Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):115–120. doi: 10.1107/S2056989019016980

Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobi­cyclo[2.2.1]heptan-3-yl­idene]hydrazinecarbo­thio­amide

Fabrício Carvalho Pires a, Leandro Bresolin a,*, Vanessa Carratu Gervini a, Bárbara Tirloni b, Adriano Bof de Oliveira c
PMCID: PMC6944080  PMID: 31921463

A racemic mixture of (R)- and (S)-camphor thio­semicarbazone, which crystallizes in the centrosymmetric space group C2/c, is reported.

Keywords: chiral thio­semicarbazone, camphor derivative, racemic mixture, crystal structure

Abstract

The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thio­semicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thio­semicarbazone], which maintains the chirality of the methyl­ated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two mol­ecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thio­semicarbazone isomer and the second the (1S)- isomer. In the crystal, the mol­ecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S inter­actions, building a tape-like structure parallel to the (Inline graphic01) plane, generating R 2 1(7) and R 2 2(8) graph-set motifs for the H⋯S inter­actions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) inter­actions.

Chemical context  

The origin of thio­semicarbazone (TSC) chemistry can be traced back to the beginning of the 20th century, when thio­semicarbazide was used for the chemical characterization of the R 1 R 2C=O group and it was pointed out that the R 1 R 2C=N—N(H)C(=S)NH2 compound was the main product of the condensation reaction (Freund & Schander, 1902). In the second half of the 1940′s, new insight into the TSC chemistry emerged, namely the applications in medicinal chemistry as chemotherapeutic agents against tuberculosis (Domagk et al., 1946; Hoggarth et al., 1949). Initially, the biological research concerning TSC derivatives was focused on the mol­ecules as free ligands, but very quickly the scope expanded to coordination compounds. One of the first reports about metal compounds of thio­semicarbazones in medicinal chemistry regards a CuII complex with Mycobacterium tuberculosis growth inhibition activity that was published few years later (Kuhn & Zilliken, 1954). Another milestone in this chemistry, after the reported tuberculostatic property, was the discovery of the anti­neoplastic activity of TSC derivatives in the 1960′s (Sartorelli & Booth, 1967). Concerning the mol­ecular structure of the title compound class, the N–N–C–S entity is a key feature, which has hard (N) and soft (S) donor atoms in chain (Pearson & Songstad, 1967), and so TSCs can act as N,S, O,N,S or N,N,S donors depending on the derivative.

As a result of its mol­ecular geometry, the sulfur-containing group enables the formation of several different coordination modes, including complexes with five-membered metallarings, that are well-known chelate arrangements in coordination chemistry (Lobana et al., 2009). The biochemical and pharmacological applications of the TSCs is a topic that remains up-to-date and two different approaches can be considered. One is how the chemotherapeutic activity deals with the TSC compounds in form of uncoordinated ligands, so they can act as metal ion-sequestering agents for CuII, ZnII and FeII/III and reducing the bioavailability of these essential metals, which impacts the growth of tumor cells (Kowol et al., 2016; Miklos et al., 2015). The biological activity of thio­semicarbazones as metal-free mol­ecules is also possible because of the hydrogen-bonding and π–π inter­molecular inter­actions with selected biomolecules, as reported for one isatin derivative on replication inhibition of the Chikungunya virus in silico and in vitro (Mishra et al., 2016). The second approach deals with the biological activity of coordination compounds, with TSCs acting as ligands. For example, PdII complexes with cinnamaldehyde-thio­semicarbazone turned out to be very active on Human Topoisomerase IIα (TOP2A) inhibition in vitro, a key biological target for cancer research (Rocha et al., 2019), and the AuIII coordination compound with vaniline-thio­semi­carbazone, which has shown anti­malarial and anti­tubercular activity in in vitro assays (Khanye et al., 2011). Thus, the synthesis and structural determination of new thio­semicarbazone derivatives is a topic of current inter­est in the field of medicinal chemistry.graphic file with name e-76-00115-scheme1.jpg

Structural commentary  

A racemic mixture of camphorquinone was used for the synthesis of the title compound and as a result the thio­semicarbazone derivative was obtained in a 1/1 mixture of the two isomers. The asymmetric unit comprises two mol­ecules of the camphor thio­semicarbazone derivative, one of them being the (1R)- and the other the (1S)-isomer. For the first mol­ecule, the 1R and the 4S chiral centers are labelled C2 and C5, and the thio­semicarbazone unit is nearly planar with a N1—N2—C11—N3 torsion angle of −4.7 (2)° (Fig. 1). In the second mol­ecule, the 1S and 4R chiral centers are at C13 and C15, and the thio­semicarbazone fragment shows also a slight distortion from the planarity, the torsion angle for the N4—N5—C22—N6 chain being 2.4 (2)° (Fig. 2). The two mol­ecules of the asymmetric unit are shown separately for clarity and the torsion angles about the chiral C atoms are listed in Table 1.

Figure 1.

Figure 1

The mol­ecular structure of (1R)-camphor thio­semicarbazone in the asymmetric unit, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. The (1S)-isomer was omitted for clarity.

Figure 2.

Figure 2

The mol­ecular structure of the second isomer of the title compound in the asymmetric unit, (1S)-camphor thio­semicarbazone, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. The (1R)-isomer was omitted for clarity.

Table 1. Selected torsion angles (°).

Isomer Chiral center Atom chain Torsion angle
S C5 N1—C6—C5—C4 104.4 (2)
S C5 N1—C6—C5—C7 −149.53 (17)
R C2 O1—C1—C2—C3 −103.9 (2)
R C2 O1—C1—C2—C7 152.42 (18)
R C2 O1—C1—C2—C8 20.6 (3)
R C15 N4—C16—C15—C17 −104.6 (2)
R C15 N4—C16—C15—C14 148.82 (17)
S C13 O2—C12—C13—C18 107.0 (2)
S C13 O2—C12—C13—C14 −148.48 (18)
S C13 O2—C12—C13—C19 −18.6 (3)

Supra­molecular features and Hirshfeld surface analysis  

In the asymmetric unit, the mol­ecules in general positions are connected by the N6—H33⋯O1 inter­action. As suggested by the apolar organic periphery of the camphor fragment, the relevant and the strongest inter­molecular inter­actions are observed mainly in the thio­semicarbazone and the ketone groups. In the crystal, the mol­ecular units are linked by N2—H15⋯S2i, N3—H17⋯O1ii, C5—H5⋯S2i and N5—H32⋯S1iii inter­actions (Figs. 3 and 4, Table 2) into a two-dimensional hydrogen-bonded network parallel to the (Inline graphic01) plane (Fig. 5). In addition, the S2–C22–N5–H32 and S1–C11–N2–H15 atom chains are subunits of the periodic arrangement, with graph-set motif Inline graphic(8). Another ring-like structure is observed for the S2⋯H5–C5–C6–N1–N2–H15 atom sequence, in which the sulfur atom acts as a hydrogen-bond acceptor and bridges two D—H⋯S inter­actions, building an Inline graphic(7) motif. Since the mol­ecules crystallize in the centrosymmetric space group C2/c, chirality does not rise from the mol­ecular to the crystal structure level.

Figure 3.

Figure 3

Section of the crystal structure of the title compound showing the H⋯S and H⋯O inter­molecular inter­actions for the (1S)-camphor thio­semicarbazone mol­ecule. The graph-set motif for the hydrogen-bonding inter­actions (dashed lines) in the crystal packing is Inline graphic(8). The N6—H33⋯O1 inter­action connects the two mol­ecules of the asymmetric unit.

Figure 4.

Figure 4

Section of the crystal structure of the title compound showing the H⋯S and H⋯O inter­molecular inter­actions for the (1R)-camphor thio­semicarbazone mol­ecule. H⋯S inter­actions connect the (1R)- and (1S)- isomers and the graph-set motifs for the hydrogen-bonding inter­actions (dashed lines) in the crystal packing are Inline graphic(8) and Inline graphic (7). The H⋯O inter­action connects two (1R)-isomers.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H33⋯O1 0.86 2.58 2.9912 (18) 111
N2—H15⋯S2i 0.86 2.76 3.5413 (13) 151
N3—H17⋯O1ii 0.86 2.40 3.110 (2) 140
C5—H5⋯S2i 0.98 2.84 3.4559 (16) 122
N5—H32⋯S1iii 0.86 2.81 3.5334 (13) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 5.

Figure 5

Partial crystal packing of the title compound, viewed down the [010] direction. The H⋯S and H⋯O inter­actions are shown as dashed lines and connect the mol­ecules into a tape-like structure along the (Inline graphic01) plane. The asymmetric unit is drawn in space-filling mode and the figure is simplified for clarity.

The Hirshfeld surface analysis (Hirshfeld, 1977) of the crystal structure suggests that the most important inter­molecular inter­actions for crystal cohesion are the following (in %): H⋯H = 50.0, H⋯S/S⋯H = 22.0, H⋯N/N⋯H = 8.9 and H⋯O/O⋯H = 8.4. For clarity, the mol­ecules in the asymmetric unit are represented using a ‘ball-and-stick’ model with transparency, in two opposite views and separate figures. The strongest inter­molecular inter­actions are located over the thio­semicarbazone and the ketone entities, as show by the graphical representation of the Hirshfeld surface for the mol­ecular units in magenta, e.g. the N—H, C—H, O and S atoms (Figs. 6 and 7). The contributions to the crystal packing are also shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Wolff et al., 2012). The d e (y axis) and d i (x axis) values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface contacts (Fig. 8).

Figure 6.

Figure 6

Two views of the Hirshfeld surface graphical representation (d norm) for the (1R)-camphor thio­semicarbazone mol­ecule. The surface is drawn with transparency and simplified for clarity. The surface regions with the strongest inter­molecular inter­actions are shown in magenta and the respective atoms are labelled. The (1R)- and (1S)-isomers are shown in separate figures for clarity [d norm range: −0.216 to 1.411 Å].

Figure 7.

Figure 7

Two views of the Hirshfeld surface graphical representation (d norm) for the (1S)-camphor thio­semicarbazone mol­ecule. The surface is drawn with transparency and simplified for clarity. The surface regions with strongest inter­molecular inter­actions are shown in magenta and the respective atoms are labelled [d norm range: −0.216 to 1.411 Å].

Figure 8.

Figure 8

Hirshfeld surface two-dimensional fingerprint plot for the title compound showing (a) H⋯H, (b) H⋯S/S⋯H, (c) H⋯N/N⋯H and (d) H⋯O/O⋯H contacts in detail (cyan dots). The contributions of the inter­actions to the crystal packing amount to 55.0, 22.0, 8.9 and 8.4%, respectively. The d e and d i values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface.

Database survey  

To the best of pur knowledge and from using database tools such as SciFinder (Chemical Abstracts Service, 2019), there are very few examples of thio­semicarbazone derivatives from camphorquinone. The mol­ecule selected for comparison with the title compound is (R)-camphor 4-phenyl­thio­semi­carbazone (Oliveira et al., 2016). In both of the crystal structures, the camphor entity, with the apolar periphery and steric effect, leads to a high contribution of the H⋯H inter­molecular inter­actions for the crystal packing, being 55.00% for the title compound and 55.90% for (R)-camphor 4-phen­yl­thio­semicarbazone. For the literature structure, the decrease of the contributions from other possible inter­actions is assumed to be due to the geometric impediment of the phenyl ring. The impact of steric effects on the inter­molecular inter­actions sites can be seen in the graphical representation of the Hirshfeld surface in Fig. 9. In addition, the two-dimensional Hirshfeld surface fingerprint plots confirm the relationship between the mol­ecular structure and the contribution of the inter­molecular inter­actions for crystal cohesion (Fig. 10). Thus, it can be assumed that (R)-camphor 4-phenyl-TSC mol­ecules crystallize as discrete units, being connect by very weak inter­actions. The most frequent inter­molecular inter­actions for the crystal cohesion of the phenyl-TSC derivative are (in %) H⋯H = 55.9, H⋯C/C⋯H = 16.8, H⋯S/S⋯H = 11.0, H⋯O/O⋯H = 7.8 and H⋯N/N⋯H = 7.0. The replace­ment of one H atom by the phenyl group in the terminal amine entity strongly impacts on, for example, the contribution of the inter­molecular H⋯S/S⋯H inter­actions, which changed from 22.00% to 11.00%. Finally and remarkably, in the comparison mol­ecule, inter­molecular H⋯C/C⋯H inter­actions make the next highest contibution to the Hirshfeld surface; this inter­action is comparatively less relevant for the title compound (4.5%).

Figure 9.

Figure 9

Graphical representation of the Hirshfeld surface (d norm) for the (R)-camphor 4-phenyl­thio­semicarbazone, the TSC derivative selected for comparison with the title compound. The surface is drawn with transparency and simplified for clarity. The surface regions with strongest inter­molecular inter­actions are shown in magenta and key atoms for the crystal packing are labelled [d norm range: −0.003 to 1.198 Å].

Figure 10.

Figure 10

Hirshfeld surface two-dimensional fingerprint plot for the (R)-camphor 4-phenyl­thio­semicarbazone reference compound showing the (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯S/S⋯H and (d) H⋯N/N⋯H contacts in detail (cyan dots). The contributions of the inter­actions to the crystal packing amount to 55.9, 16.8, 11.0 and 7.8%, respectively. The d e and d i values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface.

Synthesis and crystallization  

The starting materials were commercially available and were used without further purification. The racemic mixture of R- and S-camphor was oxidized with SeO2 to the respective 1,2-diketone (Młochowski & Wójtowicz-Młochowska, 2015). The synthesis of the 1R- and 1S-camphor thio­semicarbazone derivative was adapted from a procedure reported previously (Freund & Schander, 1902; Oliveira et al. 2016). The glacial acetic acid-catalysed reaction of the 1,2-diketone (3 mmol) and thio­semicarbazide (3 mmol) in ethanol (50 ml) was refluxed funder stirring or 6 h. Single crystals suitable for X-ray diffraction were obtained from an ethanol solution by solvent evaporation. The racemic mixture of the reagent remains unchanged during the synthesis and after crystallization.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were located in a difference-Fourier map but were positioned with idealized geometry and were refined with isotropic displacement parameters using a riding model (HFIX command) with U iso(H) = 1.2U eq(C, N) and C—H bond distances of 0.98 Å for tertiary carbon atoms and 0.97 Å for secondary C atoms. The N—H bond distances are 0.86 Å. Finally, U iso(H) = 1.5U eq(C) for the methyl groups, with C—H bond distances of 0.96 Å. A rotating model was used for the latter H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C11H17N3OS
M r 239.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 26.6370 (9), 10.7617 (4), 20.2108 (7)
β (°) 121.932 (1)
V3) 4916.9 (3)
Z 16
Radiation type Cu Kα
μ (mm−1) 2.21
Crystal size (mm) 0.70 × 0.46 × 0.44
 
Data collection
Diffractometer Bruker D8 Quest Photon II area detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.647, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 47973, 4791, 4783
R int 0.026
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.112, 1.07
No. of reflections 4791
No. of parameters 295
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.33

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2056989019016980/rz5268sup1.cif

e-76-00115-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016980/rz5268Isup2.hkl

e-76-00115-Isup2.hkl (381.8KB, hkl)

CCDC reference: 1973095

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both institutions for the long-term support, in particular Professor Johannes Beck and Dr Jörg Daniels.

supplementary crystallographic information

Crystal data

C11H17N3OS F(000) = 2048
Mr = 239.34 Dx = 1.293 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
a = 26.6370 (9) Å Cell parameters from 9117 reflections
b = 10.7617 (4) Å θ = 2.6–71.9°
c = 20.2108 (7) Å µ = 2.21 mm1
β = 121.932 (1)° T = 296 K
V = 4916.9 (3) Å3 Block, yellow
Z = 16 0.70 × 0.46 × 0.44 mm

Data collection

Bruker D8 Quest Photon II area detector diffractometer 4791 independent reflections
Radiation source: microfocus X ray tube, Bruker D8 Quest diffractometer 4783 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 72.3°, θmin = 3.9°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −32→32
Tmin = 0.647, Tmax = 0.754 k = −13→13
47973 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0548P)2 + 5.1392P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4791 reflections Δρmax = 0.58 e Å3
295 parameters Δρmin = −0.33 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.47215 (6) 0.67297 (13) 0.56684 (9) 0.0290 (3)
C2 0.44283 (7) 0.55276 (14) 0.56677 (10) 0.0333 (3)
C3 0.40744 (9) 0.51737 (17) 0.47745 (11) 0.0454 (4)
H1 0.432607 0.523543 0.456262 0.054*
H2 0.392154 0.433334 0.469767 0.054*
C4 0.35698 (8) 0.61129 (18) 0.43863 (10) 0.0446 (4)
H3 0.318823 0.570310 0.414527 0.054*
H4 0.358922 0.659504 0.399497 0.054*
C5 0.36791 (7) 0.69483 (14) 0.50817 (10) 0.0323 (3)
H5 0.334022 0.744562 0.499147 0.039*
C6 0.42275 (6) 0.76678 (13) 0.52963 (8) 0.0268 (3)
C7 0.39200 (7) 0.60096 (15) 0.57601 (10) 0.0354 (4)
C8 0.48372 (9) 0.45231 (17) 0.61983 (14) 0.0520 (5)
H6 0.461153 0.379307 0.614501 0.078*
H7 0.503900 0.480704 0.672855 0.078*
H8 0.512161 0.432889 0.605930 0.078*
C9 0.34649 (9) 0.50093 (19) 0.56284 (14) 0.0525 (5)
H9 0.312158 0.539765 0.557730 0.079*
H10 0.363552 0.445007 0.606443 0.079*
H11 0.335304 0.455496 0.516133 0.079*
C10 0.41428 (10) 0.6656 (2) 0.65375 (12) 0.0535 (5)
H12 0.442420 0.728491 0.661405 0.080*
H13 0.432888 0.605766 0.695165 0.080*
H14 0.381582 0.703184 0.653700 0.080*
C11 0.39284 (6) 1.07609 (13) 0.46828 (8) 0.0278 (3)
N1 0.43231 (5) 0.87874 (11) 0.51846 (7) 0.0278 (3)
N2 0.38434 (5) 0.95560 (11) 0.47974 (7) 0.0289 (3)
H15 0.349298 0.927963 0.462906 0.035*
N3 0.44793 (6) 1.11372 (13) 0.50042 (10) 0.0442 (4)
H16 0.476553 1.062668 0.527236 0.053*
H17 0.455324 1.189360 0.494626 0.053*
O1 0.52341 (5) 0.68916 (11) 0.58743 (9) 0.0468 (3)
S1 0.33432 (2) 1.17000 (4) 0.41603 (3) 0.04027 (14)
C12 0.60455 (7) 0.18053 (14) 0.70270 (9) 0.0326 (3)
C13 0.62027 (7) 0.05885 (14) 0.74694 (9) 0.0336 (3)
C14 0.64045 (8) 0.10625 (15) 0.83037 (10) 0.0360 (4)
C15 0.68608 (7) 0.20029 (14) 0.83429 (9) 0.0304 (3)
H18 0.707310 0.249557 0.882240 0.037*
C16 0.64834 (6) 0.27314 (14) 0.76081 (8) 0.0286 (3)
C17 0.72519 (8) 0.11841 (18) 0.81668 (11) 0.0430 (4)
H19 0.743585 0.167292 0.794814 0.052*
H20 0.755765 0.076849 0.863374 0.052*
C18 0.68091 (8) 0.02417 (17) 0.75681 (11) 0.0427 (4)
H21 0.692203 −0.060168 0.775970 0.051*
H22 0.678872 0.031572 0.707610 0.051*
C19 0.57337 (9) −0.04084 (18) 0.70953 (12) 0.0519 (5)
H23 0.566827 −0.061530 0.659344 0.078*
H24 0.537211 −0.010857 0.703438 0.078*
H25 0.586284 −0.113455 0.742033 0.078*
C20 0.66905 (11) 0.00551 (19) 0.89344 (12) 0.0575 (5)
H26 0.638971 −0.049251 0.889026 0.086*
H27 0.689268 0.043811 0.943989 0.086*
H28 0.696813 −0.041077 0.886781 0.086*
C21 0.59098 (10) 0.1688 (2) 0.83491 (14) 0.0557 (5)
H29 0.572709 0.231527 0.795304 0.084*
H30 0.607109 0.206331 0.885284 0.084*
H31 0.561987 0.107843 0.827013 0.084*
C22 0.69157 (6) 0.58441 (14) 0.78063 (9) 0.0283 (3)
N4 0.64898 (6) 0.38585 (12) 0.74130 (7) 0.0304 (3)
N5 0.69233 (6) 0.46162 (12) 0.79634 (7) 0.0304 (3)
H32 0.719686 0.431717 0.840322 0.036*
N6 0.64711 (6) 0.62416 (14) 0.71318 (8) 0.0415 (3)
H33 0.620314 0.572941 0.681514 0.050*
H34 0.644878 0.701311 0.700831 0.050*
O2 0.56715 (6) 0.19987 (12) 0.63517 (7) 0.0497 (3)
S2 0.74475 (2) 0.67806 (4) 0.84696 (3) 0.04220 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0244 (7) 0.0234 (7) 0.0352 (8) 0.0009 (5) 0.0130 (6) 0.0013 (6)
C2 0.0304 (7) 0.0230 (7) 0.0484 (9) 0.0029 (6) 0.0222 (7) 0.0060 (6)
C3 0.0524 (10) 0.0368 (9) 0.0563 (11) −0.0113 (8) 0.0351 (9) −0.0143 (8)
C4 0.0413 (9) 0.0499 (11) 0.0352 (9) −0.0157 (8) 0.0152 (7) −0.0049 (8)
C5 0.0237 (7) 0.0280 (7) 0.0427 (9) 0.0014 (6) 0.0159 (6) 0.0078 (6)
C6 0.0234 (7) 0.0237 (7) 0.0299 (7) 0.0000 (5) 0.0117 (6) 0.0014 (5)
C7 0.0363 (8) 0.0321 (8) 0.0417 (9) 0.0052 (7) 0.0233 (7) 0.0085 (7)
C8 0.0439 (10) 0.0310 (9) 0.0818 (14) 0.0130 (8) 0.0337 (10) 0.0203 (9)
C9 0.0470 (10) 0.0422 (10) 0.0816 (14) 0.0027 (8) 0.0430 (11) 0.0195 (10)
C10 0.0655 (13) 0.0601 (12) 0.0417 (10) 0.0051 (10) 0.0330 (10) 0.0005 (9)
C11 0.0277 (7) 0.0222 (7) 0.0305 (7) −0.0009 (5) 0.0134 (6) 0.0013 (5)
N1 0.0239 (6) 0.0226 (6) 0.0330 (6) 0.0014 (5) 0.0125 (5) 0.0023 (5)
N2 0.0216 (6) 0.0226 (6) 0.0379 (7) 0.0001 (5) 0.0126 (5) 0.0055 (5)
N3 0.0270 (7) 0.0284 (7) 0.0634 (10) −0.0042 (5) 0.0144 (7) 0.0093 (6)
O1 0.0240 (6) 0.0349 (6) 0.0721 (9) 0.0016 (5) 0.0191 (6) 0.0102 (6)
S1 0.0298 (2) 0.0244 (2) 0.0521 (3) 0.00304 (14) 0.01176 (19) 0.00846 (16)
C12 0.0287 (8) 0.0290 (8) 0.0332 (8) −0.0022 (6) 0.0117 (7) −0.0041 (6)
C13 0.0372 (8) 0.0249 (7) 0.0352 (8) −0.0038 (6) 0.0169 (7) −0.0043 (6)
C14 0.0436 (9) 0.0301 (8) 0.0381 (8) −0.0052 (7) 0.0242 (7) −0.0030 (6)
C15 0.0300 (7) 0.0276 (7) 0.0279 (7) −0.0014 (6) 0.0114 (6) −0.0008 (6)
C16 0.0265 (7) 0.0261 (7) 0.0286 (7) −0.0012 (6) 0.0114 (6) −0.0020 (6)
C17 0.0313 (8) 0.0442 (10) 0.0486 (10) 0.0079 (7) 0.0179 (8) 0.0005 (8)
C18 0.0485 (10) 0.0343 (9) 0.0485 (10) 0.0074 (7) 0.0278 (9) −0.0030 (7)
C19 0.0571 (12) 0.0353 (9) 0.0558 (11) −0.0174 (9) 0.0248 (10) −0.0104 (8)
C20 0.0831 (15) 0.0427 (11) 0.0451 (10) −0.0081 (10) 0.0329 (11) 0.0068 (9)
C21 0.0590 (13) 0.0559 (12) 0.0738 (14) −0.0085 (10) 0.0499 (12) −0.0129 (10)
C22 0.0261 (7) 0.0262 (7) 0.0328 (7) 0.0011 (6) 0.0157 (6) −0.0003 (6)
N4 0.0289 (6) 0.0268 (6) 0.0294 (6) −0.0026 (5) 0.0113 (5) −0.0020 (5)
N5 0.0290 (6) 0.0243 (6) 0.0284 (6) −0.0027 (5) 0.0087 (5) 0.0000 (5)
N6 0.0361 (7) 0.0310 (7) 0.0390 (8) −0.0008 (6) 0.0073 (6) 0.0067 (6)
O2 0.0445 (7) 0.0422 (7) 0.0343 (6) −0.0051 (6) 0.0016 (5) −0.0020 (5)
S2 0.0339 (2) 0.0266 (2) 0.0470 (3) −0.00303 (15) 0.00842 (19) −0.00593 (16)

Geometric parameters (Å, º)

C1—O1 1.2111 (19) C12—O2 1.208 (2)
C1—C6 1.506 (2) C12—C16 1.511 (2)
C1—C2 1.511 (2) C12—C13 1.514 (2)
C2—C8 1.506 (2) C13—C19 1.511 (2)
C2—C7 1.550 (2) C13—C14 1.560 (2)
C2—C3 1.579 (2) C13—C18 1.564 (2)
C3—C4 1.526 (3) C14—C21 1.525 (3)
C3—H1 0.9700 C14—C20 1.534 (3)
C3—H2 0.9700 C14—C15 1.551 (2)
C4—C5 1.561 (2) C15—C16 1.500 (2)
C4—H3 0.9700 C15—C17 1.543 (2)
C4—H4 0.9700 C15—H18 0.9800
C5—C6 1.500 (2) C16—N4 1.278 (2)
C5—C7 1.543 (2) C17—C18 1.541 (3)
C5—H5 0.9800 C17—H19 0.9700
C6—N1 1.2760 (19) C17—H20 0.9700
C7—C10 1.523 (3) C18—H21 0.9700
C7—C9 1.536 (2) C18—H22 0.9700
C8—H6 0.9600 C19—H23 0.9600
C8—H7 0.9600 C19—H24 0.9600
C8—H8 0.9600 C19—H25 0.9600
C9—H9 0.9600 C20—H26 0.9600
C9—H10 0.9600 C20—H27 0.9600
C9—H11 0.9600 C20—H28 0.9600
C10—H12 0.9600 C21—H29 0.9600
C10—H13 0.9600 C21—H30 0.9600
C10—H14 0.9600 C21—H31 0.9600
C11—N3 1.316 (2) C22—N6 1.318 (2)
C11—N2 1.3571 (19) C22—N5 1.3567 (19)
C11—S1 1.6810 (15) C22—S2 1.6764 (15)
N1—N2 1.3680 (17) N4—N5 1.3700 (17)
N2—H15 0.8600 N5—H32 0.8600
N3—H16 0.8600 N6—H33 0.8600
N3—H17 0.8600 N6—H34 0.8600
O1—C1—C6 127.11 (14) O2—C12—C16 126.90 (15)
O1—C1—C2 127.73 (14) O2—C12—C13 128.39 (14)
C6—C1—C2 105.00 (12) C16—C12—C13 104.64 (12)
C8—C2—C1 115.78 (14) C19—C13—C12 114.91 (14)
C8—C2—C7 120.20 (14) C19—C13—C14 119.60 (15)
C1—C2—C7 101.38 (12) C12—C13—C14 100.66 (12)
C8—C2—C3 114.23 (15) C19—C13—C18 114.77 (15)
C1—C2—C3 101.74 (13) C12—C13—C18 103.07 (13)
C7—C2—C3 100.78 (13) C14—C13—C18 101.41 (13)
C4—C3—C2 105.01 (13) C21—C14—C20 109.08 (16)
C4—C3—H1 110.7 C21—C14—C15 112.81 (14)
C2—C3—H1 110.7 C20—C14—C15 112.79 (15)
C4—C3—H2 110.7 C21—C14—C13 113.24 (15)
C2—C3—H2 110.7 C20—C14—C13 113.76 (14)
H1—C3—H2 108.8 C15—C14—C13 94.66 (12)
C3—C4—C5 102.97 (14) C16—C15—C17 104.52 (13)
C3—C4—H3 111.2 C16—C15—C14 101.17 (12)
C5—C4—H3 111.2 C17—C15—C14 102.83 (13)
C3—C4—H4 111.2 C16—C15—H18 115.5
C5—C4—H4 111.2 C17—C15—H18 115.5
H3—C4—H4 109.1 C14—C15—H18 115.5
C6—C5—C7 101.38 (12) N4—C16—C15 133.61 (14)
C6—C5—C4 104.30 (13) N4—C16—C12 121.12 (13)
C7—C5—C4 102.40 (13) C15—C16—C12 105.20 (12)
C6—C5—H5 115.6 C18—C17—C15 103.13 (13)
C7—C5—H5 115.6 C18—C17—H19 111.1
C4—C5—H5 115.6 C15—C17—H19 111.1
N1—C6—C5 133.70 (13) C18—C17—H20 111.1
N1—C6—C1 121.19 (13) C15—C17—H20 111.1
C5—C6—C1 104.97 (12) H19—C17—H20 109.1
C10—C7—C9 109.87 (16) C17—C18—C13 104.66 (13)
C10—C7—C5 111.71 (15) C17—C18—H21 110.8
C9—C7—C5 112.69 (14) C13—C18—H21 110.8
C10—C7—C2 112.86 (15) C17—C18—H22 110.8
C9—C7—C2 113.84 (14) C13—C18—H22 110.8
C5—C7—C2 95.24 (12) H21—C18—H22 108.9
C2—C8—H6 109.5 C13—C19—H23 109.5
C2—C8—H7 109.5 C13—C19—H24 109.5
H6—C8—H7 109.5 H23—C19—H24 109.5
C2—C8—H8 109.5 C13—C19—H25 109.5
H6—C8—H8 109.5 H23—C19—H25 109.5
H7—C8—H8 109.5 H24—C19—H25 109.5
C7—C9—H9 109.5 C14—C20—H26 109.5
C7—C9—H10 109.5 C14—C20—H27 109.5
H9—C9—H10 109.5 H26—C20—H27 109.5
C7—C9—H11 109.5 C14—C20—H28 109.5
H9—C9—H11 109.5 H26—C20—H28 109.5
H10—C9—H11 109.5 H27—C20—H28 109.5
C7—C10—H12 109.5 C14—C21—H29 109.5
C7—C10—H13 109.5 C14—C21—H30 109.5
H12—C10—H13 109.5 H29—C21—H30 109.5
C7—C10—H14 109.5 C14—C21—H31 109.5
H12—C10—H14 109.5 H29—C21—H31 109.5
H13—C10—H14 109.5 H30—C21—H31 109.5
N3—C11—N2 116.94 (13) N6—C22—N5 116.89 (14)
N3—C11—S1 123.15 (12) N6—C22—S2 123.31 (12)
N2—C11—S1 119.91 (11) N5—C22—S2 119.78 (11)
C6—N1—N2 117.31 (12) C16—N4—N5 117.22 (12)
C11—N2—N1 119.05 (12) C22—N5—N4 119.21 (12)
C11—N2—H15 120.5 C22—N5—H32 120.4
N1—N2—H15 120.5 N4—N5—H32 120.4
C11—N3—H16 120.0 C22—N6—H33 120.0
C11—N3—H17 120.0 C22—N6—H34 120.0
H16—N3—H17 120.0 H33—N6—H34 120.0
O1—C1—C2—C8 20.6 (3) O2—C12—C13—C19 −18.6 (3)
C6—C1—C2—C8 −163.87 (15) C16—C12—C13—C19 164.22 (15)
O1—C1—C2—C7 152.42 (18) O2—C12—C13—C14 −148.48 (18)
C6—C1—C2—C7 −32.03 (15) C16—C12—C13—C14 34.31 (15)
O1—C1—C2—C3 −103.9 (2) O2—C12—C13—C18 107.0 (2)
C6—C1—C2—C3 71.67 (14) C16—C12—C13—C18 −70.19 (15)
C8—C2—C3—C4 163.31 (14) C19—C13—C14—C21 −62.9 (2)
C1—C2—C3—C4 −71.19 (15) C12—C13—C14—C21 63.92 (17)
C7—C2—C3—C4 32.98 (16) C18—C13—C14—C21 169.75 (15)
C2—C3—C4—C5 1.05 (17) C19—C13—C14—C20 62.4 (2)
C3—C4—C5—C6 70.16 (15) C12—C13—C14—C20 −170.78 (15)
C3—C4—C5—C7 −35.17 (16) C18—C13—C14—C20 −64.95 (18)
C7—C5—C6—N1 −149.53 (17) C19—C13—C14—C15 179.78 (15)
C4—C5—C6—N1 104.4 (2) C12—C13—C14—C15 −53.36 (14)
C7—C5—C6—C1 34.96 (15) C18—C13—C14—C15 52.47 (14)
C4—C5—C6—C1 −71.15 (15) C21—C14—C15—C16 −64.17 (17)
O1—C1—C6—N1 −2.3 (3) C20—C14—C15—C16 171.67 (14)
C2—C1—C6—N1 −177.88 (14) C13—C14—C15—C16 53.46 (14)
O1—C1—C6—C5 173.92 (17) C21—C14—C15—C17 −172.06 (15)
C2—C1—C6—C5 −1.68 (16) C20—C14—C15—C17 63.79 (18)
C6—C5—C7—C10 64.28 (17) C13—C14—C15—C17 −54.42 (14)
C4—C5—C7—C10 171.87 (15) C17—C15—C16—N4 −104.6 (2)
C6—C5—C7—C9 −171.46 (14) C14—C15—C16—N4 148.82 (17)
C4—C5—C7—C9 −63.87 (17) C17—C15—C16—C12 72.31 (15)
C6—C5—C7—C2 −52.88 (14) C14—C15—C16—C12 −34.24 (15)
C4—C5—C7—C2 54.71 (14) O2—C12—C16—N4 −0.1 (3)
C8—C2—C7—C10 64.5 (2) C13—C12—C16—N4 177.19 (14)
C1—C2—C7—C10 −64.58 (17) O2—C12—C16—C15 −177.49 (17)
C3—C2—C7—C10 −169.03 (14) C13—C12—C16—C15 −0.22 (16)
C8—C2—C7—C9 −61.6 (2) C16—C15—C17—C18 −69.89 (16)
C1—C2—C7—C9 169.29 (15) C14—C15—C17—C18 35.43 (17)
C3—C2—C7—C9 64.84 (17) C15—C17—C18—C13 −1.30 (18)
C8—C2—C7—C5 −179.27 (16) C19—C13—C18—C17 −163.20 (16)
C1—C2—C7—C5 51.64 (14) C12—C13—C18—C17 71.12 (16)
C3—C2—C7—C5 −52.81 (14) C14—C13—C18—C17 −32.81 (17)
C5—C6—N1—N2 0.9 (3) C15—C16—N4—N5 0.2 (3)
C1—C6—N1—N2 175.84 (13) C12—C16—N4—N5 −176.32 (13)
N3—C11—N2—N1 −4.7 (2) N6—C22—N5—N4 2.4 (2)
S1—C11—N2—N1 176.18 (10) S2—C22—N5—N4 −179.29 (11)
C6—N1—N2—C11 178.54 (14) C16—N4—N5—C22 −174.20 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H33···O1 0.86 2.58 2.9912 (18) 111
N2—H15···S2i 0.86 2.76 3.5413 (13) 151
N3—H17···O1ii 0.86 2.40 3.110 (2) 140
C5—H5···S2i 0.98 2.84 3.4559 (16) 122
N5—H32···S1iii 0.86 2.81 3.5334 (13) 142

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z+1; (iii) x+1/2, −y+3/2, z+1/2.

Funding Statement

This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil grant .

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chemical Abstracts Service (2019). RN, 58–08–2 Columbus, Ohio, USA (accessed via SciFinder on December 09, 2019).
  5. Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.
  6. Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.
  7. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  8. Hoggarth, H. & Martin, A. R. (1949). Brit. J. Pharmacol. 4, 248–253. [DOI] [PMC free article] [PubMed]
  9. Khanye, S. D., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J., Smith, G. S. & Chibale, K. (2011). J. Organomet. Chem. 696, 3392–3396.
  10. Kowol, C. R., Miklos, W., Pfaff, S., Hager, S., Kallus, S., Pelivan, K., Kubanik, M., Enyedy, É. A., ÉA, , Berger, W., Heffeter, P. & Keppler, B. K. (2016). J. Med. Chem. 59, 6739–6752. [DOI] [PMC free article] [PubMed]
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Kuhn, R. & Zilliken, F. (1954). US Patent No. 2,695,911.
  13. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  14. Miklos, W., Pelivan, K., Kowol, C. R., Pirker, C., Dornetshuber-Fleiss, R., Spitzwieser, M., Englinger, B., van Schoonhoven, S., Cichna-Markl, M., Koellensperger, G., Keppler, B. K., Berger, W. & Heffeter, P. (2015). Cancer Lett. 361, 112–120. [DOI] [PubMed]
  15. Mishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Nayak, T. K., Chattopadhyay, S., Subudhi, B. B. & Chattopadhyay, S. (2016). Sci. Rep. 6, 20122. [DOI] [PMC free article] [PubMed]
  16. Młochowski, J. & Wójtowicz-Młochowska, H. (2015). Molecules, 20, 10205–10243. [DOI] [PMC free article] [PubMed]
  17. Oliveira, G. P., Bresolin, L., Nogueira, V. S., Zambiazi, P. J. & Oliveira, A. B. (2016). IUCrDATA 1, x161730.
  18. Pearson, R. G. & Songstad, J. (1967). J. Am. Chem. Soc. 89, 1827–1836.
  19. Rocha, F. V., Farias, R. L., Lima, M. A., Batista, V. S., Nascimento-Júnior, N. M., Garrido, S. S., Leopoldino, A. M., Goto, R. N., Oliveira, A. B., Beck, J., Landvogt, C., Mauro, A. E. & Netto, A. V. G. (2019). J. Inorg. Biochem. 199, 110725. [DOI] [PubMed]
  20. Sartorelli, A. C. & Booth, B. A. (1967). Cancer Res. 27, 1614–1619. [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia, Perth, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2056989019016980/rz5268sup1.cif

e-76-00115-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016980/rz5268Isup2.hkl

e-76-00115-Isup2.hkl (381.8KB, hkl)

CCDC reference: 1973095

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES