Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):53–61. doi: 10.1107/S2056989019016529

Crystal structure, Hirshfeld surface analysis and computational study of bis­(2-{[(2,6-di­chloro­benzyl­idene)hydrazinyl­idene]meth­yl}phenolato)cobalt(II) and of the copper(II) analogue

Rohit B Manawar a, Mayank J Mamtora a, Manish K Shah a,, Mukesh M Jotani b, Edward R T Tiekink c,*
PMCID: PMC6944081  PMID: 31921452

Distinct coordination geometries are found in the crystals of the title CoII (trigonal bipyramidal) and CuII (square-planar) complexes, each defined by a N2S2 donor set derived from two chelating Schiff base anions.

Keywords: crystal structure, Schiff base complex, cobalt, copper, Hirshfeld surface analysis, computational chemistry

Abstract

The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry Inline graphic). In the crystal of (I), discernible supra­molecular layers in the ac plane are sustained by chloro­benzene-C—H⋯O(coordinated), chloro­benzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chloro­benzene)–π(chloro­benzene) inter­actions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by di­chloro­benzene-C—H⋯π(fused-benzene ring) and π–π inter­actions between fused-benzene rings and between chloro­benzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supra­molecular layers are also found in the crystal of (II), being stabilized by π–π inter­actions formed between fused-benzene rings and between chloro­benzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10Inline graphic] without directional inter­actions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The inter­action energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing inter­action in the crystal of (II).

Chemical context  

Schiff base mol­ecules are well-known ligands because of the ease of their formation and for their rich coordination chemistry with a wide range of metal ions. A prominent application of metal–Schiff base complexes is as catalysts in different chemical reactions (Patti et al., 2009). The Schiff base mol­ecules themselves are of considerable inter­est as they display a broad range of biological activities such as anti-bacterial, anti-fungal, anti-viral, anti-malarial, anti-inflammatory, etc. (Guo et al., 2007; Przybylski et al., 2009; Annapoorani & Krishnan, 2013). A full range of metal complexes formed with these usually multidentate ligands often result in species with enhanced biological action (Bagihalli et al., 2008; Tian et al., 2009, 2011; Chohan et al., 2001). As part of our ongoing studies of Schiff base ligands and their metal complexes (Manawar, Gondaliya, Mamtora et al., 2019), the crystal and mol­ecular structures, Hirshfeld surface analysis and computational study of homoleptic CoII (I) and CuII (II) complexes derived from 2-{(1E)-[(E)-2-(2,6-di­chloro­benzyl­idene)hydra­zin-1-yl­idene]meth­yl}phenol (Manawar, Gondaliya, Shah et al., 2019) are described herein.graphic file with name e-76-00053-scheme1.jpg

Structural commentary  

The cobalt complex (I), Fig. 1, lacks crystallographic symmetry and the metal ion is N,O-coordinated by two mono-anionic Schiff base ligands; selected geometric parameters are collated in Table 1. The N2O2 donor set defines an approximate tetra­hedron with the range of tetra­hedral angles being over 30°. Thus, the narrowest angle of 94.06 (7)° is found for O1—Co—N1 while the widest of 125.33 (8)° is noted for O1—Co—O2. A geometric measure of a four-coordinate geometry is the value of τ4, which has values of τ4 = 1.0 for an ideal tetra­hedron and τ4 = 0.0 for an ideal square-planar geometry (Yang et al., 2007). In (I), τ4 = 0.82, indicating a geometry close to trigonal pyramidal. Each of the Schiff base ligands forms a six-membered Co,O,C3,N chelate ring. These adopt an envelope conformation with the Co atom lying 0.253 (3) Å out of the least-squares plane defined by the five remaining atoms of the O1-chelate ring (r.m.s. deviation = 0.0086 Å); the equivalent values for the O2-chelate ring are 0.376 (3) and 0.0222 Å, respectively. The dihedral angle formed between the planar regions of the chelate rings is 86.44 (8)°, consistent with a near to orthogonal relationship. For the O1-chelate ring, the dihedral angle between the five co-planar atoms and the fused-benzene and pendent di­chloro­benzene rings are 0.92 (13) and 7.34 (14)°, respectively, and the dihedral angle between the benzene rings is 6.47 (15)°, indicating a small deviation from planarity. The equivalent dihedral angles for the O2-chelate ring are 1.99 (14), 7.25 (12) and 5.58 (12)°, respectively. These data are consistent with small twists about the N1—N2 [the C7—N1—N2—C8 torsion angle = 166.6 (2)°] and C16—C21 [C15—C16—C21—N3 = 6.4 (4)°] bonds. Finally, each Schiff base ligand features two imine bonds, with the bond length involving the coordinated N1 atom [1.304 (3) Å] being longer than the second N2-imine bond [1.251 (3) Å]; for the O2-ligand, C21—N3 = 1.303 (3) Å and C22—N4 = 1.247 (3) Å. The configurations about imine bonds are different with those involving the coordinated N1 and N3 atoms being Z, while the configurations about the other imine bonds are E.

Figure 1.

Figure 1

The mol­ecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Table 1. Selected geometric parameters (Å, °) for (I) and (II)a .

Parameter (I): M = CoII (II): M = CuII
M—O1 1.8940 (17) 1.8776 (14)
M—O2 1.8937 (17) 1.8776 (14)a
M—N1 1.9988 (19) 2.0211 (16)
M—N3 1.999 (2) 2.0211 (16)a
N1—N2 1.411 (3) 1.416 (2)
N3—N4 1.410 (3) 1.416 (2)a
C7—N1 1.304 (3) 1.294 (2)
C8—N2 1.251 (3) 1.258 (3)
C21—N3 1.303 (3) 1.294 (2)a
C22—N4 1.247 (3) 1.258 (3)a
     
O1—Co—O2 125.33 (8) 180a
O1—Co—N1 94.06 (7) 90.28 (6)
O1—Co—N3 112.12 (8) 89.72 (6)
O2—Co—N1 113.82 (8) 89.72 (6)a
O2—Co—N3 94.60 (8) 90.28 (6)a
N1—Co—N3 119.03 (8) 180a

Notes: (a) The CuII atom in (II) lies on a centre of inversion so O2 is equivalent to O1, N3 to N1, etc. and are related by the symmetry operation 1 − x, 1 − y, 1 − z.

Recently, the crystal structure of the precursor Schiff base ligand became available (Manawar, Gondaliya, Shah et al., 2019). Here, each imine bond has an E-configuration and the bond lengths of the imine bonds, i.e. 1.281 (2) and 1.258 (3) Å, are inter­mediate to those noted in (I). A very similar conformation of the Schiff base ligand is found with a small twist about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. The dihedral angles between the outer rings is 4.83 (13)°.

A distinct coordination geometry is found in the CuII complex, (II), Fig. 2 and Table 1. The CuII atom lies on a crystallographic centre of inversion. As for (I), N,O-chelation is observed. From symmetry, the N2O2 donor set is strictly planar. The CuII atom lies 0.2582 (13) Å above the resultant square-plane. The chelate rings adopt an envelope conformation, as for (I), with the Cu atom lying 0.470 (2) Å above the plane through the remaining atoms of the chelate ring (r.m.s. deviation = 0.0129 Å). The magnitude of the dihedral angle between the five co-planar atoms of the chelate ring and the fused-benzene ring [1.43 (13)°] resembles the situation in (I), but that formed with pendent di­chloro­benzene ring is quite distinct, at 82.63 (8)°, consistent with an orthogonal relationship. This is reflected in the C7—N1—N2—C8 torsion angle of 141.33 (19)°. The different configuration arises to avoid steric hindrance within the square-planar environment. The Cu—O,N bond lengths span a wider range, i.e. 0.14 Å, c.f. 0.11 Å for the Co—O,N bond lengths in (II), with the Cu—O bond lengths being shorter than the Co—O bonds, and the Cu—N bonds being longer than the Co—N bonds. Comparable trends are seen in the configurations of the imine bonds, Table 1.

Figure 2.

Figure 2

The mol­ecular structure of (II) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Unlabelled atoms are related by the symmetry operation 1 − x, 1 − y, 1 − z.

Supra­molecular features  

The geometric parameters characterizing a number of the identified inter­molecular contacts in the crystal of (I) are listed in Table 2. Globally, the mol­ecular packing can be described as comprising inter-digitated layers stacked along the the b-axis direction. Thus, layers in the ac plane are consolidated by chloro­benzene-C—H⋯O(coordinated), chloro­benzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chloro­benzene)–π(chloro­benzene) inter­actions [Cg(C15–C20)⋯Cg(C23–C28) separation = 3.6460 (17) Å with angle of inclination = 5.57 (13)° for symmetry operation −1 + x, y, z and Cg(C23–C28)⋯Cg(C23–C28) = 3.6580 (16) Å with angle of inclination = 0° for symmetry operation 2 − x, 1 − y, 1 − z]; the specified π–π inter­actions involve rings derived from the O2-ligand only. A view of the supra­molecular layer is shown in Fig. 3(a). As highlighted in Fig. 3(b), the layers inter-digitate along the b-axis. The connections between layers are chloro­benzene-C—H⋯π(fused-benzene ring) as well as π–π inter­actions (involving rings of the O1-ligand only) between centrosymmetrically related fused-benzene rings [π(C1–C6)⋯π(C1–C6) = 3.6916 (16) Å for symmetry operation 1 − x, − y, 1 − z and π(chloro­benzene)–π(chloro­benzene) rings = 3.7968 (19) Å for symmetry operation 1 − x, − y, 2 − z].

Table 2. Hydrogen-bond geometry (Å, °) for (I) .

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1i 0.93 2.35 3.114 (3) 140
C25—H25⋯Cg3ii 0.93 2.86 3.647 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Mol­ecular packing in the crystal of (I): (a) supra­molecular layer sustained by C—H⋯O, C—H⋯π and π–π inter­actions shown as orange, blue and purple dashed lines, respectively, and (b) a view of the unit-cell contents in a projection down the c axis.

The key feature of the mol­ecular packing in the crystal of (II) is the formation of π–π inter­actions between centrosymmetrically related mol­ecules. To a first approximation, the mol­ecular packing resembles that of (I) in that layers assemble into a three-dimensional architecture. As seen in Fig. 4(a), the layers are flat and are sustained by π(fused-benzene)–π(fused-benzene) [inter-centroid Cg(C1–C6)⋯Cg(C1—C6) separation = 3.8889 (15) Å for symmetry operation 1 − x, − y, 1 − z] and π(di­chloro­benzene)—π(di­chloro­benzene) [inter-centroid separation = Cg(C9–C14)⋯Cg(C9—C14) = 3.8889 (15) Å for symmetry operation − x, 1 − y, − z] inter­actions. The layers lie parallel to (10Inline graphic) and stack without directional inter­actions between them. A view of the stacking of layers/unit-cell contents is shown in Fig. 4(b).

Figure 4.

Figure 4

Mol­ecular packing in the crystal of (II): (a) supra­molecular layer sustained by π–π inter­actions shown as purple dashed lines and (b) a view of the unit-cell contents in a projection down the b axis.

Hirshfeld surface analysis  

The Hirshfeld surfaces were calculated for each of (I) and (II) employing Crystal Explorer 17 (Turner et al., 2017) and literature protocols (Tan et al., 2019). This study was undertaken in order to determine the influence of weak, non-covalent inter­actions upon the mol­ecular packing in the absence of conventional hydrogen bonding.

On the Hirshfeld surface mapped over d norm for (I) in Fig. 5(a) and (b), the bright-red spots near the H27 atom of the (C23–C28) ring and the coordinating O1 atom are an indication of the C—H⋯O inter­action. Referring to Table 3, the presence of short inter­atomic contacts involving the CoII, chloride and chloro­benzene-hydrogen atoms and the atoms of the C1–C6 benzene ring are characterized as faint-red spots near the respective atoms on the d norm-mapped Hirshfeld surface. The blue bump near the H25 atom and the bright-orange spot about the C1–C6 ring on the Hirshfeld surface mapped with shape-index property in Fig. 5(c) correspond to the donor and acceptor of the C—H⋯π contact. The absence of strong, directional inter­actions in the crystal structure of (II) is evident from its Hirshfeld surface mapped over d norm in Fig. 6, as the surface contains only some tiny, diffuse red spots near the atoms corresponding to short inter­atomic Cl⋯H and C⋯C contacts listed in Table 4.

Figure 5.

Figure 5

View of the Hirshfeld surface for (I) mapped (a) and (b) over d norm in the range −0.123 to + 1.343 arbitrary units and (c) with the shape-index property highlighting inter­molecular C—H⋯π/π⋯H—C contacts.

Table 3. Summary of short inter­atomic contacts (Å) in (I) and (II)a .

Contact Distance Symmetry operation
(I)    
Cl1⋯Cl3 3.4993 (13) x, −1 + y, z
Cl3⋯H7 2.70 x, 1 + y, z
Cl4⋯H3 2.74 2 − x, − y, 1 − z
C1⋯H26 2.71 2 − x, 1 − y, 1 − z
C6⋯H26 2.76 2 − x, 1 − y, 1 − z
Co⋯C27 3.558 (3) −1 + x, y, z
Co⋯H27 3.08 −1 + x, y, z
H5⋯H12 2.23 x, y, −1 + z
H5⋯H13 2.30 x, y, −1 + z
(II)    
Cl1⋯H7 2.81 1 − x, 1 − y, −z
C5⋯C7 3.378 (3) 1 − x, −y, 1 − z
Cu⋯Cl2 3.2858 (7) 1 + x, y, z

Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values.

Figure 6.

Figure 6

A view of the Hirshfeld surface for (II) mapped over d norm in the range −0.016 to 1.528 arbitrary units.

Table 4. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I) and (II).

Contact Percentage contribution
  (I) (II)
H⋯H 26.2 30.5
O⋯H/H⋯O 7.9 4.2
C⋯H/H⋯C 16.7 14.5
Cl⋯H/H⋯Cl 25.8 24.9
C⋯C 12.0 9.8
N⋯H/H⋯ N 5.5 6.2
Cl⋯Cl 2.2 0.4
C⋯O/O⋯C 0.5 0.3
C⋯N/N⋯C 0.5 1.3
Cl⋯O/O⋯Cl 0.2 0.4
C⋯Cl/Cl⋯C 1.9 3.9
Cl⋯N/N⋯Cl 0.2 1.6
M⋯H/H⋯M 0.4 0.1
M⋯Cl/Cl⋯M 0.0 1.9

On the Hirshfeld surfaces mapped over the electrostatic potential for (I) in Fig. 7(a), the donors and acceptors of the C—H⋯O and C—H⋯π contacts (Table 3) are viewed as blue and red regions near the respective atoms corresponding to positive and negative electrostatic potentials. The presence of a blue region near the CuII atom and red region near the Cl2 atom in the corresponding surface for (II) in Fig. 7(b) is an indication of a short inter­molecular Cu⋯Cl2 inter­action [3.2858 (7) Å], as discussed further below, see Computational chemistry. The influence of π–π stacking inter­actions in each of the crystals of (I) and (II) is evident as the flat regions about the participating aromatic rings on the Hirshfeld surfaces mapped over curvedness illustrated in Fig. 8(a)–(d).

Figure 7.

Figure 7

Views of the Hirshfeld surfaces mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) for (a) (I) in the range −0.084 to +0.061 atomic units and (b) (II) in the range −0.095 to +0.163 atomic units.

Figure 8.

Figure 8

Views of Hirshfeld surfaces mapped over curvedness for (a) and (b) (I), and (c) and (d) for (II). The flat regions about aromatic constituents labelled with Cg(1)–Cg(4) for (I), and Cg(1) and Cg(2) for (II) indicate the involvement of these rings in π–π stacking inter­actions

Given the different coordination geometries in (I) and (II), it was thought of inter­est to calculate the Hirshfeld surfaces about the individual metal centres (Pinto et al., 2019). The different coordination geometries, approximately trigonal pyramidal for CoII, Fig. 9(a) and (b), and square-planar for CuII in Fig. 9(c) and (d), are clearly evident from the illus­trated surfaces although the M—O and M—N bond lengths are similar, at least to a first approximation, in (I) and (II), Table 1.

Figure 9.

Figure 9

Views of the Hirshfeld surfaces calculated for the CoII (I) and CuII (II) centres alone, highlighting the coordination geometries formed by the N2O2 donor sets mapped over (a) the distance d e external to the surface in the range 0.922 to 2.221 Å for (I), (b) the shape-index (S) from −1.0 to +1.0 (arbitrary units) for (I), (c) the distance d e external to the surface in the range 0.919 to 2.114 Å for (II) and (d) the shape-index (S) from −1.0 to +1.0 (arbitrary units) for (II).

The different coordination geometries about the metal centres are also reflected in the two-dimensional fingerprint plots shown in Fig. 10, only taking into account the Hirshfeld surface about the metal atom. The distribution of aligned red points from d e + d i ∼1.8 Å (lower portion) and d e + d i ∼2.0 Å (upper portion) for the Co—O and Co—N bonds, respectively, in (I) show different inclinations, Fig. 10(a), whereas the superimposed red points in the case of (II), Fig. 10(b), arise as a result of the symmetrical coordination geometry. For (I), the presence of short intra­molecular Co⋯H contacts formed with the chloro­benzene-H8 and H22 atoms (Co⋯H8 = 2.64 Å and Co⋯H22 = 2.55 Å) result in dissymmetry in the Hirshfeld surface and are characterized as bright-orange spots on the shape-index-mapped surface in Fig. 9(a). The square-planar coordination geometry formed by the N2O2 donor set in (II) results in an approximate cuboid Hirshfeld surface with rounded corners and edges.

Figure 10.

Figure 10

The two-dimensional fingerprint plots taking into account only the Hirshfeld surface about the metal centre in (a) (I) and (b) (II).

The overall two-dimensional fingerprint plots for (I) and (II) are shown in Fig. 11(a), and those delineated into H⋯H, O⋯H/H⋯O, Cl⋯H/H⋯Cl, C⋯H/H⋯C and C⋯C contacts are illustrated in Fig. 11(b)–11(f), respectively. The percentage contributions from different inter­atomic contacts to the Hirshfeld surfaces of (I) and (II) are summarized in Table 4. The presence of chloride in both crystals, and their participation in inter­molecular contacts, has decreased the percentage contributions from H⋯H contacts to the respective Hirshfeld surfaces, Table 4.

Figure 11.

Figure 11

(a) A comparison of the full two-dimensional fingerprint plot for each of (I) and (II) and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) Cl⋯H/H⋯Cl, (e) C⋯H/H⋯C and (f) C⋯C contacts.

In the fingerprint plot delineated into H⋯H contacts of Fig. 11(b), the short inter­atomic contacts result in a peak at d e + d i ∼2.3 Å in the crystal of (I) while H⋯H in (II) are at van der Waals separations or longer. The presence of the C—H⋯O contact in (I) is recognized as the pair of spikes at d e + d i ∼2.2 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts of Fig. 11(c) whereas the comparatively small contribution from these contacts in (II), Table 4, show the points farther than sum of their van der Waals radii. The pair of forceps-like tips at d e + d i ∼2.8 Å in the fingerprint plots delineated into Cl⋯H/H⋯Cl contacts in Fig. 11(d) for each of (I) and (II) reflect the presence of Cl⋯H contacts in their crystals; for (II), these are beyond the sum of the van der Waals radii. From the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 11(e), the pair of short tips at d e + d i ∼2.7 Å indicate the presence of C⋯H and C—H⋯π contacts in (I), by contrast to only van der Waals contacts in (II). In the fingerprint plot delineated into C⋯C contacts for (I) and (II), Fig. 11(f), the influence of π–π stacking inter­actions are characterized as the distribution of green points in the plot around d e = d i = 1.8 Å.

Referring to Fig. 12(a), the distribution of points in the form of a thin line from d e + d i ∼3.7 Å in the fingerprint plot delineated into Cl⋯Cl contacts for (I) is an indication of influence of these contacts on the packing of (I); this is confirmed in the next section, Computational study. The fingerprint plot delineated into Cu⋯Cl/Cl⋯Cu contacts of Fig. 12(b), with the small, i.e. 1.9%, but important contribution to the Hirshfeld surface of (II) is the result of a Cu⋯Cl inter­action prominent in its mol­ecular packing, as justified from the inter­action energy calculations described in the next section.

Figure 12.

Figure 12

The fingerprint plot delineated into (a) Cl⋯Cl contacts for (I) and (b) Cu⋯Cl/Cl⋯Cu contacts for (II).

Computational chemistry  

The pairwise inter­action energies between the mol­ecules in the crystals of each of (I) and (II) were calculated by summing up four energy components, comprising electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) as per the literature (Turner et al., 2017). In the present study, the energies were obtained by using the wave function calculated at the HF/3-21G level of theory. The nature and the strength of the energies for the key identified inter­molecular inter­actions are qu­anti­tatively summarized in Tables 5 and 6 for (I) and (II), respectively.

Table 5. Summary of inter­action energies (kJ mol−1) calculated for (I).

Contact R (Å) E ele E pol E dis E rep E tot
H27⋯Coi + 8.81 −21.7 −6.7 −71.3 41.6 −57.0
C27⋯Coi +            
C27—H27⋯O1i +            
Cg(C15–C20)⋯Cg(C23–C28)i            
Cg(C9–C14) ⋯Cg(C9–C14)ii 9.60 −29.6 −7.6 −71.9 32.5 −73.5
Cg(C1–C6) ⋯Cg(C1–C6)iii 10.19 −23.4 −5.5 −58.3 29.4 −56.0
Cl4⋯H3iv + 10.54 −12.7 −1.2 −26.4 19.8 −21.4
Cl1⋯Cl3iv            
Cl3⋯H7v 10.48 −3.9 −1.3 −14.8 13.4 −7.3
C1⋯H26vi + 9.86 −37.0 −8.0 −84.1 48.4 −79.5
C6⋯H26vi +            
C25–H25⋯Cg(C1–C6)vi +            
Cg(C23–C28)⋯Cg(C23–C28)vi            

Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, − y, 2 − z; (iii) 1 − x, − y, 1 − z; (iv) 2 − x, − y, 1 − z; (v) x, 1 + y, z; (vi) 2 − x, 1 − y, 1 − z.

Table 6. Summary of inter­action energies (kJ mol−1) calculated for (II).

Contact R (Å) E ele E pol E dis E rep E tot
Cg(C9–C14)⋯Cg(C9–C14)i 12.94 −0.7 −3.0 −44.5 14.8 −30.8
Cu⋯Cl2ii 8.13 −33.0 −5.6 −64.1 44.4 −59.0
Cl1⋯H7iii 9.74 −3.7 −2.5 −25.7 15.4 −16.0
C5⋯C7iv + 8.51 −14.4 −4.7 −68.5 36.8 −49.6
Cg(C1–C6)⋯Cg(C1–C6)iv            

Symmetry codes: (i) − x, 1 − y, − z; (ii) 1 + x, y, z; (iii) 1 − x, 1 − y, −z; (iv) 1 − x, − y, 1 − z.

For (I), among the inter­molecular energies listed in Table 5, the atoms of (C23–C28) ring involved in the short inter­atomic C⋯H/H⋯C contacts, inter­molecular C—H⋯π and π–π stacking inter­actions between the same pair of symmetry-related mol­ecules have maximum inter­action energies. The dispersive component makes a major contribution to all of the inter­molecular inter­actions in the crystal of (I). The low inter­action energies for Cl⋯H and Cl⋯Cl contacts are consistent with the small contributions from these contacts in the crystal. The presence of a Cu⋯Cl2 contact in the crystal of (II) is an important feature of the packing. This inter­action shows maximum inter­action energy (Table 6) with significant contributions from the electrostatic component compared to π–π stacking and other inter­molecular inter­actions influential in the mol­ecular packing.

The magnitudes of inter­molecular energies are represented graphically in the energy framework diagrams of Fig. 13(a)–(f). Here, the supra­molecular architecture of each crystal is visualized through cylinders joining the centroids of mol­ecular pairs using a red, green and blue colour scheme, representing the E ele, E disp and E tot components, respectively; the stronger the inter­action, the thicker the cylinder.

Figure 13.

Figure 13

The energy frameworks calculated for (I) showing the (a) electrostatic potential force, (b) dispersion force and (c) total energy; the equivalent diagrams for (II) are shown in (d)–(f). The energy frameworks were adjusted to the same to same scale factor of 30 with a cut-off value of 3 kJ mol−1 within 2 × 2 × 2 unit cells.

Database survey  

Schiff bases related to those reported in (I) and (II), i.e. having two imine functionalities and a single phenol/phenoxide atom/ion on one ring only are quite rare. Thus, the only structure of an analogue available for comparison is a N,O-chelated di­methyl­aluminium compound with the ring bearing the phenoxide-oxygen also carrying t-butyl groups at the 3,5 positions and the second benzene ring bearing a chlorine atom in the 4-position (UPEKEH; Hsu et al., 2017). By contrast, there are numerous examples of coordination complexes derived from Schiff base mol­ecules with two 2-phenol substituents in each ring, LH2. In these instances, the dinegative Schiff base anion N,O-chelates two metal centres such as in binuclear Co2(L 1)3 (JUKZOG; Liu et al., 2015), with a fac-N3O3 donor set within an octa­hedral geometry, and Cu2(L 2)3(PPh3)2 (VOWBAM; Prakash et al., 2015) with tetra­hedral NOP2 donor sets; for the L 1 dianion, there are 3-eth­oxy substituents in each ring and for L 2, the are 4-chloro substituents.

Synthesis and crystallization  

The title complexes (I) and (II) were synthesized according to the literature procedure (Manawar, Gondaliya, Mamtora et al., 2019). Briefly, the complexes were obtained by mixing the Schiff base, in ethanol, with an aqueous solution of the corresponding metal chloride in 1:1 and 1:2 molar ratios, respectively, in the presence of piperidine as basic catalyst for proton abstraction from the ligand mol­ecules. The crystals in the form of red (I) and dark-brown (II) blocks were grown by slow evaporation from their respective chloro­form solutions.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2U eq(C).

Table 7. Experimental details.

  (I) (II)
Crystal data
Chemical formula [Co(C14H9Cl2N2O)2] [Cu(C14H9Cl2N2O)2]
M r 643.19 647.80
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 296 296
a, b, c (Å) 8.8137 (10), 10.4801 (12), 15.0785 (17) 8.1300 (7), 8.5072 (11), 9.7386 (13)
α, β, γ (°) 85.684 (7), 77.984 (7), 84.965 (7) 83.240 (4), 87.646 (3), 81.533 (4)
V3) 1354.7 (3) 661.39 (14)
Z 2 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.06 1.27
Crystal size (mm) 0.35 × 0.30 × 0.30 0.35 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004) Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.631, 0.746 0.637, 0.714
No. of measured, independent and observed [I > 2σ(I)] reflections 45690, 6959, 4590 5554, 3090, 2708
R int 0.102 0.021
(sin θ/λ)max−1) 0.678 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.112, 1.04 0.033, 0.093, 1.05
No. of reflections 6959 3090
No. of parameters 352 178
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.50 0.44, −0.46

Computer programs: APEX2 and SAINT (Bruker, 2004),SIR92 (Altomare et al., 1994), SHELXL2017/1 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989019016529/hb7872sup1.cif

e-76-00053-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016529/hb7872Isup2.hkl

e-76-00053-Isup2.hkl (552.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019016529/hb7872IIsup3.hkl

e-76-00053-IIsup3.hkl (246.8KB, hkl)

CCDC references: 1891529, 1970822

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India, for access to the chemical synthesis laboratory, to the Sophisticated Analytical Instrumentation Center (SAIC), Tezpur, Asam, India for providing the X-ray intensity data for (I) and to the Sophisticated Test and Instrumentation Centre (STIC), Kochi, Kerala, India, for the X-ray intensity data for (II).

supplementary crystallographic information

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Crystal data

[Co(C14H9Cl2N2O)2] Z = 2
Mr = 643.19 F(000) = 650
Triclinic, P1 Dx = 1.577 Mg m3
a = 8.8137 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.4801 (12) Å Cell parameters from 5585 reflections
c = 15.0785 (17) Å θ = 2.3–22.4°
α = 85.684 (7)° µ = 1.06 mm1
β = 77.984 (7)° T = 296 K
γ = 84.965 (7)° Block, red
V = 1354.7 (3) Å3 0.35 × 0.30 × 0.30 mm

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Data collection

Bruker Kappa APEXII CCD diffractometer 4590 reflections with I > 2σ(I)
Radiation source: X-ray tube Rint = 0.102
ω and φ scan θmax = 28.8°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −11→11
Tmin = 0.631, Tmax = 0.746 k = −14→14
45690 measured reflections l = −20→20
6959 independent reflections

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.031P)2 + 0.0591P] where P = (Fo2 + 2Fc2)/3
6959 reflections (Δ/σ)max = 0.001
352 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.50 e Å3

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co 0.44734 (4) 0.27310 (3) 0.68541 (2) 0.03428 (11)
Cl1 0.88398 (11) −0.08192 (9) 0.85762 (6) 0.0821 (3)
Cl2 0.45007 (10) 0.29954 (8) 0.98752 (6) 0.0675 (2)
Cl3 0.79790 (9) 0.73174 (7) 0.69395 (6) 0.0643 (2)
Cl4 0.96728 (8) 0.23680 (7) 0.60664 (6) 0.0566 (2)
O1 0.48493 (19) 0.28424 (16) 0.55684 (12) 0.0386 (4)
O2 0.25211 (19) 0.24964 (17) 0.76315 (12) 0.0441 (4)
N1 0.6051 (2) 0.12543 (18) 0.69189 (13) 0.0310 (4)
N2 0.6554 (2) 0.0714 (2) 0.77036 (14) 0.0411 (5)
N3 0.4754 (2) 0.43864 (19) 0.73568 (14) 0.0352 (5)
N4 0.6127 (2) 0.5040 (2) 0.71934 (17) 0.0470 (6)
C1 0.5601 (3) 0.1984 (2) 0.50173 (16) 0.0320 (5)
C2 0.6504 (3) 0.0906 (2) 0.53011 (16) 0.0328 (5)
C3 0.7307 (3) 0.0055 (3) 0.46435 (18) 0.0424 (6)
H3 0.788970 −0.065835 0.483233 0.051*
C4 0.7258 (3) 0.0241 (3) 0.37463 (19) 0.0496 (7)
H4 0.780924 −0.032128 0.332457 0.060*
C5 0.6353 (3) 0.1305 (3) 0.34809 (19) 0.0488 (7)
H5 0.629642 0.144282 0.287166 0.059*
C6 0.5546 (3) 0.2148 (3) 0.40882 (17) 0.0403 (6)
H6 0.495089 0.284277 0.388505 0.048*
C7 0.6684 (3) 0.0616 (2) 0.62082 (17) 0.0355 (6)
H7 0.732456 −0.011148 0.630792 0.043*
C8 0.6244 (3) 0.1407 (3) 0.83673 (17) 0.0394 (6)
H8 0.574799 0.221594 0.828883 0.047*
C9 0.6609 (3) 0.1035 (2) 0.92574 (17) 0.0377 (6)
C10 0.7686 (3) 0.0031 (3) 0.94344 (19) 0.0467 (7)
C11 0.7896 (4) −0.0315 (3) 1.0308 (2) 0.0573 (8)
H11 0.860799 −0.099067 1.041003 0.069*
C12 0.7048 (4) 0.0344 (4) 1.1022 (2) 0.0646 (9)
H12 0.717869 0.010093 1.160909 0.078*
C13 0.6007 (4) 0.1359 (3) 1.0883 (2) 0.0588 (8)
H13 0.544591 0.180895 1.136912 0.071*
C14 0.5809 (3) 0.1697 (3) 1.00133 (19) 0.0448 (7)
C15 0.1585 (3) 0.3409 (3) 0.80467 (17) 0.0397 (6)
C16 0.2042 (3) 0.4638 (3) 0.81575 (18) 0.0410 (6)
C17 0.0932 (3) 0.5554 (3) 0.8613 (2) 0.0575 (8)
H17 0.123982 0.635619 0.869447 0.069*
C18 −0.0578 (4) 0.5289 (4) 0.8936 (2) 0.0671 (10)
H18 −0.130212 0.591163 0.921242 0.081*
C19 −0.1010 (3) 0.4085 (4) 0.8846 (2) 0.0649 (9)
H19 −0.203286 0.389479 0.907762 0.078*
C20 0.0023 (3) 0.3155 (3) 0.84240 (19) 0.0523 (8)
H20 −0.030665 0.234560 0.838523 0.063*
C21 0.3586 (3) 0.5031 (3) 0.78469 (19) 0.0440 (7)
H21 0.377708 0.582955 0.801210 0.053*
C22 0.7287 (3) 0.4444 (2) 0.67455 (18) 0.0374 (6)
H22 0.712804 0.364115 0.657169 0.045*
C23 0.8864 (3) 0.4856 (2) 0.64614 (16) 0.0333 (5)
C24 0.9300 (3) 0.6101 (2) 0.64938 (19) 0.0414 (6)
C25 1.0819 (3) 0.6408 (3) 0.6154 (2) 0.0511 (7)
H25 1.108921 0.724006 0.618188 0.061*
C26 1.1928 (3) 0.5492 (3) 0.5775 (2) 0.0525 (8)
H26 1.293927 0.571199 0.553932 0.063*
C27 1.1554 (3) 0.4260 (3) 0.57441 (18) 0.0453 (7)
H27 1.230392 0.363795 0.549057 0.054*
C28 1.0048 (3) 0.3955 (3) 0.60946 (18) 0.0384 (6)

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co 0.03317 (18) 0.0346 (2) 0.0336 (2) 0.00280 (14) −0.00453 (14) −0.00479 (15)
Cl1 0.1017 (7) 0.0828 (6) 0.0679 (6) 0.0502 (5) −0.0448 (5) −0.0328 (5)
Cl2 0.0717 (5) 0.0700 (6) 0.0533 (5) 0.0181 (4) −0.0018 (4) −0.0142 (4)
Cl3 0.0601 (5) 0.0356 (4) 0.1007 (7) 0.0009 (3) −0.0221 (4) −0.0150 (4)
Cl4 0.0460 (4) 0.0380 (4) 0.0810 (6) 0.0041 (3) −0.0014 (4) −0.0129 (4)
O1 0.0414 (9) 0.0376 (10) 0.0348 (10) 0.0096 (8) −0.0074 (8) −0.0044 (8)
O2 0.0387 (9) 0.0430 (11) 0.0459 (12) −0.0004 (8) 0.0022 (8) −0.0058 (9)
N1 0.0356 (10) 0.0300 (11) 0.0274 (11) −0.0004 (8) −0.0075 (9) −0.0003 (9)
N2 0.0546 (13) 0.0363 (13) 0.0329 (13) 0.0050 (10) −0.0137 (10) −0.0005 (10)
N3 0.0302 (10) 0.0345 (12) 0.0393 (13) 0.0028 (9) −0.0046 (9) −0.0045 (10)
N4 0.0381 (12) 0.0387 (13) 0.0618 (16) −0.0019 (10) −0.0005 (11) −0.0162 (12)
C1 0.0331 (12) 0.0312 (13) 0.0321 (14) −0.0049 (10) −0.0069 (10) −0.0014 (11)
C2 0.0374 (13) 0.0315 (13) 0.0303 (13) −0.0020 (10) −0.0076 (10) −0.0059 (11)
C3 0.0452 (15) 0.0403 (16) 0.0414 (16) 0.0036 (12) −0.0086 (12) −0.0087 (13)
C4 0.0596 (17) 0.0513 (18) 0.0366 (16) 0.0003 (14) −0.0036 (13) −0.0166 (14)
C5 0.0617 (18) 0.0576 (19) 0.0302 (15) −0.0106 (15) −0.0126 (13) −0.0062 (14)
C6 0.0453 (14) 0.0424 (16) 0.0347 (15) −0.0019 (12) −0.0131 (12) −0.0010 (12)
C7 0.0407 (13) 0.0293 (13) 0.0357 (15) 0.0045 (10) −0.0085 (11) −0.0031 (11)
C8 0.0463 (14) 0.0368 (15) 0.0349 (15) 0.0065 (12) −0.0112 (12) −0.0034 (12)
C9 0.0461 (14) 0.0375 (15) 0.0306 (14) −0.0059 (12) −0.0096 (11) −0.0010 (12)
C10 0.0574 (17) 0.0446 (17) 0.0423 (17) 0.0006 (13) −0.0195 (14) −0.0087 (13)
C11 0.076 (2) 0.0532 (19) 0.0510 (19) −0.0012 (16) −0.0361 (17) 0.0022 (16)
C12 0.083 (2) 0.079 (2) 0.0371 (18) −0.015 (2) −0.0227 (17) 0.0032 (17)
C13 0.074 (2) 0.070 (2) 0.0328 (17) −0.0076 (18) −0.0091 (15) −0.0092 (16)
C14 0.0535 (16) 0.0464 (17) 0.0349 (15) −0.0098 (13) −0.0069 (12) −0.0034 (13)
C15 0.0344 (13) 0.0524 (17) 0.0295 (14) −0.0004 (12) −0.0033 (11) 0.0037 (12)
C16 0.0372 (13) 0.0466 (16) 0.0343 (15) 0.0073 (12) 0.0004 (11) −0.0030 (12)
C17 0.0498 (17) 0.0564 (19) 0.056 (2) 0.0133 (14) 0.0064 (14) −0.0076 (16)
C18 0.0467 (17) 0.076 (3) 0.065 (2) 0.0186 (17) 0.0105 (15) −0.0072 (19)
C19 0.0350 (15) 0.097 (3) 0.055 (2) 0.0029 (17) 0.0038 (14) 0.0023 (19)
C20 0.0389 (15) 0.064 (2) 0.0497 (19) −0.0041 (14) −0.0014 (13) 0.0016 (15)
C21 0.0416 (14) 0.0365 (15) 0.0509 (18) 0.0043 (12) −0.0035 (12) −0.0081 (13)
C22 0.0348 (13) 0.0298 (14) 0.0482 (16) 0.0003 (10) −0.0097 (11) −0.0057 (12)
C23 0.0348 (12) 0.0344 (14) 0.0317 (14) −0.0014 (10) −0.0110 (10) 0.0014 (11)
C24 0.0452 (15) 0.0350 (15) 0.0491 (17) −0.0046 (11) −0.0215 (13) 0.0001 (12)
C25 0.0534 (17) 0.0454 (17) 0.061 (2) −0.0170 (14) −0.0232 (15) 0.0048 (15)
C26 0.0381 (15) 0.068 (2) 0.0531 (19) −0.0158 (14) −0.0116 (13) 0.0036 (16)
C27 0.0345 (13) 0.0602 (19) 0.0405 (16) 0.0005 (13) −0.0077 (12) −0.0025 (14)
C28 0.0365 (13) 0.0405 (15) 0.0387 (15) −0.0001 (11) −0.0114 (11) 0.0014 (12)

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Geometric parameters (Å, º)

Co—O2 1.8937 (17) C9—C14 1.406 (4)
Co—O1 1.8940 (17) C10—C11 1.385 (4)
Co—N1 1.9988 (19) C11—C12 1.371 (4)
Co—N3 1.999 (2) C11—H11 0.9300
Cl1—C10 1.723 (3) C12—C13 1.376 (4)
Cl2—C14 1.733 (3) C12—H12 0.9300
Cl3—C24 1.725 (3) C13—C14 1.375 (4)
Cl4—C28 1.729 (3) C13—H13 0.9300
O1—C1 1.310 (3) C15—C20 1.416 (3)
O2—C15 1.313 (3) C15—C16 1.414 (4)
N1—C7 1.304 (3) C16—C17 1.416 (4)
N1—N2 1.411 (3) C16—C21 1.431 (3)
N2—C8 1.251 (3) C17—C18 1.363 (4)
N3—C21 1.303 (3) C17—H17 0.9300
N3—N4 1.410 (3) C18—C19 1.374 (5)
N4—C22 1.247 (3) C18—H18 0.9300
C1—C6 1.409 (3) C19—C20 1.371 (4)
C1—C2 1.416 (3) C19—H19 0.9300
C2—C3 1.417 (3) C20—H20 0.9300
C2—C7 1.417 (3) C21—H21 0.9300
C3—C4 1.361 (4) C22—C23 1.461 (3)
C3—H3 0.9300 C22—H22 0.9300
C4—C5 1.396 (4) C23—C28 1.397 (3)
C4—H4 0.9300 C23—C24 1.399 (3)
C5—C6 1.366 (4) C24—C25 1.388 (4)
C5—H5 0.9300 C25—C26 1.374 (4)
C6—H6 0.9300 C25—H25 0.9300
C7—H7 0.9300 C26—C27 1.367 (4)
C8—C9 1.461 (3) C26—H26 0.9300
C8—H8 0.9300 C27—C28 1.379 (3)
C9—C10 1.402 (4) C27—H27 0.9300
O2—Co—O1 125.33 (8) C11—C12—H12 119.5
O2—Co—N1 113.82 (8) C13—C12—H12 119.5
O1—Co—N1 94.06 (7) C14—C13—C12 119.0 (3)
O2—Co—N3 94.60 (8) C14—C13—H13 120.5
O1—Co—N3 112.12 (8) C12—C13—H13 120.5
N1—Co—N3 119.03 (8) C13—C14—C9 122.7 (3)
C1—O1—Co 127.34 (15) C13—C14—Cl2 117.0 (2)
C15—O2—Co 125.37 (16) C9—C14—Cl2 120.3 (2)
C7—N1—N2 111.4 (2) O2—C15—C20 118.7 (3)
C7—N1—Co 121.70 (16) O2—C15—C16 124.1 (2)
N2—N1—Co 126.78 (15) C20—C15—C16 117.2 (2)
C8—N2—N1 114.8 (2) C15—C16—C17 119.4 (2)
C21—N3—N4 112.1 (2) C15—C16—C21 124.2 (2)
C21—N3—Co 121.09 (17) C17—C16—C21 116.4 (3)
N4—N3—Co 126.71 (15) C18—C17—C16 121.6 (3)
C22—N4—N3 114.3 (2) C18—C17—H17 119.2
O1—C1—C6 118.8 (2) C16—C17—H17 119.2
O1—C1—C2 123.5 (2) C17—C18—C19 118.9 (3)
C6—C1—C2 117.7 (2) C17—C18—H18 120.6
C3—C2—C7 116.8 (2) C19—C18—H18 120.6
C3—C2—C1 118.9 (2) C18—C19—C20 121.9 (3)
C7—C2—C1 124.4 (2) C18—C19—H19 119.0
C4—C3—C2 122.6 (3) C20—C19—H19 119.0
C4—C3—H3 118.7 C19—C20—C15 120.9 (3)
C2—C3—H3 118.7 C19—C20—H20 119.5
C3—C4—C5 117.7 (3) C15—C20—H20 119.5
C3—C4—H4 121.1 N3—C21—C16 126.8 (3)
C5—C4—H4 121.1 N3—C21—H21 116.6
C6—C5—C4 122.1 (3) C16—C21—H21 116.6
C6—C5—H5 119.0 N4—C22—C23 127.7 (2)
C4—C5—H5 119.0 N4—C22—H22 116.1
C5—C6—C1 121.1 (3) C23—C22—H22 116.1
C5—C6—H6 119.5 C28—C23—C24 116.2 (2)
C1—C6—H6 119.5 C28—C23—C22 118.2 (2)
N1—C7—C2 127.3 (2) C24—C23—C22 125.6 (2)
N1—C7—H7 116.4 C25—C24—C23 120.9 (3)
C2—C7—H7 116.4 C25—C24—Cl3 117.3 (2)
N2—C8—C9 124.5 (2) C23—C24—Cl3 121.8 (2)
N2—C8—H8 117.7 C26—C25—C24 120.5 (3)
C9—C8—H8 117.7 C26—C25—H25 119.7
C10—C9—C14 116.0 (2) C24—C25—H25 119.7
C10—C9—C8 125.2 (2) C27—C26—C25 120.4 (3)
C14—C9—C8 118.8 (2) C27—C26—H26 119.8
C11—C10—C9 121.7 (3) C25—C26—H26 119.8
C11—C10—Cl1 116.5 (2) C26—C27—C28 118.9 (3)
C9—C10—Cl1 121.8 (2) C26—C27—H27 120.5
C12—C11—C10 119.7 (3) C28—C27—H27 120.5
C12—C11—H11 120.2 C27—C28—C23 123.1 (2)
C10—C11—H11 120.2 C27—C28—Cl4 116.4 (2)
C11—C12—C13 121.0 (3) C23—C28—Cl4 120.48 (19)
O2—Co—O1—C1 −108.33 (19) C12—C13—C14—Cl2 −179.2 (2)
N1—Co—O1—C1 14.8 (2) C10—C9—C14—C13 −2.7 (4)
N3—Co—O1—C1 138.45 (19) C8—C9—C14—C13 175.8 (3)
O1—Co—O2—C15 −99.8 (2) C10—C9—C14—Cl2 177.6 (2)
N1—Co—O2—C15 146.13 (19) C8—C9—C14—Cl2 −3.9 (3)
N3—Co—O2—C15 21.5 (2) Co—O2—C15—C20 164.92 (18)
C7—N1—N2—C8 166.6 (2) Co—O2—C15—C16 −16.2 (4)
Co—N1—N2—C8 −17.3 (3) O2—C15—C16—C17 179.6 (3)
C21—N3—N4—C22 178.3 (2) C20—C15—C16—C17 −1.4 (4)
Co—N3—N4—C22 −6.0 (3) O2—C15—C16—C21 −1.3 (4)
Co—O1—C1—C6 169.84 (16) C20—C15—C16—C21 177.6 (2)
Co—O1—C1—C2 −11.6 (3) C15—C16—C17—C18 −1.1 (4)
O1—C1—C2—C3 −178.2 (2) C21—C16—C17—C18 179.7 (3)
C6—C1—C2—C3 0.3 (3) C16—C17—C18—C19 2.6 (5)
O1—C1—C2—C7 1.0 (4) C17—C18—C19—C20 −1.5 (5)
C6—C1—C2—C7 179.5 (2) C18—C19—C20—C15 −1.2 (5)
C7—C2—C3—C4 −178.5 (2) O2—C15—C20—C19 −178.5 (3)
C1—C2—C3—C4 0.7 (4) C16—C15—C20—C19 2.5 (4)
C2—C3—C4—C5 −1.2 (4) N4—N3—C21—C16 −178.3 (2)
C3—C4—C5—C6 0.6 (4) Co—N3—C21—C16 5.7 (4)
C4—C5—C6—C1 0.4 (4) C15—C16—C21—N3 6.4 (4)
O1—C1—C6—C5 177.8 (2) C17—C16—C21—N3 −174.5 (3)
C2—C1—C6—C5 −0.8 (4) N3—N4—C22—C23 179.7 (2)
N2—N1—C7—C2 −177.2 (2) N4—C22—C23—C28 169.5 (3)
Co—N1—C7—C2 6.5 (3) N4—C22—C23—C24 −12.9 (4)
C3—C2—C7—N1 −179.5 (2) C28—C23—C24—C25 1.7 (4)
C1—C2—C7—N1 1.3 (4) C22—C23—C24—C25 −176.0 (2)
N1—N2—C8—C9 178.1 (2) C28—C23—C24—Cl3 −179.22 (19)
N2—C8—C9—C10 17.7 (4) C22—C23—C24—Cl3 3.1 (4)
N2—C8—C9—C14 −160.7 (3) C23—C24—C25—C26 0.1 (4)
C14—C9—C10—C11 2.5 (4) Cl3—C24—C25—C26 −179.0 (2)
C8—C9—C10—C11 −175.9 (3) C24—C25—C26—C27 −1.2 (4)
C14—C9—C10—Cl1 −176.4 (2) C25—C26—C27—C28 0.2 (4)
C8—C9—C10—Cl1 5.2 (4) C26—C27—C28—C23 1.8 (4)
C9—C10—C11—C12 −0.8 (5) C26—C27—C28—Cl4 −177.9 (2)
Cl1—C10—C11—C12 178.2 (3) C24—C23—C28—C27 −2.7 (4)
C10—C11—C12—C13 −1.0 (5) C22—C23—C28—C27 175.1 (2)
C11—C12—C13—C14 0.9 (5) C24—C23—C28—Cl4 176.99 (19)
C12—C13—C14—C9 1.1 (4) C22—C23—C28—Cl4 −5.2 (3)

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) (I). Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C27—H27···O1i 0.93 2.35 3.114 (3) 140
C25—H25···Cg3ii 0.93 2.86 3.647 (3) 143

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1.

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)copper(II) (II). Crystal data

[Cu(C14H9Cl2N2O)2] Z = 1
Mr = 647.80 F(000) = 327
Triclinic, P1 Dx = 1.626 Mg m3
a = 8.1300 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5072 (11) Å Cell parameters from 3126 reflections
c = 9.7386 (13) Å θ = 4.9–56.5°
α = 83.240 (4)° µ = 1.26 mm1
β = 87.646 (3)° T = 296 K
γ = 81.533 (4)° Block, dark-brown
V = 661.39 (14) Å3 0.35 × 0.35 × 0.30 mm

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)copper(II) (II). Data collection

Bruker Kappa APEXII CCD diffractometer 2708 reflections with I > 2σ(I)
ω and φ scan Rint = 0.021
Absorption correction: multi-scan (SADABS; Bruker, 2004) θmax = 28.3°, θmin = 3.3°
Tmin = 0.637, Tmax = 0.714 h = −5→10
5554 measured reflections k = −11→11
3090 independent reflections l = −12→12

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)copper(II) (II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.2934P] where P = (Fo2 + 2Fc2)/3
3090 reflections (Δ/σ)max < 0.001
178 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.46 e Å3

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)copper(II) (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)copper(II) (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.500000 0.500000 0.500000 0.02898 (11)
Cl1 0.31832 (11) 0.73971 (12) 0.01621 (8) 0.0830 (3)
Cl2 −0.14142 (7) 0.45455 (7) 0.33048 (7) 0.05364 (17)
O1 0.5954 (2) 0.30738 (17) 0.59863 (16) 0.0435 (4)
N1 0.4436 (2) 0.37945 (19) 0.34549 (16) 0.0293 (3)
N2 0.3392 (2) 0.4457 (2) 0.23415 (17) 0.0352 (4)
C1 0.6593 (3) 0.1736 (2) 0.5513 (2) 0.0338 (4)
C2 0.6301 (3) 0.1364 (2) 0.4182 (2) 0.0325 (4)
C3 0.7051 (3) −0.0117 (3) 0.3762 (3) 0.0439 (5)
H3 0.684470 −0.036821 0.288672 0.053*
C4 0.8071 (3) −0.1183 (3) 0.4617 (3) 0.0519 (6)
H4 0.857619 −0.214233 0.432071 0.062*
C5 0.8345 (3) −0.0824 (3) 0.5923 (3) 0.0519 (6)
H5 0.903270 −0.155502 0.650883 0.062*
C6 0.7625 (3) 0.0588 (3) 0.6378 (3) 0.0459 (5)
H6 0.782038 0.079204 0.726963 0.055*
C7 0.5198 (3) 0.2392 (2) 0.3251 (2) 0.0321 (4)
H7 0.500996 0.201827 0.242030 0.038*
C8 0.2031 (2) 0.5217 (2) 0.2710 (2) 0.0327 (4)
H8 0.179795 0.526076 0.364870 0.039*
C9 0.0790 (3) 0.6043 (2) 0.1705 (2) 0.0338 (4)
C10 0.1164 (3) 0.7083 (3) 0.0554 (2) 0.0456 (5)
C11 −0.0074 (4) 0.7920 (3) −0.0292 (3) 0.0597 (7)
H11 0.019998 0.861210 −0.105066 0.072*
C12 −0.1692 (4) 0.7730 (3) −0.0015 (3) 0.0676 (9)
H12 −0.251592 0.830675 −0.058269 0.081*
C13 −0.2130 (3) 0.6699 (3) 0.1091 (3) 0.0589 (7)
H13 −0.323355 0.655485 0.126954 0.071*
C14 −0.0872 (3) 0.5881 (2) 0.1931 (2) 0.0392 (5)

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)copper(II) (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.02975 (19) 0.02729 (17) 0.02922 (18) −0.00160 (12) −0.00773 (12) −0.00101 (12)
Cl1 0.0648 (5) 0.1185 (7) 0.0567 (4) −0.0217 (5) 0.0044 (3) 0.0361 (4)
Cl2 0.0335 (3) 0.0511 (3) 0.0743 (4) −0.0079 (2) 0.0011 (3) 0.0025 (3)
O1 0.0645 (11) 0.0280 (7) 0.0364 (8) 0.0034 (7) −0.0205 (7) −0.0033 (6)
N1 0.0274 (8) 0.0338 (8) 0.0264 (7) −0.0031 (6) −0.0058 (6) −0.0014 (6)
N2 0.0360 (9) 0.0415 (9) 0.0273 (8) −0.0016 (7) −0.0089 (7) −0.0033 (7)
C1 0.0346 (11) 0.0265 (9) 0.0404 (10) −0.0063 (8) −0.0087 (8) 0.0015 (7)
C2 0.0301 (10) 0.0297 (9) 0.0377 (10) −0.0056 (7) 0.0007 (8) −0.0025 (7)
C3 0.0474 (14) 0.0369 (11) 0.0465 (12) −0.0020 (9) 0.0044 (10) −0.0079 (9)
C4 0.0484 (14) 0.0331 (11) 0.0702 (17) 0.0059 (10) 0.0038 (12) −0.0057 (11)
C5 0.0471 (14) 0.0335 (11) 0.0700 (17) 0.0039 (10) −0.0135 (12) 0.0067 (11)
C6 0.0529 (14) 0.0336 (10) 0.0498 (13) −0.0026 (9) −0.0207 (11) 0.0037 (9)
C7 0.0328 (10) 0.0357 (9) 0.0287 (9) −0.0066 (8) 0.0001 (7) −0.0061 (7)
C8 0.0304 (10) 0.0414 (10) 0.0268 (9) −0.0068 (8) −0.0060 (7) −0.0016 (7)
C9 0.0350 (11) 0.0352 (10) 0.0317 (10) −0.0016 (8) −0.0095 (8) −0.0068 (8)
C10 0.0534 (15) 0.0507 (13) 0.0318 (10) −0.0051 (11) −0.0099 (9) −0.0014 (9)
C11 0.084 (2) 0.0506 (14) 0.0422 (13) −0.0036 (13) −0.0263 (13) 0.0042 (11)
C12 0.077 (2) 0.0517 (15) 0.0713 (18) 0.0100 (14) −0.0474 (16) −0.0024 (13)
C13 0.0419 (15) 0.0499 (14) 0.085 (2) 0.0029 (11) −0.0289 (13) −0.0106 (13)
C14 0.0370 (12) 0.0330 (10) 0.0482 (12) −0.0006 (8) −0.0126 (9) −0.0088 (9)

Bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)copper(II) (II). Geometric parameters (Å, º)

Cu—O1 1.8776 (14) C4—H4 0.9300
Cu—O1i 1.8776 (14) C5—C6 1.371 (3)
Cu—N1 2.0211 (16) C5—H5 0.9300
Cu—N1i 2.0211 (16) C6—H6 0.9300
Cl1—C10 1.722 (3) C7—H7 0.9300
Cl2—C14 1.737 (2) C8—C9 1.476 (3)
O1—C1 1.306 (2) C8—H8 0.9300
N1—C7 1.294 (2) C9—C14 1.384 (3)
N1—N2 1.416 (2) C9—C10 1.396 (3)
N2—C8 1.258 (3) C10—C11 1.385 (3)
C1—C6 1.411 (3) C11—C12 1.361 (5)
C1—C2 1.407 (3) C11—H11 0.9300
C2—C3 1.415 (3) C12—C13 1.376 (5)
C2—C7 1.428 (3) C12—H12 0.9300
C3—C4 1.365 (3) C13—C14 1.387 (3)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.377 (4)
O1—Cu—O1i 180.00 (10) C5—C6—H6 119.5
O1—Cu—N1 90.28 (6) C1—C6—H6 119.5
O1i—Cu—N1 89.72 (6) N1—C7—C2 126.18 (18)
O1—Cu—N1i 89.72 (6) N1—C7—H7 116.9
O1i—Cu—N1i 90.28 (6) C2—C7—H7 116.9
N1—Cu—N1i 180.0 N2—C8—C9 122.34 (18)
C1—O1—Cu 128.77 (13) N2—C8—H8 118.8
C7—N1—N2 111.28 (16) C9—C8—H8 118.8
C7—N1—Cu 123.02 (13) C14—C9—C10 116.3 (2)
N2—N1—Cu 124.88 (12) C14—C9—C8 119.63 (19)
C8—N2—N1 113.85 (16) C10—C9—C8 124.0 (2)
O1—C1—C6 118.78 (19) C11—C10—C9 121.3 (3)
O1—C1—C2 123.59 (18) C11—C10—Cl1 117.8 (2)
C6—C1—C2 117.63 (19) C9—C10—Cl1 120.87 (18)
C1—C2—C3 119.48 (19) C12—C11—C10 120.1 (3)
C1—C2—C7 122.47 (18) C12—C11—H11 120.0
C3—C2—C7 117.97 (19) C10—C11—H11 120.0
C4—C3—C2 121.2 (2) C11—C12—C13 121.1 (2)
C4—C3—H3 119.4 C11—C12—H12 119.4
C2—C3—H3 119.4 C13—C12—H12 119.4
C3—C4—C5 119.3 (2) C14—C13—C12 117.9 (3)
C3—C4—H4 120.3 C14—C13—H13 121.1
C5—C4—H4 120.3 C12—C13—H13 121.1
C6—C5—C4 121.4 (2) C13—C14—C9 123.3 (2)
C6—C5—H5 119.3 C13—C14—Cl2 118.0 (2)
C4—C5—H5 119.3 C9—C14—Cl2 118.66 (16)
C5—C6—C1 121.0 (2)
N1—Cu—O1—C1 25.25 (19) C1—C2—C7—N1 4.8 (3)
N1i—Cu—O1—C1 −154.75 (19) C3—C2—C7—N1 −178.5 (2)
C7—N1—N2—C8 141.33 (19) N1—N2—C8—C9 178.03 (18)
Cu—N1—N2—C8 −48.8 (2) N2—C8—C9—C14 134.7 (2)
Cu—O1—C1—C6 163.39 (17) N2—C8—C9—C10 −49.5 (3)
Cu—O1—C1—C2 −17.0 (3) C14—C9—C10—C11 1.1 (3)
O1—C1—C2—C3 179.9 (2) C8—C9—C10—C11 −174.8 (2)
C6—C1—C2—C3 −0.5 (3) C14—C9—C10—Cl1 179.69 (17)
O1—C1—C2—C7 −3.5 (3) C8—C9—C10—Cl1 3.8 (3)
C6—C1—C2—C7 176.1 (2) C9—C10—C11—C12 −0.4 (4)
C1—C2—C3—C4 −0.9 (3) Cl1—C10—C11—C12 −179.1 (2)
C7—C2—C3—C4 −177.7 (2) C10—C11—C12—C13 −0.8 (4)
C2—C3—C4—C5 1.4 (4) C11—C12—C13—C14 1.2 (4)
C3—C4—C5—C6 −0.6 (4) C12—C13—C14—C9 −0.5 (4)
C4—C5—C6—C1 −0.9 (4) C12—C13—C14—Cl2 −178.6 (2)
O1—C1—C6—C5 −179.0 (2) C10—C9—C14—C13 −0.6 (3)
C2—C1—C6—C5 1.4 (4) C8—C9—C14—C13 175.5 (2)
N2—N1—C7—C2 −177.83 (19) C10—C9—C14—Cl2 177.47 (16)
Cu—N1—C7—C2 12.1 (3) C8—C9—C14—Cl2 −6.4 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Sunway University Sdn Bhd grant STR-RCTR-RCCM-001-2019.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Annapoorani, S. & Krishnan, C. (2013). J. Chem. Tech. Res 5, 180–185.
  3. Bagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem. 43, 2639–2649. [DOI] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chohan, Z. H., Jaffery, M. F. & Supuran, C. T. (2001). Met.-Based Drugs, 8, 95–101. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L. & Li, P. (2007). Carbohydr. Res. 342, 1329–1332. [DOI] [PubMed]
  9. Hsu, C.-Y., Tseng, H.-C., Vandavasi, J. K., Lu, W.-Y., Wang, L.-F., Chiang, M. Y., Lai, Y.-C., Chen, H.-Y. & Chen, H. (2017). RSC Adv. 7, 18851–18860.
  10. Liu, E., Zhang, Y. Z., Tan, J., Yang, C., Li, L., Golen, J. A., Rheingold, A. L. & Zhang, G. (2015). Polyhedron, 102, 41–47.
  11. Manawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019). Sci. News 126, 222–247.
  12. Manawar, R. B., Gondaliya, M. B., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 1423–1428. [DOI] [PMC free article] [PubMed]
  13. Patti, A., Pedotti, S., Ballistreri, F. P. & Sfrazzetto, G. T. (2009). Molecules, 14, 4312–4325. [DOI] [PMC free article] [PubMed]
  14. Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707–716. [DOI] [PubMed]
  15. Prakash, G., Nirmala, M., Ramachandran, R., Viswanathamurthi, P., Malecki, J. G. & Sanmartin, J. (2015). Polyhedron, 89, 62–69.
  16. Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  19. Tian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189–198. [DOI] [PubMed]
  20. Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167. [DOI] [PubMed]
  21. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989019016529/hb7872sup1.cif

e-76-00053-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016529/hb7872Isup2.hkl

e-76-00053-Isup2.hkl (552.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019016529/hb7872IIsup3.hkl

e-76-00053-IIsup3.hkl (246.8KB, hkl)

CCDC references: 1891529, 1970822

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES