4 N27—C26—C261 120.22 (19)
C121—C127—H12B 109.4 C27A—N27—C26 103.44 (17)
H12A—C127—H12B 108.0 N27—C27A—N24 112.5 (2)
C122—C121—C126 117.1 (4) N27—C27A—S21 138.73 (17)
C122—C121—C127 116.4 (5) N24—C27A—S21 108.72 (16)
C126—C121—C127 126.3 (5) C22—C227—C221 114.2 (2)
C123—C122—C121 122.3 (5) C22—C227—H27A 108.7
C123—C122—H122 118.8 C221—C227—H27A 108.7
C121—C122—H122 118.8 C22—C227—H27B 108.7
C122—C123—C124 119.4 (5) C221—C227—H27B 108.7
C122—C123—H123 120.3 H27A—C227—H27B 107.6
C124—C123—H123 120.3 C226—C221—C222 117.8 (3)
C125—C124—C123 121.6 (6) C226—C221—C227 122.1 (3)
C125—C124—Cl14 121.6 (5) C222—C221—C227 120.2 (3)
C123—C124—Cl14 116.9 (5) C221—C222—C223 120.7 (3)
C124—C125—C126 118.6 (6) C221—C222—H222 119.6
C124—C125—H125 120.7 C223—C222—H222 119.6
C126—C125—H125 120.7 C224—C223—C222 119.2 (3)
C121—C126—C125 120.7 (6) C224—C223—H223 120.4
C121—C126—H126 119.7 C222—C223—H223 120.4
C125—C126—H126 119.7 C225—C224—C223 121.3 (3)
C132—C131—C136 120.7 (9) C225—C224—Cl24 119.9 (3)
C131—C132—C133 121.4 (8) C223—C224—Cl24 118.9 (3)
C131—C132—H132 119.3 C224—C225—C226 119.2 (3)
C133—C132—H132 119.3 C224—C225—H225 120.4
C134—C133—C132 116.1 (8) C226—C225—H225 120.4
C134—C133—H133 122.0 C221—C226—C225 121.8 (3)
C132—C133—H133 122.0 C221—C226—H226 119.1
C135—C134—C133 123.5 (8) C225—C226—H226 119.1
C135—C134—Cl34 117.9 (9) C25—C251—C253 115.17 (18)
C133—C134—Cl34 118.5 (8) C25—C251—H25A 108.5
C134—C135—C136 119.9 (9) C253—C251—H25A 108.5
C134—C135—H135 120.0 C25—C251—H25B 108.5
C136—C135—H135 120.0 C253—C251—H25B 108.5
C135—C136—C131 117.2 (9) H25A—C251—H25B 107.5
C135—C136—H136 121.4 C25B—N251—C252 108.7 (2)
C131—C136—H136 121.4 C25B—N251—H251 129 (2)
C15—C151—C153 113.48 (19) C252—N251—H251 123 (2)
C15—C151—H15A 108.9 C253—C252—N251 110.1 (2)
C153—C151—H15A 108.9 C253—C252—H252 124.9
C15—C151—H15B 108.9 N251—C252—H252 124.9
C153—C151—H15B 108.9 C252—C253—C25A 106.8 (2)
H15A—C151—H15B 107.7 C252—C253—C251 127.7 (2)
C15B—N151—C152 109.0 (2) C25A—C253—C251 125.6 (2)
C15B—N151—H151 127 (2) C254—C25A—C25B 119.0 (2)
C152—N151—H151 123 (2) C254—C25A—C253 134.3 (2)
C153—C152—N151 110.6 (2) C25B—C25A—C253 106.7 (2)
C153—C152—H152 124.7 C255—C254—C25A 118.6 (3)
N151—C152—H152 124.7 C255—C254—H254 120.7
C152—C153—C15A 106.1 (2) C25A—C254—H254 120.7
C152—C153—C151 126.7 (2) C254—C255—C256 121.6 (3)
C15A—C153—C151 127.2 (2) C254—C255—H255 119.2
C154—C15A—C15B 118.9 (2) C256—C255—H255 119.2
C154—C15A—C153 134.1 (3) C257—C256—C255 121.5 (3)
C15B—C15A—C153 107.0 (2) C257—C256—H256 119.3
C155—C154—C15A 118.8 (3) C255—C256—H256 119.3
C155—C154—H154 120.6 C256—C257—C25B 118.1 (3)
C15A—C154—H154 120.6 C256—C257—H257 120.9
C154—C155—C156 121.5 (4) C25B—C257—H257 120.9
C154—C155—H155 119.2 N251—C25B—C257 131.1 (3)
C156—C155—H155 119.2 N251—C25B—C25A 107.7 (2)
C157—C156—C155 121.5 (3) C257—C25B—C25A 121.2 (3)
C157—C156—H156 119.3 C266—C261—C262 118.5 (2)
C155—C156—H156 119.3 C266—C261—C26 121.0 (2)
C156—C157—C15B 117.7 (3) C262—C261—C26 120.4 (2)
C156—C157—H157 121.1 C263—C262—C261 120.7 (3)
C15B—C157—H157 121.1 C263—C262—H262 119.7
N151—C15B—C157 131.0 (3) C261—C262—H262 119.7
N151—C15B—C15A 107.3 (2) C264—C263—C262 120.5 (3)
C157—C15B—C15A 121.6 (3) C264—C263—H263 119.7
C166—C161—C162 117.8 (2) C262—C263—H263 119.7
C166—C161—C16 120.9 (2) C263—C264—C265 119.4 (3)
C162—C161—C16 121.2 (2) C263—C264—H264 120.3
C163—C162—C161 120.3 (3) C265—C264—H264 120.3
C163—C162—H162 119.9 C264—C265—C266 120.4 (3)
C161—C162—H162 119.9 C264—C265—H265 119.8
C164—C163—C162 121.0 (3) C266—C265—H265 119.8
C164—C163—H163 119.5 C265—C266—C261 120.5 (3)
C162—C163—H163 119.5 C265—C266—H266 119.8
C165—C164—C163 119.6 (3) C261—C266—H266 119.8
C17A—S11—C12—N13 −1.1 (2) C163—C164—C165—C166 −1.4 (5)
C17A—S11—C12—C127 178.2 (3) C164—C165—C166—C161 1.4 (5)
C127—C12—N13—N14 −179.3 (3) C162—C161—C166—C165 0.1 (4)
S11—C12—N13—N14 0.0 (3) C16—C161—C166—C165 177.4 (2)
C12—N13—N14—C17A 1.5 (3) C27A—S21—C22—N23 −0.6 (2)
C12—N13—N14—C15 177.8 (3) C27A—S21—C22—C227 −177.5 (2)
C17A—N14—C15—C16 1.7 (2) C227—C22—N23—N24 176.4 (2)
N13—N14—C15—C16 −174.9 (2) S21—C22—N23—N24 −0.5 (3)
C17A—N14—C15—C151 −176.6 (2) C22—N23—N24—C27A 1.7 (3)
N13—N14—C15—C151 6.9 (4) C22—N23—N24—C25 178.6 (2)
N14—C15—C16—N17 −1.8 (2) C27A—N24—C25—C26 1.5 (2)
C151—C15—C16—N17 176.1 (2) N23—N24—C25—C26 −175.6 (2)
N14—C15—C16—C161 175.0 (2) C27A—N24—C25—C251 −173.0 (2)
C151—C15—C16—C161 −7.1 (4) N23—N24—C25—C251 9.9 (4)
C15—C16—N17—C17A 1.3 (3) N24—C25—C26—N27 −1.4 (2)
C161—C16—N17—C17A −175.9 (2) C251—C25—C26—N27 172.2 (2)
C16—N17—C17A—N14 −0.2 (3) N24—C25—C26—C261 175.8 (2)
C16—N17—C17A—S11 177.7 (2) C251—C25—C26—C261 −10.6 (4)
N13—N14—C17A—N17 176.1 (2) C25—C26—N27—C27A 0.8 (2)
C15—N14—C17A—N17 −1.0 (3) C261—C26—N27—C27A −176.7 (2)
N13—N14—C17A—S11 −2.4 (3) C26—N27—C27A—N24 0.2 (3)
C15—N14—C17A—S11 −179.52 (16) C26—N27—C27A—S21 178.2 (2)
C12—S11—C17A—N17 −176.1 (3) N23—N24—C27A—N27 176.49 (19)
C12—S11—C17A—N14 1.82 (19) C25—N24—C27A—N27 −1.1 (3)
N13—C12—C127—C121 175.2 (4) N23—N24—C27A—S21 −2.1 (3)
S11—C12—C127—C121 −4.1 (6) C25—N24—C27A—S21 −179.69 (15)
C12—C127—C121—C122 82.4 (18) C22—S21—C27A—N27 −176.7 (3)
C12—C127—C121—C126 −103.3 (19) C22—S21—C27A—N24 1.38 (18)
C126—C121—C122—C123 5 (3) N23—C22—C227—C221 156.4 (3)
C127—C121—C122—C123 179.8 (11) S21—C22—C227—C221 −26.9 (4)
C121—C122—C123—C124 −2.1 (17) C22—C227—C221—C226 −69.1 (4)
C122—C123—C124—C125 0.9 (10) C22—C227—C221—C222 111.2 (3)
C122—C123—C124—Cl14 179.1 (6) C226—C221—C222—C223 −0.4 (4)
C123—C124—C125—C126 −2.8 (11) C227—C221—C222—C223 179.3 (3)
Cl14—C124—C125—C126 179.1 (7) C221—C222—C223—C224 1.2 (5)
C122—C121—C126—C125 −7 (3) C222—C223—C224—C225 −1.1 (5)
C127—C121—C126—C125 178.9 (15) C222—C223—C224—Cl24 179.0 (3)
C124—C125—C126—C121 5.8 (18) C223—C224—C225—C226 0.4 (5)
C136—C131—C132—C133 −11 (5) Cl24—C224—C225—C226 −179.8 (2)
C131—C132—C133—C134 2 (3) C222—C221—C226—C225 −0.4 (4)
C132—C133—C134—C135 3 (2) C227—C221—C226—C225 179.9 (3)
C132—C133—C134—Cl34 −175.7 (12) C224—C225—C226—C221 0.4 (5)
C133—C134—C135—C136 0 (2) C26—C25—C251—C253 103.2 (3)
Cl34—C134—C135—C136 178.8 (14) N24—C25—C251—C253 −84.2 (3)
C134—C135—C136—C131 −8 (3) C25B—N251—C252—C253 −0.5 (3)
C132—C131—C136—C135 13 (5) N251—C252—C253—C25A 0.6 (3)
C16—C15—C151—C153 98.6 (3) N251—C252—C253—C251 −179.1 (2)
N14—C15—C151—C153 −83.8 (3) C25—C251—C253—C252 14.9 (3)
C15B—N151—C152—C153 −1.2 (3) C25—C251—C253—C25A −164.8 (2)
N151—C152—C153—C15A 1.1 (3) C252—C253—C25A—C254 −179.0 (3)
N151—C152—C153—C151 −178.8 (2) C251—C253—C25A—C254 0.7 (4)
C15—C151—C153—C152 21.5 (4) C252—C253—C25A—C25B −0.5 (3)
C15—C151—C153—C15A −158.3 (2) C251—C253—C25A—C25B 179.2 (2)
C152—C153—C15A—C154 179.7 (3) C25B—C25A—C254—C255 −0.1 (4)
C151—C153—C15A—C154 −0.5 (5) C253—C25A—C254—C255 178.3 (3)
C152—C153—C15A—C15B −0.6 (3) C25A—C254—C255—C256 0.6 (5)
C151—C153—C15A—C15B 179.3 (2) C254—C255—C256—C257 −0.5 (5)
C15B—C15A—C154—C155 0.6 (5) C255—C256—C257—C25B −0.3 (5)
C153—C15A—C154—C155 −179.6 (3) C252—N251—C25B—C257 179.8 (3)
C15A—C154—C155—C156 −0.6 (7) C252—N251—C25B—C25A 0.1 (3)
C154—C155—C156—C157 −0.1 (8) C256—C257—C25B—N251 −178.8 (3)
C155—C156—C157—C15B 0.8 (7) C256—C257—C25B—C25A 0.8 (4)
C152—N151—C15B—C157 −179.6 (3) C254—C25A—C25B—N251 179.0 (2)
C152—N151—C15B—C15A 0.8 (3) C253—C25A—C25B—N251 0.2 (3)
C156—C157—C15B—N151 179.7 (4) C254—C25A—C25B—C257 −0.6 (4)
C156—C157—C15B—C15A −0.7 (6) C253—C25A—C25B—C257 −179.4 (2)
C154—C15A—C15B—N151 179.7 (3) C25—C26—C261—C266 148.9 (2)
C153—C15A—C15B—N151 −0.1 (3) N27—C26—C261—C266 −34.0 (3)
C154—C15A—C15B—C157 0.0 (4) C25—C26—C261—C262 −33.7 (3)
C153—C15A—C15B—C157 −179.8 (3) N27—C26—C261—C262 143.4 (2)
C15—C16—C161—C166 158.1 (2) C266—C261—C262—C263 −0.2 (4)
N17—C16—C161—C166 −25.3 (3) C26—C261—C262—C263 −177.7 (2)
C15—C16—C161—C162 −24.7 (4) C261—C262—C263—C264 0.8 (4)
N17—C16—C161—C162 151.9 (2) C262—C263—C264—C265 −0.5 (5)
C166—C161—C162—C163 −1.6 (4) C263—C264—C265—C266 −0.3 (5)
C16—C161—C162—C163 −178.9 (3) C264—C265—C266—C261 0.9 (4)
C161—C162—C163—C164 1.7 (6) C262—C261—C266—C265 −0.6 (4)
C162—C163—C164—C165 −0.2 (6) C26—C261—C266—C265 176.8 (2)

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N151—H151···N17i 0.83 (3) 2.11 (3) 2.912 (3) 162 (3)
N251—H251···N27ii 0.83 (3) 2.27 (3) 3.087 (3) 167 (3)
C135—H135···Cg1i 0.93 2.52 3.272 (11) 138
C225—H225···Cg2ii 0.93 2.87 3.568 (4) 133
C252—H252···Cg3ii 0.93 2.77 3.568 (3) 144

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+2, y−1/2, −z+1/2.

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Crystal data

C26H18ClFN4S F(000) = 976
Mr = 472.95 Dx = 1.370 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.340 (1) Å Cell parameters from 5068 reflections
b = 11.1619 (7) Å θ = 2.7–27.9°
c = 15.385 (1) Å µ = 0.29 mm1
β = 119.48 (1)° T = 296 K
V = 2293.2 (3) Å3 Plate, yellow
Z = 4 0.46 × 0.44 × 0.20 mm

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 5041 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3161 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
ω scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −19→19
Tmin = 0.768, Tmax = 0.944 k = −13→13
16612 measured reflections l = −18→19

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.052P)2 + 0.9215P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
5041 reflections Δρmax = 0.26 e Å3
323 parameters Δρmin = −0.24 e Å3
23 restraints

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.29020 (4) 0.26704 (6) 0.45226 (5) 0.0598 (2)
C2 0.37289 (17) 0.1507 (2) 0.46549 (19) 0.0570 (6)
N3 0.46687 (13) 0.17314 (16) 0.51939 (14) 0.0535 (5)
N4 0.47701 (12) 0.28832 (15) 0.55296 (13) 0.0454 (4)
C5 0.55903 (15) 0.35639 (19) 0.61424 (15) 0.0451 (5)
C6 0.51834 (16) 0.46116 (19) 0.62492 (15) 0.0458 (5)
N7 0.41374 (13) 0.45963 (16) 0.57021 (13) 0.0491 (4)
C7A 0.39325 (15) 0.3533 (2) 0.52847 (16) 0.0474 (5)
C27 0.33592 (19) 0.0335 (2) 0.4129 (3) 0.0840 (9) 0.822 (6)
H27A 0.3797 −0.0295 0.4554 0.101* 0.822 (6)
H27B 0.3408 0.0348 0.3524 0.101* 0.822 (6)
C21 0.2299 (2) 0.0027 (3) 0.3856 (3) 0.0569 (7) 0.822 (6)
C22 0.1533 (3) 0.0360 (6) 0.2954 (3) 0.0736 (11) 0.822 (6)
H22 0.1666 0.0816 0.2526 0.088* 0.822 (6)
C23 0.0569 (3) 0.0035 (7) 0.2665 (4) 0.0869 (12) 0.822 (6)
H23 0.0054 0.0241 0.2034 0.104* 0.822 (6)
C24 0.0368 (3) −0.0584 (5) 0.3295 (4) 0.0727 (12) 0.822 (6)
Cl24 −0.08535 (12) −0.1013 (2) 0.2922 (3) 0.1368 (11) 0.822 (6)
C25 0.1119 (3) −0.0917 (4) 0.4210 (4) 0.0811 (12) 0.822 (6)
H25 0.0979 −0.1344 0.4646 0.097* 0.822 (6)
C26 0.2088 (3) −0.0614 (5) 0.4481 (3) 0.0722 (12) 0.822 (6)
H26 0.2607 −0.0851 0.5101 0.087* 0.822 (6)
C37 0.33592 (19) 0.0335 (2) 0.4129 (3) 0.0840 (9) 0.178 (6)
H37A 0.3766 −0.0300 0.4576 0.101* 0.178 (6)
H37B 0.3460 0.0324 0.3555 0.101* 0.178 (6)
C31 0.2272 (6) 0.0060 (10) 0.3779 (12) 0.0569 (7) 0.178 (6)
C32 0.1626 (10) 0.034 (3) 0.2808 (14) 0.0736 (11) 0.178 (6)
H32 0.1874 0.0604 0.2399 0.088* 0.178 (6)
C33 0.0623 (10) 0.023 (4) 0.2433 (17) 0.0869 (12) 0.178 (6)
H33 0.0184 0.0567 0.1819 0.104* 0.178 (6)
C34 0.0261 (9) −0.037 (3) 0.2944 (16) 0.0727 (12) 0.178 (6)
Cl34 −0.1018 (5) −0.0635 (9) 0.2309 (12) 0.1368 (11) 0.178 (6)
C35 0.0864 (11) −0.060 (2) 0.3928 (15) 0.0811 (12) 0.178 (6)
H35 0.0603 −0.0899 0.4317 0.097* 0.178 (6)
C36 0.1883 (10) −0.037 (3) 0.4342 (15) 0.0722 (12) 0.178 (6)
H36 0.2306 −0.0521 0.5017 0.087* 0.178 (6)
C51 0.66292 (15) 0.3124 (2) 0.65056 (16) 0.0490 (5)
H51A 0.7067 0.3806 0.6630 0.059*
H51B 0.6642 0.2643 0.5987 0.059*
N51 0.70786 (17) 0.11914 (19) 0.86245 (17) 0.0647 (6)
H51 0.685 (2) 0.074 (3) 0.892 (2) 0.078*
C52 0.64764 (17) 0.1730 (2) 0.77329 (18) 0.0552 (6)
H52 0.5783 0.1655 0.7375 0.066*
C53 0.70247 (15) 0.23931 (18) 0.74375 (16) 0.0454 (5)
C53A 0.80430 (16) 0.22541 (19) 0.81938 (17) 0.0505 (5)
C54 0.89531 (18) 0.2699 (2) 0.8328 (2) 0.0675 (7)
H54 0.8971 0.3208 0.7858 0.081*
C55 0.9821 (2) 0.2368 (3) 0.9171 (3) 0.0870 (10)
H55 1.0432 0.2662 0.9273 0.104*
C56 0.9801 (2) 0.1607 (3) 0.9869 (3) 0.0915 (10)
H56 1.0401 0.1393 1.0428 0.110*
C57 0.8927 (2) 0.1159 (3) 0.9764 (2) 0.0808 (9)
H57 0.8923 0.0648 1.0240 0.097*
C57A 0.80467 (18) 0.1494 (2) 0.89221 (18) 0.0581 (6)
C61 0.57262 (17) 0.56426 (19) 0.68713 (17) 0.0488 (5)
C62 0.66559 (18) 0.5491 (2) 0.77200 (18) 0.0600 (6)
H62 0.6919 0.4723 0.7906 0.072*
C63 0.7196 (2) 0.6456 (2) 0.8292 (2) 0.0684 (7)
H63 0.7823 0.6348 0.8851 0.082*
C64 0.6791 (2) 0.7564 (2) 0.8021 (2) 0.0660 (7)
F64 0.73381 (13) 0.85184 (14) 0.85653 (14) 0.0915 (5)
C65 0.5862 (2) 0.7756 (2) 0.7227 (2) 0.0687 (7)
H65 0.5588 0.8522 0.7080 0.082*
C66 0.53332 (19) 0.6786 (2) 0.66408 (19) 0.0582 (6)
H66 0.4706 0.6907 0.6086 0.070*

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0409 (3) 0.0612 (4) 0.0683 (4) 0.0045 (3) 0.0199 (3) −0.0128 (3)
C2 0.0489 (13) 0.0515 (13) 0.0685 (15) 0.0016 (10) 0.0272 (12) −0.0117 (12)
N3 0.0446 (10) 0.0464 (11) 0.0648 (12) 0.0021 (8) 0.0234 (9) −0.0089 (9)
N4 0.0415 (9) 0.0444 (10) 0.0483 (10) 0.0047 (8) 0.0205 (8) −0.0039 (8)
C5 0.0462 (11) 0.0457 (12) 0.0417 (11) 0.0006 (9) 0.0202 (10) 0.0016 (9)
C6 0.0496 (12) 0.0450 (12) 0.0434 (12) 0.0024 (10) 0.0233 (10) 0.0029 (10)
N7 0.0499 (11) 0.0460 (11) 0.0505 (11) 0.0056 (8) 0.0241 (9) −0.0014 (9)
C7A 0.0436 (11) 0.0510 (13) 0.0463 (12) 0.0066 (10) 0.0211 (10) −0.0002 (10)
C27 0.0577 (16) 0.0643 (17) 0.127 (3) −0.0081 (13) 0.0428 (17) −0.0350 (17)
C21 0.0526 (14) 0.0478 (13) 0.0664 (17) −0.0039 (11) 0.0264 (13) −0.0159 (12)
C22 0.0705 (19) 0.100 (2) 0.057 (2) −0.0097 (18) 0.0358 (16) 0.0005 (19)
C23 0.069 (2) 0.107 (4) 0.056 (3) −0.004 (2) 0.0089 (18) 0.001 (2)
C24 0.0492 (17) 0.064 (3) 0.097 (4) −0.0151 (18) 0.030 (2) −0.018 (3)
Cl24 0.0644 (7) 0.1099 (12) 0.221 (3) −0.0290 (7) 0.0590 (12) −0.0207 (14)
C25 0.090 (3) 0.066 (3) 0.099 (3) −0.005 (2) 0.056 (3) 0.020 (2)
C26 0.068 (2) 0.064 (3) 0.064 (2) 0.008 (2) 0.0168 (18) 0.0131 (16)
C37 0.0577 (16) 0.0643 (17) 0.127 (3) −0.0081 (13) 0.0428 (17) −0.0350 (17)
C31 0.0526 (14) 0.0478 (13) 0.0664 (17) −0.0039 (11) 0.0264 (13) −0.0159 (12)
C32 0.0705 (19) 0.100 (2) 0.057 (2) −0.0097 (18) 0.0358 (16) 0.0005 (19)
C33 0.069 (2) 0.107 (4) 0.056 (3) −0.004 (2) 0.0089 (18) 0.001 (2)
C34 0.0492 (17) 0.064 (3) 0.097 (4) −0.0151 (18) 0.030 (2) −0.018 (3)
Cl34 0.0644 (7) 0.1099 (12) 0.221 (3) −0.0290 (7) 0.0590 (12) −0.0207 (14)
C35 0.090 (3) 0.066 (3) 0.099 (3) −0.005 (2) 0.056 (3) 0.020 (2)
C36 0.068 (2) 0.064 (3) 0.064 (2) 0.008 (2) 0.0168 (18) 0.0131 (16)
C51 0.0426 (11) 0.0523 (13) 0.0526 (13) −0.0012 (10) 0.0237 (10) −0.0027 (10)
N51 0.0671 (14) 0.0548 (13) 0.0692 (14) −0.0010 (10) 0.0313 (12) 0.0142 (11)
C52 0.0492 (13) 0.0519 (13) 0.0596 (15) −0.0005 (11) 0.0230 (12) 0.0035 (11)
C53 0.0407 (11) 0.0408 (12) 0.0533 (13) 0.0018 (9) 0.0221 (10) −0.0020 (10)
C53A 0.0463 (12) 0.0391 (12) 0.0608 (14) 0.0049 (9) 0.0223 (11) −0.0029 (11)
C54 0.0469 (13) 0.0648 (16) 0.0834 (18) −0.0001 (12) 0.0265 (13) −0.0016 (14)
C55 0.0450 (14) 0.086 (2) 0.108 (3) 0.0014 (14) 0.0204 (16) −0.011 (2)
C56 0.0654 (19) 0.078 (2) 0.088 (2) 0.0222 (16) 0.0051 (17) 0.0004 (18)
C57 0.078 (2) 0.0622 (17) 0.0742 (19) 0.0153 (15) 0.0164 (16) 0.0118 (14)
C57A 0.0590 (15) 0.0406 (13) 0.0632 (15) 0.0081 (11) 0.0213 (12) 0.0019 (11)
C61 0.0595 (14) 0.0441 (12) 0.0518 (13) −0.0012 (10) 0.0343 (12) −0.0004 (10)
C62 0.0647 (15) 0.0517 (14) 0.0577 (14) −0.0010 (12) 0.0255 (13) −0.0039 (12)
C63 0.0678 (16) 0.0641 (17) 0.0685 (17) −0.0094 (13) 0.0298 (14) −0.0132 (14)
C64 0.0787 (18) 0.0556 (16) 0.0814 (18) −0.0219 (14) 0.0530 (16) −0.0191 (14)
F64 0.1081 (13) 0.0656 (10) 0.1202 (14) −0.0371 (9) 0.0711 (11) −0.0366 (9)
C65 0.089 (2) 0.0401 (13) 0.098 (2) −0.0016 (13) 0.0619 (18) −0.0014 (14)
C66 0.0650 (15) 0.0508 (14) 0.0680 (16) 0.0028 (11) 0.0399 (13) 0.0035 (12)

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Geometric parameters (Å, º)

S1—C7A 1.725 (2) C35—C36 1.390 (9)
S1—C2 1.756 (2) C35—H35 0.9300
C2—N3 1.285 (3) C36—H36 0.9300
C2—C27 1.495 (3) C51—C53 1.494 (3)
N3—N4 1.365 (2) C51—H51A 0.9700
N4—C7A 1.357 (3) C51—H51B 0.9700
N4—C5 1.372 (3) N51—C52 1.360 (3)
C5—C6 1.373 (3) N51—C57A 1.364 (3)
C5—C51 1.489 (3) N51—H51 0.86 (3)
C6—N7 1.398 (3) C52—C53 1.355 (3)
C6—C61 1.466 (3) C52—H52 0.9300
N7—C7A 1.312 (3) C53—C53A 1.424 (3)
C27—C21 1.506 (4) C53A—C54 1.398 (3)
C27—H27A 0.9700 C53A—C57A 1.403 (3)
C27—H27B 0.9700 C54—C55 1.376 (4)
C21—C22 1.356 (4) C54—H54 0.9300
C21—C26 1.359 (4) C55—C56 1.383 (5)
C22—C23 1.368 (5) C55—H55 0.9300
C22—H22 0.9300 C56—C57 1.363 (4)
C23—C24 1.343 (5) C56—H56 0.9300
C23—H23 0.9300 C57—C57A 1.386 (3)
C24—C25 1.361 (5) C57—H57 0.9300
C24—Cl24 1.735 (3) C61—C66 1.381 (3)
C25—C26 1.374 (5) C61—C62 1.391 (3)
C25—H25 0.9300 C62—C63 1.380 (3)
C26—H26 0.9300 C62—H62 0.9300
C31—C36 1.360 (9) C63—C64 1.355 (4)
C31—C32 1.361 (9) C63—H63 0.9300
C32—C33 1.358 (9) C64—F64 1.360 (3)
C32—H32 0.9300 C64—C65 1.363 (4)
C33—C34 1.343 (10) C65—C66 1.387 (3)
C33—H33 0.9300 C65—H65 0.9300
C34—C35 1.353 (10) C66—H66 0.9300
C34—Cl34 1.733 (8)
C7A—S1—C2 88.03 (11) C31—C36—C35 121.3 (11)
N3—C2—C27 121.7 (2) C31—C36—H36 119.3
N3—C2—S1 116.61 (17) C35—C36—H36 119.3
C27—C2—S1 121.61 (18) C5—C51—C53 113.22 (18)
C2—N3—N4 108.07 (17) C5—C51—H51A 108.9
C7A—N4—N3 118.80 (17) C53—C51—H51A 108.9
C7A—N4—C5 108.52 (17) C5—C51—H51B 108.9
N3—N4—C5 132.59 (17) C53—C51—H51B 108.9
N4—C5—C6 103.70 (18) H51A—C51—H51B 107.7
N4—C5—C51 121.71 (19) C52—N51—C57A 108.4 (2)
C6—C5—C51 134.6 (2) C52—N51—H51 123.0 (18)
C5—C6—N7 111.86 (18) C57A—N51—H51 128.6 (18)
C5—C6—C61 126.9 (2) C53—C52—N51 110.7 (2)
N7—C6—C61 121.16 (19) C53—C52—H52 124.6
C7A—N7—C6 103.48 (17) N51—C52—H52 124.6
N7—C7A—N4 112.42 (18) C52—C53—C53A 106.2 (2)
N7—C7A—S1 139.12 (17) C52—C53—C51 126.42 (19)
N4—C7A—S1 108.44 (15) C53A—C53—C51 127.4 (2)
C2—C27—C21 114.9 (2) C54—C53A—C57A 119.1 (2)
C2—C27—H27A 108.5 C54—C53A—C53 134.1 (2)
C21—C27—H27A 108.5 C57A—C53A—C53 106.9 (2)
C2—C27—H27B 108.5 C55—C54—C53A 118.4 (3)
C21—C27—H27B 108.5 C55—C54—H54 120.8
H27A—C27—H27B 107.5 C53A—C54—H54 120.8
C22—C21—C26 118.8 (3) C54—C55—C56 121.1 (3)
C22—C21—C27 119.7 (3) C54—C55—H55 119.5
C26—C21—C27 121.5 (3) C56—C55—H55 119.5
C21—C22—C23 120.8 (4) C57—C56—C55 122.0 (3)
C21—C22—H22 119.6 C57—C56—H56 119.0
C23—C22—H22 119.6 C55—C56—H56 119.0
C24—C23—C22 119.9 (3) C56—C57—C57A 117.4 (3)
C24—C23—H23 120.0 C56—C57—H57 121.3
C22—C23—H23 120.0 C57A—C57—H57 121.3
C23—C24—C25 120.5 (3) N51—C57A—C57 130.3 (3)
C23—C24—Cl24 119.8 (3) N51—C57A—C53A 107.8 (2)
C25—C24—Cl24 119.6 (3) C57—C57A—C53A 121.9 (3)
C24—C25—C26 119.0 (3) C66—C61—C62 118.0 (2)
C24—C25—H25 120.5 C66—C61—C6 121.5 (2)
C26—C25—H25 120.5 C62—C61—C6 120.5 (2)
C21—C26—C25 120.9 (3) C63—C62—C61 121.4 (2)
C21—C26—H26 119.6 C63—C62—H62 119.3
C25—C26—H26 119.6 C61—C62—H62 119.3
C36—C31—C32 118.0 (9) C64—C63—C62 118.4 (3)
C33—C32—C31 120.4 (11) C64—C63—H63 120.8
C33—C32—H32 119.8 C62—C63—H63 120.8
C31—C32—H32 119.8 C63—C64—F64 118.4 (3)
C34—C33—C32 120.4 (12) C63—C64—C65 122.6 (2)
C34—C33—H33 119.8 F64—C64—C65 119.0 (2)
C32—C33—H33 119.8 C64—C65—C66 118.6 (2)
C33—C34—C35 119.7 (10) C64—C65—H65 120.7
C33—C34—Cl34 115.7 (11) C66—C65—H65 120.7
C35—C34—Cl34 124.1 (11) C61—C66—C65 120.9 (2)
C34—C35—C36 118.3 (11) C61—C66—H66 119.6
C34—C35—H35 120.8 C65—C66—H66 119.6
C36—C35—H35 120.8
C7A—S1—C2—N3 −0.8 (2) C33—C34—C35—C36 −10 (5)
C7A—S1—C2—C27 −178.1 (3) Cl34—C34—C35—C36 179 (2)
C27—C2—N3—N4 176.9 (2) C32—C31—C36—C35 4 (3)
S1—C2—N3—N4 −0.4 (3) C34—C35—C36—C31 0 (4)
C2—N3—N4—C7A 1.9 (3) N4—C5—C51—C53 −86.5 (2)
C2—N3—N4—C5 178.1 (2) C6—C5—C51—C53 95.9 (3)
C7A—N4—C5—C6 1.1 (2) C57A—N51—C52—C53 −0.6 (3)
N3—N4—C5—C6 −175.4 (2) N51—C52—C53—C53A 0.4 (3)
C7A—N4—C5—C51 −177.14 (19) N51—C52—C53—C51 −179.3 (2)
N3—N4—C5—C51 6.3 (4) C5—C51—C53—C52 27.7 (3)
N4—C5—C6—N7 −1.2 (2) C5—C51—C53—C53A −151.9 (2)
C51—C5—C6—N7 176.8 (2) C52—C53—C53A—C54 −180.0 (3)
N4—C5—C6—C61 176.9 (2) C51—C53—C53A—C54 −0.3 (4)
C51—C5—C6—C61 −5.2 (4) C52—C53—C53A—C57A −0.1 (2)
C5—C6—N7—C7A 0.7 (2) C51—C53—C53A—C57A 179.6 (2)
C61—C6—N7—C7A −177.5 (2) C57A—C53A—C54—C55 0.3 (4)
C6—N7—C7A—N4 0.0 (2) C53—C53A—C54—C55 −179.8 (2)
C6—N7—C7A—S1 178.2 (2) C53A—C54—C55—C56 0.4 (4)
N3—N4—C7A—N7 176.32 (19) C54—C55—C56—C57 −0.7 (5)
C5—N4—C7A—N7 −0.8 (3) C55—C56—C57—C57A 0.1 (5)
N3—N4—C7A—S1 −2.4 (2) C52—N51—C57A—C57 −178.9 (3)
C5—N4—C7A—S1 −179.50 (14) C52—N51—C57A—C53A 0.5 (3)
C2—S1—C7A—N7 −176.6 (3) C56—C57—C57A—N51 180.0 (3)
C2—S1—C7A—N4 1.65 (17) C56—C57—C57A—C53A 0.7 (4)
N3—C2—C27—C21 158.5 (3) C54—C53A—C57A—N51 179.7 (2)
S1—C2—C27—C21 −24.3 (4) C53—C53A—C57A—N51 −0.2 (3)
C2—C27—C21—C22 90.8 (5) C54—C53A—C57A—C57 −0.9 (4)
C2—C27—C21—C26 −91.3 (5) C53—C53A—C57A—C57 179.2 (2)
C26—C21—C22—C23 −1.6 (7) C5—C6—C61—C66 153.4 (2)
C27—C21—C22—C23 176.4 (5) N7—C6—C61—C66 −28.7 (3)
C21—C22—C23—C24 2.6 (9) C5—C6—C61—C62 −27.0 (4)
C22—C23—C24—C25 −1.6 (10) N7—C6—C61—C62 150.8 (2)
C22—C23—C24—Cl24 −179.2 (5) C66—C61—C62—C63 −3.0 (4)
C23—C24—C25—C26 −0.2 (9) C6—C61—C62—C63 177.3 (2)
Cl24—C24—C25—C26 177.4 (4) C61—C62—C63—C64 1.3 (4)
C22—C21—C26—C25 −0.3 (7) C62—C63—C64—F64 −177.8 (2)
C27—C21—C26—C25 −178.2 (4) C62—C63—C64—C65 2.1 (4)
C24—C25—C26—C21 1.1 (8) C63—C64—C65—C66 −3.6 (4)
C36—C31—C32—C33 3 (3) F64—C64—C65—C66 176.3 (2)
C31—C32—C33—C34 −13 (5) C62—C61—C66—C65 1.5 (3)
C32—C33—C34—C35 17 (6) C6—C61—C66—C65 −178.9 (2)
C32—C33—C34—Cl34 −171 (2) C64—C65—C66—C61 1.8 (4)

2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N51—H51···N7i 0.86 (3) 2.27 (3) 3.102 (3) 165 (3)
C25—H25···Cg1i 0.93 2.75 3.637 (5) 161
C35—H35···Cg1i 0.93 3.32 4.062 (5) 139

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Crystal data

C26H18BrClN4S Dx = 1.491 Mg m3
Mr = 533.85 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 4645 reflections
a = 9.5735 (8) Å θ = 2.6–27.9°
b = 9.6860 (9) Å µ = 1.95 mm1
c = 25.644 (2) Å T = 296 K
V = 2377.9 (4) Å3 Block, yellow
Z = 4 0.48 × 0.44 × 0.44 mm
F(000) = 1080

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 4645 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3140 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω scans θmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −11→12
Tmin = 0.368, Tmax = 0.424 k = −11→12
10501 measured reflections l = −32→27

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.2472P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.40 e Å3
4645 reflections Δρmin = −0.51 e Å3
323 parameters Absolute structure: Flack x determined using 943 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
18 restraints Absolute structure parameter: 0.014 (5)
Primary atom site location: difference Fourier map

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.83700 (15) 0.41040 (12) 0.58869 (4) 0.0607 (4)
C2 0.8115 (5) 0.5817 (5) 0.60822 (16) 0.0521 (11)
N3 0.7295 (4) 0.6558 (4) 0.58024 (14) 0.0484 (9)
N4 0.6814 (4) 0.5756 (3) 0.53971 (12) 0.0420 (8)
C5 0.5916 (4) 0.5991 (4) 0.49850 (14) 0.0398 (9)
C6 0.5915 (5) 0.4749 (4) 0.47243 (16) 0.0421 (10)
N7 0.6775 (4) 0.3777 (3) 0.49620 (12) 0.0463 (8)
C7A 0.7273 (5) 0.4426 (4) 0.53667 (16) 0.0442 (11)
C27 0.8805 (6) 0.6365 (6) 0.65587 (17) 0.0659 (14) 0.839 (5)
H27A 0.8988 0.7342 0.6512 0.079* 0.839 (5)
H27B 0.9695 0.5903 0.6606 0.079* 0.839 (5)
C21 0.792 (3) 0.6161 (7) 0.7041 (7) 0.0583 (16) 0.839 (5)
C22 0.8012 (8) 0.4946 (7) 0.7315 (2) 0.072 (2) 0.839 (5)
H22 0.8610 0.4253 0.7201 0.086* 0.839 (5)
C23 0.7217 (8) 0.4742 (8) 0.7761 (2) 0.078 (2) 0.839 (5)
H23 0.7263 0.3912 0.7942 0.094* 0.839 (5)
C24 0.6363 (7) 0.5786 (10) 0.7928 (3) 0.072 (2) 0.839 (5)
Cl24 0.5446 (3) 0.5544 (4) 0.85097 (8) 0.1052 (12) 0.839 (5)
C25 0.6247 (11) 0.6984 (10) 0.7669 (4) 0.093 (3) 0.839 (5)
H25 0.5661 0.7679 0.7790 0.111* 0.839 (5)
C26 0.7030 (9) 0.7164 (8) 0.7212 (4) 0.081 (3) 0.839 (5)
H26 0.6940 0.7978 0.7023 0.097* 0.839 (5)
C37 0.8805 (6) 0.6365 (6) 0.65587 (17) 0.0659 (14) 0.161 (5)
H37A 0.9104 0.7306 0.6494 0.079* 0.161 (5)
H37B 0.9631 0.5818 0.6632 0.079* 0.161 (5)
C31 0.786 (13) 0.635 (3) 0.703 (4) 0.0583 (16) 0.161 (5)
C32 0.733 (4) 0.515 (3) 0.7245 (12) 0.072 (2) 0.161 (5)
H32 0.7558 0.4307 0.7096 0.086* 0.161 (5)
C33 0.646 (4) 0.519 (3) 0.7682 (12) 0.078 (2) 0.161 (5)
H33 0.6213 0.4386 0.7853 0.094* 0.161 (5)
C34 0.599 (6) 0.645 (3) 0.7853 (16) 0.072 (2) 0.161 (5)
Cl34 0.4934 (14) 0.653 (2) 0.8408 (5) 0.1052 (12) 0.161 (5)
C35 0.644 (6) 0.763 (3) 0.7640 (19) 0.093 (3) 0.161 (5)
H35 0.6135 0.8473 0.7768 0.111* 0.161 (5)
C36 0.739 (6) 0.758 (3) 0.7223 (18) 0.081 (3) 0.161 (5)
H36 0.7694 0.8398 0.7074 0.097* 0.161 (5)
C51 0.5177 (5) 0.7330 (4) 0.49086 (18) 0.0491 (11)
H51A 0.4648 0.7523 0.5223 0.059*
H51B 0.4508 0.7209 0.4628 0.059*
N51 0.6774 (5) 1.0775 (4) 0.47897 (15) 0.0592 (10)
H51 0.669 (5) 1.175 (5) 0.4903 (17) 0.071*
C52 0.5912 (5) 0.9832 (5) 0.50168 (18) 0.0517 (11)
H52 0.5316 1.0024 0.5294 0.062*
C53 0.6035 (4) 0.8576 (4) 0.47868 (16) 0.0441 (11)
C53A 0.7043 (5) 0.8739 (5) 0.43823 (15) 0.0455 (10)
C54 0.7624 (5) 0.7861 (5) 0.40072 (18) 0.0572 (12)
H54 0.7335 0.6946 0.3982 0.069*
C55 0.8628 (6) 0.8371 (6) 0.3677 (2) 0.0751 (16)
H55 0.9015 0.7791 0.3427 0.090*
C56 0.9083 (7) 0.9735 (7) 0.3707 (2) 0.0797 (18)
H56 0.9777 1.0046 0.3482 0.096*
C57 0.8518 (6) 1.0620 (6) 0.4065 (2) 0.0687 (15)
H57 0.8813 1.1534 0.4084 0.082*
C57A 0.7497 (5) 1.0127 (5) 0.43978 (18) 0.0523 (12)
C61 0.5199 (4) 0.4425 (4) 0.42318 (15) 0.0407 (10)
C62 0.3870 (5) 0.4889 (5) 0.41314 (17) 0.0540 (12)
H62 0.3377 0.5345 0.4392 0.065*
C63 0.3253 (5) 0.4693 (5) 0.36521 (18) 0.0591 (13)
H63 0.2361 0.5032 0.3587 0.071*
C64 0.3972 (5) 0.3988 (6) 0.32711 (16) 0.0573 (13)
Br64 0.31651 (7) 0.38367 (7) 0.25942 (2) 0.0898 (3)
C65 0.5256 (5) 0.3449 (5) 0.33654 (17) 0.0593 (13)
H65 0.5717 0.2937 0.3111 0.071*
C66 0.5865 (5) 0.3678 (5) 0.38478 (16) 0.0524 (12)
H66 0.6748 0.3318 0.3914 0.063*

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0771 (8) 0.0558 (7) 0.0490 (6) 0.0067 (8) −0.0131 (6) 0.0130 (6)
C2 0.057 (3) 0.061 (3) 0.038 (2) −0.007 (3) −0.001 (2) 0.007 (2)
N3 0.059 (2) 0.046 (2) 0.0407 (19) −0.0101 (19) −0.0035 (18) 0.0027 (17)
N4 0.055 (2) 0.034 (2) 0.0360 (17) 0.000 (2) −0.0029 (17) 0.0021 (14)
C5 0.046 (2) 0.037 (2) 0.037 (2) −0.003 (2) −0.0002 (19) 0.009 (2)
C6 0.046 (2) 0.037 (3) 0.043 (2) −0.007 (2) 0.004 (2) 0.003 (2)
N7 0.062 (2) 0.0325 (18) 0.0440 (18) 0.004 (2) −0.0054 (19) 0.0006 (16)
C7A 0.057 (3) 0.036 (3) 0.040 (2) 0.001 (2) −0.002 (2) 0.0116 (19)
C27 0.072 (3) 0.080 (4) 0.046 (3) −0.021 (3) −0.007 (2) 0.004 (3)
C21 0.070 (4) 0.064 (4) 0.041 (2) −0.015 (5) −0.016 (3) −0.004 (4)
C22 0.088 (6) 0.061 (4) 0.066 (4) −0.002 (4) 0.020 (4) 0.001 (3)
C23 0.095 (6) 0.074 (5) 0.066 (4) −0.011 (4) 0.019 (4) 0.006 (4)
C24 0.057 (5) 0.103 (7) 0.056 (4) −0.020 (5) 0.005 (3) −0.017 (4)
Cl24 0.0763 (14) 0.165 (3) 0.0743 (12) −0.0284 (17) 0.0220 (11) −0.0164 (15)
C25 0.086 (6) 0.113 (7) 0.079 (5) 0.017 (8) 0.001 (4) −0.012 (7)
C26 0.091 (7) 0.083 (5) 0.070 (4) 0.008 (5) −0.010 (4) 0.008 (4)
C37 0.072 (3) 0.080 (4) 0.046 (3) −0.021 (3) −0.007 (2) 0.004 (3)
C31 0.070 (4) 0.064 (4) 0.041 (2) −0.015 (5) −0.016 (3) −0.004 (4)
C32 0.088 (6) 0.061 (4) 0.066 (4) −0.002 (4) 0.020 (4) 0.001 (3)
C33 0.095 (6) 0.074 (5) 0.066 (4) −0.011 (4) 0.019 (4) 0.006 (4)
C34 0.057 (5) 0.103 (7) 0.056 (4) −0.020 (5) 0.005 (3) −0.017 (4)
Cl34 0.0763 (14) 0.165 (3) 0.0743 (12) −0.0284 (17) 0.0220 (11) −0.0164 (15)
C35 0.086 (6) 0.113 (7) 0.079 (5) 0.017 (8) 0.001 (4) −0.012 (7)
C36 0.091 (7) 0.083 (5) 0.070 (4) 0.008 (5) −0.010 (4) 0.008 (4)
C51 0.052 (3) 0.042 (3) 0.053 (3) 0.004 (2) −0.006 (2) 0.001 (2)
N51 0.079 (3) 0.038 (2) 0.060 (2) 0.008 (3) −0.017 (2) −0.001 (2)
C52 0.061 (3) 0.044 (3) 0.050 (3) 0.008 (3) −0.006 (2) 0.000 (2)
C53 0.051 (2) 0.040 (3) 0.041 (2) 0.007 (2) −0.015 (2) 0.004 (2)
C53A 0.055 (3) 0.039 (2) 0.042 (2) 0.004 (2) −0.010 (2) 0.005 (2)
C54 0.065 (3) 0.055 (3) 0.051 (3) 0.003 (3) −0.006 (2) 0.004 (3)
C55 0.083 (4) 0.083 (4) 0.060 (3) 0.009 (4) 0.004 (3) 0.002 (3)
C56 0.076 (4) 0.087 (5) 0.076 (4) 0.001 (4) 0.005 (3) 0.027 (4)
C57 0.073 (4) 0.051 (3) 0.082 (4) −0.005 (3) −0.006 (3) 0.026 (3)
C57A 0.062 (3) 0.039 (3) 0.057 (3) −0.001 (2) −0.016 (2) 0.011 (2)
C61 0.042 (2) 0.042 (3) 0.038 (2) −0.013 (2) 0.0017 (19) 0.0045 (19)
C62 0.053 (3) 0.063 (3) 0.047 (3) −0.010 (3) 0.006 (2) −0.004 (2)
C63 0.045 (3) 0.074 (3) 0.058 (3) −0.004 (3) −0.005 (3) −0.003 (3)
C64 0.059 (3) 0.072 (3) 0.040 (2) −0.019 (3) −0.008 (2) −0.003 (3)
Br64 0.0976 (4) 0.1173 (5) 0.0545 (3) −0.0123 (4) −0.0222 (3) −0.0103 (3)
C65 0.064 (3) 0.072 (4) 0.042 (2) −0.008 (3) 0.001 (2) −0.012 (2)
C66 0.050 (3) 0.058 (3) 0.049 (2) −0.002 (3) 0.001 (2) 0.004 (2)

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Geometric parameters (Å, º)

S1—C7A 1.726 (4) C35—C36 1.399 (14)
S1—C2 1.750 (5) C35—H35 0.9300
C2—N3 1.283 (5) C36—H36 0.9300
C2—C27 1.487 (6) C51—C53 1.493 (6)
N3—N4 1.376 (5) C51—H51A 0.9700
N4—C7A 1.363 (5) C51—H51B 0.9700
N4—C5 1.381 (5) N51—C52 1.362 (6)
C5—C6 1.376 (6) N51—C57A 1.373 (6)
C5—C51 1.490 (6) N51—H51 0.99 (5)
C6—N7 1.391 (5) C52—C53 1.357 (6)
C6—C61 1.471 (6) C52—H52 0.9300
N7—C7A 1.304 (5) C53—C53A 1.426 (6)
C27—C21 1.511 (7) C53A—C54 1.400 (6)
C27—H27A 0.9700 C53A—C57A 1.413 (7)
C27—H27B 0.9700 C54—C55 1.373 (7)
C21—C26 1.367 (11) C54—H54 0.9300
C21—C22 1.373 (12) C55—C56 1.393 (8)
C22—C23 1.387 (8) C55—H55 0.9300
C22—H22 0.9300 C56—C57 1.367 (8)
C23—C24 1.369 (11) C56—H56 0.9300
C23—H23 0.9300 C57—C57A 1.383 (7)
C24—C25 1.341 (11) C57—H57 0.9300
C24—Cl24 1.746 (6) C61—C62 1.374 (6)
C25—C26 1.402 (10) C61—C66 1.378 (6)
C25—H25 0.9300 C62—C63 1.377 (6)
C26—H26 0.9300 C62—H62 0.9300
C31—C36 1.369 (14) C63—C64 1.376 (7)
C31—C32 1.373 (17) C63—H63 0.9300
C32—C33 1.395 (13) C64—C65 1.358 (7)
C32—H32 0.9300 C64—Br64 1.906 (4)
C33—C34 1.368 (16) C65—C66 1.385 (6)
C33—H33 0.9300 C65—H65 0.9300
C34—C35 1.340 (16) C66—H66 0.9300
C34—Cl34 1.746 (12)
C7A—S1—C2 88.0 (2) C31—C36—C35 121.1 (16)
N3—C2—C27 122.1 (5) C31—C36—H36 119.4
N3—C2—S1 117.1 (3) C35—C36—H36 119.4
C27—C2—S1 120.8 (4) C5—C51—C53 118.0 (3)
C2—N3—N4 108.1 (4) C5—C51—H51A 107.8
C7A—N4—N3 117.9 (3) C53—C51—H51A 107.8
C7A—N4—C5 108.2 (3) C5—C51—H51B 107.8
N3—N4—C5 133.9 (3) C53—C51—H51B 107.8
C6—C5—N4 103.2 (3) H51A—C51—H51B 107.1
C6—C5—C51 134.1 (4) C52—N51—C57A 108.2 (4)
N4—C5—C51 122.7 (4) C52—N51—H51 117 (3)
C5—C6—N7 112.2 (4) C57A—N51—H51 134 (3)
C5—C6—C61 127.2 (4) C53—C52—N51 111.3 (4)
N7—C6—C61 120.5 (4) C53—C52—H52 124.4
C7A—N7—C6 103.8 (3) N51—C52—H52 124.4
N7—C7A—N4 112.6 (4) C52—C53—C53A 106.0 (4)
N7—C7A—S1 138.6 (3) C52—C53—C51 125.9 (4)
N4—C7A—S1 108.8 (3) C53A—C53—C51 127.9 (4)
C2—C27—C21 112.2 (11) C54—C53A—C57A 118.4 (4)
C2—C27—H27A 109.2 C54—C53A—C53 134.5 (4)
C21—C27—H27A 109.2 C57A—C53A—C53 107.1 (4)
C2—C27—H27B 109.2 C55—C54—C53A 118.9 (5)
C21—C27—H27B 109.2 C55—C54—H54 120.6
H27A—C27—H27B 107.9 C53A—C54—H54 120.6
C26—C21—C22 118.9 (6) C54—C55—C56 121.8 (5)
C26—C21—C27 121.3 (8) C54—C55—H55 119.1
C22—C21—C27 119.8 (8) C56—C55—H55 119.1
C21—C22—C23 120.7 (6) C57—C56—C55 120.5 (6)
C21—C22—H22 119.7 C57—C56—H56 119.7
C23—C22—H22 119.7 C55—C56—H56 119.7
C24—C23—C22 118.7 (6) C56—C57—C57A 118.5 (5)
C24—C23—H23 120.6 C56—C57—H57 120.7
C22—C23—H23 120.6 C57A—C57—H57 120.7
C25—C24—C23 122.2 (6) N51—C57A—C57 130.6 (5)
C25—C24—Cl24 119.9 (7) N51—C57A—C53A 107.5 (4)
C23—C24—Cl24 118.0 (7) C57—C57A—C53A 121.9 (5)
C24—C25—C26 118.5 (8) C62—C61—C66 117.8 (4)
C24—C25—H25 120.7 C62—C61—C6 121.5 (4)
C26—C25—H25 120.7 C66—C61—C6 120.7 (4)
C21—C26—C25 120.9 (8) C61—C62—C63 121.3 (5)
C21—C26—H26 119.5 C61—C62—H62 119.4
C25—C26—H26 119.5 C63—C62—H62 119.4
C36—C31—C32 118.0 (16) C64—C63—C62 119.2 (5)
C31—C32—C33 120.9 (15) C64—C63—H63 120.4
C31—C32—H32 119.5 C62—C63—H63 120.4
C33—C32—H32 119.5 C65—C64—C63 121.1 (4)
C34—C33—C32 118.8 (16) C65—C64—Br64 120.0 (4)
C34—C33—H33 120.6 C63—C64—Br64 118.9 (4)
C32—C33—H33 120.6 C64—C65—C66 118.6 (5)
C35—C34—C33 121.2 (15) C64—C65—H65 120.7
C35—C34—Cl34 118.7 (16) C66—C65—H65 120.7
C33—C34—Cl34 119.7 (16) C61—C66—C65 121.8 (4)
C34—C35—C36 119.5 (16) C61—C66—H66 119.1
C34—C35—H35 120.3 C65—C66—H66 119.1
C36—C35—H35 120.3
C7A—S1—C2—N3 0.9 (4) C33—C34—C35—C36 2 (12)
C7A—S1—C2—C27 179.7 (4) Cl34—C34—C35—C36 175 (5)
C27—C2—N3—N4 −179.2 (4) C32—C31—C36—C35 3 (17)
S1—C2—N3—N4 −0.4 (5) C34—C35—C36—C31 −1 (13)
C2—N3—N4—C7A −0.5 (5) C6—C5—C51—C53 −116.0 (5)
C2—N3—N4—C5 179.4 (4) N4—C5—C51—C53 66.0 (5)
C7A—N4—C5—C6 −0.8 (4) C57A—N51—C52—C53 −0.3 (5)
N3—N4—C5—C6 179.2 (4) N51—C52—C53—C53A −0.3 (5)
C7A—N4—C5—C51 177.7 (4) N51—C52—C53—C51 −175.2 (4)
N3—N4—C5—C51 −2.3 (6) C5—C51—C53—C52 −133.1 (4)
N4—C5—C6—N7 0.0 (4) C5—C51—C53—C53A 53.1 (6)
C51—C5—C6—N7 −178.3 (4) C52—C53—C53A—C54 −179.6 (5)
N4—C5—C6—C61 −176.0 (4) C51—C53—C53A—C54 −4.8 (8)
C51—C5—C6—C61 5.7 (8) C52—C53—C53A—C57A 0.8 (5)
C5—C6—N7—C7A 0.8 (5) C51—C53—C53A—C57A 175.5 (4)
C61—C6—N7—C7A 177.2 (4) C57A—C53A—C54—C55 1.3 (6)
C6—N7—C7A—N4 −1.4 (5) C53—C53A—C54—C55 −178.3 (4)
C6—N7—C7A—S1 179.0 (4) C53A—C54—C55—C56 0.2 (7)
N3—N4—C7A—N7 −178.6 (4) C54—C55—C56—C57 −1.1 (8)
C5—N4—C7A—N7 1.5 (5) C55—C56—C57—C57A 0.5 (8)
N3—N4—C7A—S1 1.2 (5) C52—N51—C57A—C57 −177.9 (5)
C5—N4—C7A—S1 −178.8 (3) C52—N51—C57A—C53A 0.8 (5)
C2—S1—C7A—N7 178.6 (5) C56—C57—C57A—N51 179.4 (5)
C2—S1—C7A—N4 −1.1 (3) C56—C57—C57A—C53A 0.9 (7)
N3—C2—C27—C21 89.1 (8) C54—C53A—C57A—N51 179.3 (4)
S1—C2—C27—C21 −89.6 (7) C53—C53A—C57A—N51 −0.9 (5)
C2—C27—C21—C26 −93.1 (19) C54—C53A—C57A—C57 −1.9 (6)
C2—C27—C21—C22 87 (2) C53—C53A—C57A—C57 177.8 (4)
C26—C21—C22—C23 −1 (3) C5—C6—C61—C62 −41.3 (6)
C27—C21—C22—C23 179.7 (13) N7—C6—C61—C62 142.9 (4)
C21—C22—C23—C24 −1.3 (16) C5—C6—C61—C66 136.5 (5)
C22—C23—C24—C25 1.6 (11) N7—C6—C61—C66 −39.2 (6)
C22—C23—C24—Cl24 −176.5 (5) C66—C61—C62—C63 −4.0 (7)
C23—C24—C25—C26 0.0 (13) C6—C61—C62—C63 173.9 (4)
Cl24—C24—C25—C26 178.0 (7) C61—C62—C63—C64 1.6 (7)
C22—C21—C26—C25 2 (3) C62—C63—C64—C65 2.1 (8)
C27—C21—C26—C25 −178.1 (14) C62—C63—C64—Br64 −175.6 (4)
C24—C25—C26—C21 −1.9 (19) C63—C64—C65—C66 −3.0 (8)
C36—C31—C32—C33 −7 (16) Br64—C64—C65—C66 174.6 (4)
C31—C32—C33—C34 9 (10) C62—C61—C66—C65 3.0 (7)
C32—C33—C34—C35 −6 (9) C6—C61—C66—C65 −174.9 (4)
C32—C33—C34—Cl34 −178 (4) C64—C65—C66—C61 0.5 (7)

6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N51—H51···N7i 0.99 (5) 1.97 (5) 2.941 (5) 166 (4)
C51—H51A···Cg1ii 0.97 2.97 3.699 (5) 133
C62—H62···Cg2ii 0.93 2.91 3.757 (5) 152
C65—H65···Cg3iii 0.93 2.82 3.412 (7) 123
C65—H65···Cg4iii 0.93 2.91 3.60 (3) 131

Symmetry codes: (i) x, y+1, z; (ii) x−1/2, −y+3/2, −z+1; (iii) −x+3/2, −y+1, z−1/2.

Funding Statement

This work was funded by University Grants Commission grant BSR Faculty Fellowship to H. S. Yathirajan.

References

  1. Anil Kumar, G. N. & Kokila, M. K. (2016). Private Communication (refcode HAKCIL). CCDC, Cambridge, England.
  2. Appleton, J. E., Dack, K. N., Green, A. D. & Steele, J. (1993). Tetrahedron Lett. 34, 1529–1532.
  3. Banu, A., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011). Acta Cryst. E67, o779. [DOI] [PMC free article] [PubMed]
  4. Banu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2010a). Mol. Cryst. Liq. Cryst. 533, 141–151.
  5. Banu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2010b). Mol. Cryst. Liq. Cryst. 533, 162–171.
  6. Banu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2014). J. Saudi Chem. Soc. 18, 371–378.
  7. Banu, A., Vasundhara, D. E., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2013). J. Saudi Chem. Soc. 17, 211–217.
  8. Banu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011a). Acta Cryst. E67, o154. [DOI] [PMC free article] [PubMed]
  9. Banu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011b). Acta Cryst. E67, o617–o618. [DOI] [PMC free article] [PubMed]
  10. Bernal, I., Cetrullo, J., Somoza, F., Ricci, J. S., Lewis, R. & Massoud, S. S. (1996). J. Coord. Chem. 38, 41–53.
  11. Bhongade, B. A., Talath, S., Gadad, R. A. & Gadad, A. K. (2016). J. Saudi Chem. Soc. 20, S463–S475.
  12. Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  13. Bruker (2017). SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Da, Y.-X., Zhu, J.-H., Zhang, Z., Jia, X.-D., Yang, C.-X. & Quan, Z.-J. (2012). J. Heterocycl. Chem. 49, 102–105.
  15. Iyer, D., Vartak, S. V., Mishra, A., Goldsmith, G., Kumar, S., Srivastava, M., Hegde, M., Gopalakrishnan, V., Glenn, M., Velusamy, M., Choudhary, B., Kalakonda, N., Karki, S. S., Surolia, A. & Raghavan, S. C. (2016). FEBS J. 283, 3408–3437. [DOI] [PubMed]
  16. Karki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109–2116. [DOI] [PubMed]
  17. Khazi, I. A. M., Gadad, A. K., Lamani, R. S. & Bhongade, B. A. (2011). Tetrahedron, 67, 3289–3316.
  18. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  19. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  20. Shahina Begum, N., Vasundhara, D. E., Kolavi, G. D., Gowda, K. V. A. & Khazi, I. M. (2008). J. Chem. Res. Synopses, pp. 193–194.
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Vartak, S. V., Hegde, M., Iyer, D., Gaikwad, S., Gopalakrishnan, V., Srivastava, M., Karki, S. S., Choudhary, B., Ray, P., Santhoshkumar, T. R. & Raghavan, S. C. (2016). Biochem. Pharmacol. 122, 10–22. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989019016050/is5527sup1.cif

e-76-00018-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016050/is5527Isup2.hkl

e-76-00018-Isup2.hkl (826.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019016050/is5527IIsup3.hkl

e-76-00018-IIsup3.hkl (401.3KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989019016050/is5527IIIsup5.hkl

e-76-00018-IIIsup5.hkl (370KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016050/is5527Isup5.cml

Supporting information file. DOI: 10.1107/S2056989019016050/is5527IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989019016050/is5527IIIsup7.cml

CCDC references: 1968781, 1968780, 1968779

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES