Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):66–71. doi: 10.1107/S2056989019016372

Syntheses and crystal structures of three [M(acac)2(TMEDA)] complexes (M = Mn, Fe and Zn)

Jan Henrik Halz a, Christian Heiser a, Christoph Wagner a, Kurt Merzweiler a,*
PMCID: PMC6944083  PMID: 31921454

Syntheses and crystal structures of three metal complexes [M(acac)2(TMEDA)] [M = Mn (1), Fe (2) and Zn (3)] with acetyl­acetonate and N,N,N′,N′-tetra­methyl­ethylenedi­amine are discussed.

Keywords: crystal structure, acetyl­acetonate, tetra­methyl­ethylenedi­amine, transition metal complex

Abstract

The complexes bis­(acetyl­acetonato-κ2 O,O′)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2 N,N′)manganese(II), [Mn(C5H7O2)2(C6H16N2)], bis­(acetyl­acetonato-κ2 O,O′)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2 N,N′)iron(II), [Fe(C5H7O2)2(C6H16N2)], and bis­(acetyl­acetonato-κ2 O,O′)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2 N,N′)zinc(II), [Zn(C5H7O2)2(C6H16N2)], were synthesized from the reaction of the corresponding metal acetyl­acetonates [M(acac)2(H2O)2] with N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octa­hedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N2O4 coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds 13 are different and thus the crystal structures are not isotypic.

Chemical context  

Pentane-2,4-dionate (acac) and ethyl­enedi­amine derivatives are amongst the most widely used chelate ligands in transition metal chemistry. The crystal structures of mixed complexes [M(acac)2(TMEDA)] (TMEDA = N,N,N′,N′-tetra­methyl­ethylenedi­amine) containing both types of ligands have been reported for several divalent metals, e.g. M = V (Ma et al., 1999), Co (Pasko et al., 2004), Ni (Trimmel et al., 2002; Zeller et al., 2004) and Ru (Halbach et al., 2012). The synthesis of [Zn(acac)2(TMEDA)] was reported recently in conjunction with the Ru derivative but without crystal structure determination (Halbach et al., 2012). Typically, [M(acac)2(TMEDA)] complexes are used as valuable starting materials for the preparation of organometallic and coordination compounds (Kaschube et al. 1988; Nelkenbaum et al., 2005; Albrecht et al., 2019). Moreover, there is an increasing inter­est in [M(acac)2(TMEDA)] and related [M(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionate) complexes as precursor materials for CVD deposition of Co3O4 (Pasko et al., 2004), Fe2O3 (Barreca et al., 2012) and MnF2 (Malandrino et al., 2012).graphic file with name e-76-00066-scheme1.jpg

Typically, [M(acac)2(TMEDA)] complexes are synthesized from the reaction of the metal acetyl­acetonates with TMEDA. Following this procedure, we obtained the complexes [Mn(acac)2(TMEDA)] (1), [Fe(acac)2(TMEDA)] (2) and [Zn(acac)2(TMEDA)] (3) from the corresponding dihydrates [M(acac)2(H2O)2] and TMEDA in toluene as solvent. Recrystallization from n-hexane at 248 K afforded [Mn(acac)2(TMEDA)] (1) as yellow, [Fe(acac)2(TMEDA)] (2) as red–brown and [Zn(acac)2(TMEDA)] (3) as colorless products. Determination of the magnetic moments for [Mn(acac)2(TMEDA)] (5.7 B.M.) and [Fe(acac)2(TMEDA)] (5.1 B.M.) indicates a high-spin configuration in both cases.

Structural commentary  

Compounds 13 crystallize in the monoclinic system, space group P21/n with Z = 4. However, despite the similarity of the lattice parameters and the analogous mol­ecular structures, complexes 13 are not isotypic. The crystal structures consist of discrete complex mol­ecules [M(acac)2TMEDA] in which the central metal atoms are coordinated nearly octa­hedrally by four oxygen atoms of two acac ligands and two nitro­gen atoms of the TMEDA ligand (Figs. 1–3 ). Mn complex 1 exhibits Mn—O and Mn—N distances of 2.127 (1)–2.150 (1) Å and 2.356 (2)–2.364 (2) Å, respectively (Table 1). Similar geometric parameters have been reported for [Mn(acac)2(H2O)2] [Mn—O: 2.123 (8)–2.142 (8) Å; Mont­gom­ery & Lingafelter, 1968], [Mn(acac)2(1,10-phenanthroline)] [Mn—O: 2.116 (5)–2.152 (5) Å, Mn—N: 2.307 (5) Å; Stephens, 1977], [Mn(acac)2(2,2′-bi­pyridine)] [Mn—O: 2.148 (2)–2.158 (2) Å, Mn—N: 2.283 (2)–2.288 (3) Å; van Gorkum et al., 2005] or [Mn(hfa)2(TMEDA)] [Mn—O: 2.139 (4)–2.178 (4) Å, Mn—N: 2.299 (5)—2.307 (5) Å; Mal­an­drino et al., 2012].

Figure 1.

Figure 1

Mol­ecular structure of complex 1 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.

Figure 2.

Figure 2

Mol­ecular structure of complex 2 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.

Figure 3.

Figure 3

Mol­ecular structure of complex 3 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.

Table 1. Selected geometric parameters (Å, °) for 1 .

Mn—O1 2.1271 (13) Mn—O4 2.1365 (12)
Mn—O2 2.1500 (12) Mn—N1 2.3643 (15)
Mn—O3 2.1375 (12) Mn—N2 2.3560 (15)
       
O1—Mn—O2 83.61 (5) O2—Mn—N2 90.36 (5)
O1—Mn—O3 107.00 (5) O3—Mn—O4 83.78 (5)
O1—Mn—O4 93.25 (5) O3—Mn—N1 165.43 (5)
O1—Mn—N1 86.01 (5) O3—Mn—N2 90.61 (5)
O1—Mn—N2 161.29 (6) O4—Mn—N1 89.07 (5)
O2—Mn—O3 89.71 (5) O4—Mn—N2 94.95 (6)
O2—Mn—O4 171.63 (5) N1—Mn—N2 77.34 (6)
O2—Mn—N1 98.41 (5)    

The Fe—O and Fe—N distances in compound 2 [2.050 (1)–2.097 (1) Å and 2.302 (1)–2.318 (1) Å, respectively; Table 2] are on average shorter than the corresponding Mn—O and Mn—N distances in complex 1. The Fe—O and Fe—N distances compare well with the data that have been observed in the compounds [Fe(acac)2(H2O)2] [Fe—O: 2.034–2.041 Å; Tsodikov et al., 1995], [Fe(hfa)2(picoline)2] [Fe—O: 2.057 (1) Å, Fe—N: 2.190 (3)–2.224 (3) Å; Novitchi et al., 2017] or [Fe(hfa)2(TMEDA)] [Fe—O: 2.064 (1)–2.094 (1), Fe—N: 2.229 (2) Å; Dickman et al., 1998].

Table 2. Selected geometric parameters (Å, °) for 2 .

Fe—O1 2.0876 (10) Fe—O4 2.0520 (9)
Fe—O2 2.0497 (10) Fe—N1 2.3021 (12)
Fe—O3 2.0970 (10) Fe—N2 2.3184 (12)
       
O1—Fe—O2 85.58 (4) O2—Fe—N2 84.18 (4)
O1—Fe—O3 93.98 (4) O3—Fe—O4 86.00 (4)
O1—Fe—O4 99.11 (4) O3—Fe—N1 170.93 (4)
O1—Fe—N1 92.44 (4) O3—Fe—N2 95.43 (4)
O1—Fe—N2 166.73 (4) O4—Fe—N1 86.66 (4)
O2—Fe—O3 95.84 (4) O4—Fe—N2 90.87 (4)
O2—Fe—O4 174.85 (4) N1—Fe—N2 79.35 (4)
O2—Fe—N1 91.04 (5)    

[Zn(acac)2(TMEDA)] (3) displays Zn—O and Zn—N distances of 2.061 (1)–2.077 (1) and 2.253 (1)–2.272 (1) Å, respectively (Table 3). In comparison with the iron complex 2, the average metal–oxygen distances and metal–nitro­gen distances are slightly shortened. On the whole, the Zn—O and Zn—N distances in compound 3 are similar to those observed in the related compounds [Zn(acac)2(H2O)2] [Zn—O: 2.032 (1)–2.049 (1) Å; Harbach et al., 2003], [Zn(acac)2(1,10-phenanthroline)] [Zn—O: 2.044 (1)–2.085 (1) Å, Zn—N: 2.196 (1) Å; Brahma et al., 2008], [Zn(acac)2(2,2′-bi­pyridine)] [Zn—O: 2.051 (1)–2.089 (1) Å, Zn—N: 2.197 (2)–2.208 (2) Å; Brahma et al., 2008] or [Zn(hfa)2(TMEDA)] [Zn—O: 2.103 (1)–2.126 (1) Å, Zn—N: 2.145 (1)–2.151 (1) Å; Ni et al., 2005].

Table 3. Selected geometric parameters (Å, °) for 3 .

Zn—O1 2.0771 (12) Zn—O4 2.0607 (10)
Zn—O2 2.0611 (11) Zn—N1 2.2722 (13)
Zn—O3 2.0645 (11) Zn—N2 2.2533 (13)
       
O1—Zn—O2 87.50 (4) O2—Zn—N2 89.57 (5)
O1—Zn—O3 101.58 (5) O3—Zn—O4 87.96 (4)
O1—Zn—O4 88.49 (4) O3—Zn—N1 168.61 (5)
O1—Zn—N1 89.28 (5) O3—Zn—N2 89.09 (5)
O1—Zn—N2 168.94 (5) O4—Zn—N1 88.92 (5)
O2—Zn—O3 90.18 (5) O4—Zn—N2 94.86 (5)
O2—Zn—O4 175.16 (4) N1—Zn—N2 80.27 (5)
O2—Zn—N1 93.76 (5)    

In general, the above-mentioned [M(hfa)2(TMEDA)] (M = Mn, Fe, Zn) complexes exhibit shorter M—N distances than the corresponding [M(acac)2(TMEDA)] complexes. This effect is probably due to the electron-withdrawing effect of the CF3 groups of the hfa ligands.

The iron complex 2 displays a subtle elongation (0.041 Å) of the Fe—O bonds trans to the N atoms with respect to the Fe—O bonds trans to oxygen. A similar effect was observed for [Co(acac)2(TMEDA)] (Pasko et al., 2004). In the case of the Mn and Zn complexes 1 and 3, the trans influence is negligible as reported for [Ni(acac)2(TMEDA)] (Trimmel et al., 2002) and [Ru(acac)2(TMEDA)] (Halbach et al., 2012). A reverse effect with a shortening of the Zn—O bonds trans to nitro­gen was detected for [Zn(acac)2(2,2′-bi­pyridine)] and [Zn(acac)2(1,10-phenanthroline)] (Brahma et al., 2008).

Each of the complexes 13 exhibits nearly planar six-membered acac-M chelate rings. The maximum deviation from planarity, as indicated by the dihedral angle between the M/O1/O2 (M/O3/O4) plane of the chelate ring and the best plane through O1/C2/C3/C4/O2 (O3/C7/C8/C9/O4), is 6.2 (1)° in the case of the zinc complex 3. PLATON (Spek, 2009) was used to calculate the dihedral angles. The five-membered M-TMEDA ring adopts a twist conformation with approximate C 2 symmetry. As a result of the centrosymmetric crystal structure, both types of the enanti­omeric chelate rings with λ and δ conformations are present.

The MO4N2 coordination polyhedra in compounds 13 deviate moderately from a regular octa­hedron. The O—M—O angles are in the range 171.7 (1)° (complex 1) to 175.2 (1)° (complex 3) and the N—M–-O angles vary from 161.3 (1)° (complex 1) to 170.9 (1)° (complex 2). The smallest acac bite angle is observed in compound 1 [83.6 (1)°], the largest is found in compound 3 [88.0 (1)°]. In the case of the TMEDA ligands, the bite angles are marginally smaller with a range between 77.3 (1)° (compound 1) and 80.3 (1)° (compound 3). Overall, the distortion of the MO4N2 octa­hedra in compounds 13 is very similar to that observed in the analogous V, Ni and Co complexes [M(acac)2(TMEDA)].

Supra­molecular features  

The packing of the [M(acac)2(TMEDA)] units is dominated by van der Waals inter­actions. The mutual arrangement of the complex units 13 is similar but not identical (Figs. 4–6 ). In the case of the iron compound 2 there is also a contribution from weak C—H⋯O hydrogen bridges (Table 4). As a result, the complexes are associated by R 2 2(8) type motifs, forming centrosymmetric dimers (Fig. 5).

Figure 4.

Figure 4

Crystal structure of compound 1, viewed along the b axis.

Figure 5.

Figure 5

Crystal structure of compound 2, viewed along the b axis. The inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

Figure 6.

Figure 6

Crystal structure of compound 3, viewed along the b axis.

Table 4. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H2⋯O1i 0.96 2.62 3.5269 (18) 157

Symmetry code: (i) Inline graphic.

Database survey  

A search in the Cambridge Structural Database (CSD, Version 5.40, February 2019 update; Groom et al., 2016) for complexes with a composition [M(acac)2(TMEDA)] analogous to 13 revealed the crystal structures for the M = V, Ni, Co and Ru derivatives (Ma et al., 1999; Pasko et al., 2004; Trimmel et al., 2002; Zeller et al., 2004; Halbach et al., 2012). However, none of these complexes is isotypic with the three title compounds. In the case of the related hfa derivatives, complexes of the type [M(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionate) with M = Mg, Mn, Fe, Co, Cu and Zn have been reported.

Synthesis and crystallization  

TMEDA (7.5 ml, 5.8 g, 50 mmol) was added to a suspension of [M(acac)2(H2O)2] (25 mmol, M = Mn: 9.71 g, Fe: 9.73 g, Zn: 9.97 g) in toluene (30 ml). The suspension was stirred at 323 K for 2 h. After removal of the solvent under reduced pressure, n-hexane (25 ml) was added and insoluble parts were filtered off. The filtrates were kept at 248 K to obtain the products as yellow (1), red–brown (2) and colourless (3) crystalline solids in yields around 90%.

Characterization

[Mn(acac)2TMEDA] (1)

C16H30MnN2O4 calculated C 52.03, H 8.19, N 7.59%, found: C 51.71, H 8.13, N 7.14%; IR (ATR): ν = 3067 w, 2993 w, 2970 w, 2917 w, 2986 w, 2860 w, 2828 w, 2788 w, 2772 w, 1595 m, 1512 s, 1468 m, 1449 m, 1412 s, 1391 m, 1353 m, 1288 m, 1251 m, 1190 w, 1159 w, 1124 w, 1095 w, 1063 w, 1045 m, 1026 w, 1011 m, 950 m, 934 w, 913 m, 794 m, 771 w, 751 m, 650 w, 583 w, 526 m, 468 w, 448 w, 436 w, 400 s, 325 m, 212 s cm−1.

M.p.: 362 K.

[Fe(acac)2TMEDA] (2)

C16H30FeN2O4 calculated C 51.90, H 8.17, N 7.57%, found: C 51.75, H 8.08, N 7.23%; IR (ATR): ν = 3074 w, 3001 w, 2967 w, 2911 w, 2869 w, 2836 w, 2790 w, 1583 m, 1510 s, 1455 m, 1411 s, 1382 m, 1357 w, 1289 m, 1274 w, 1256 m, 1188 w, 1165 w, 1127 w, 1101 w, 1030 w 1012 m, 952 m, 917 m, 793 m, 762 s, 651 w, 583 w, 543 m, 475 w, 436 w, 404 w, 382 s, 296 w, 265 m, 227 s cm−1.

M.p.: 361 K.

[Zn(acac)2TMEDA] (3)

C16H30N2O4Zn calculated C 50.60, H 7.96, N 7.38%, found: C 50.33, H 8.13, N 7.23%; 1H-NMR (CDCl3, 399.962 MHz) δ = 5.15 [s, 2H, C(O)CHC(O)], 2.49 (s, 4H, Me2N-CH 2), 2.31 (s, 12H, (CH 3)2N), 1.85 [s, 12H, CH 3C(O)]; 13C-NMR (CDCl3,100.581 MHz) δ = 190.9 [C(O)], 98.4 [C(O)CHC(O)], 56.5 (NCH2), 46.6 [(CH3)2N], 28.3 (C(O)CH3) ppm; IR (ATR): ν = 3071 w, 3001 w, 2975 w, 2881 w, 2835 w, 2792 w, 1615 m, 1593 m, 1515 s, 1469 m, 1455 m, 1411 m, 1390 s, 1354 m, 1290 m, 1252 m, 1190 w, 1166 w, 1128 w, 1101 w, 1061 w, 1032 m, 1013 s, 953 m, 936 w, 918 m, 798 m, 770 m, 754 m, 649 w, 584 w, 543 m, 474 w, 440 m, 405 s, 382 w, 208 s cm−1.

M.p.: 362 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. All hydrogen atoms were positioned geometrically and refined using a riding model with U iso(H) = 1.2(CH and CH2) or 1.5(CH3) times U eq(C). Reflections with error/e.s.d. > 8 were omitted. Error/e.s.d. = (wD 2/<wD 2>)0.5 where D = F o 2 - F c 2.

Table 5. Experimental details.

  1 2 3
Crystal data
Chemical formula [Mn(C5H7O2)2(C6H16N2)] [Fe(C5H7O2)2(C6H16N2)] [Zn(C5H7O2)2(C6H16N2)]
M r 369.36 370.27 379.79
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 213 213 200
a, b, c (Å) 10.4234 (4), 14.3123 (5), 13.6047 (5) 10.2021 (3), 15.4708 (4), 12.4881 (4) 10.2335 (3), 14.2134 (6), 13.6738 (5)
β (°) 103.154 (3) 95.382 (3) 101.208 (3)
V3) 1976.33 (13) 1962.37 (10) 1950.96 (12)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.69 0.79 1.28
Crystal size (mm) 0.35 × 0.25 × 0.20 0.26 × 0.25 × 0.23 0.45 × 0.39 × 0.33
 
Data collection
Diffractometer STOE IPDS 2 STOE IPDS 2 STOE IPDS 2T
Absorption correction Numerical (X-AREA; Stoe & Cie, 2016) Numerical (X-AREA; Stoe & Cie, 2016) Numerical (X-AREA; Stoe & Cie, 2016)
T min, T max 0.798, 0.912 0.814, 0.894 0.627, 0.779
No. of measured, independent and observed [I > 2σ(I)] reflections 12607, 4139, 3475 18586, 5276, 4425 22385, 4124, 3456
R int 0.030 0.037 0.047
(sin θ/λ)max−1) 0.634 0.688 0.633
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.099, 1.06 0.031, 0.086, 1.04 0.027, 0.076, 1.07
No. of reflections 4139 5276 4124
No. of parameters 216 216 216
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.24 0.32, −0.22 0.37, −0.26

Computer programs: X-AREA (Stoe & Cie, 2016), SHELXT2014/7 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2019) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989019016372/wm5524sup1.cif

e-76-00066-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989019016372/wm55241sup2.hkl

e-76-00066-1sup2.hkl (329.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989019016372/wm55242sup3.hkl

e-76-00066-2sup3.hkl (419.9KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989019016372/wm55243sup4.hkl

e-76-00066-3sup4.hkl (328.7KB, hkl)

CCDC references: 1969941, 1969940, 1969939

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank A. Kiowski for technical support.

supplementary crystallographic information

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) . Crystal data

[Mn(C5H7O2)2(C6H16N2)] F(000) = 788
Mr = 369.36 Dx = 1.241 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.4234 (4) Å Cell parameters from 13227 reflections
b = 14.3123 (5) Å θ = 1.4–27.2°
c = 13.6047 (5) Å µ = 0.69 mm1
β = 103.154 (3)° T = 213 K
V = 1976.33 (13) Å3 Block, clear yellow
Z = 4 0.35 × 0.25 × 0.20 mm

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) . Data collection

STOE IPDS 2 diffractometer 4139 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs 3475 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.030
Detector resolution: 6.67 pixels mm-1 θmax = 26.8°, θmin = 2.1°
rotation method scans h = −13→13
Absorption correction: numerical (X-AREA; Stoe & Cie, 2016) k = −17→18
Tmin = 0.798, Tmax = 0.912 l = −17→16
12607 measured reflections

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6571P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
4139 reflections Δρmax = 0.22 e Å3
216 parameters Δρmin = −0.24 e Å3

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn 0.50579 (2) 0.74721 (2) 0.49407 (2) 0.04120 (11)
O1 0.67069 (13) 0.65614 (9) 0.53426 (10) 0.0602 (3)
O2 0.64605 (12) 0.84003 (9) 0.45153 (11) 0.0554 (3)
O3 0.50538 (13) 0.83274 (9) 0.62280 (10) 0.0546 (3)
O4 0.38216 (14) 0.65820 (9) 0.55845 (10) 0.0565 (3)
N1 0.44810 (15) 0.65991 (11) 0.34289 (11) 0.0523 (4)
N2 0.33093 (14) 0.83481 (11) 0.39666 (12) 0.0533 (4)
C1 0.8801 (3) 0.5868 (2) 0.5617 (2) 0.0943 (9)
H1 0.8477 0.5484 0.6086 0.141*
H3 0.9667 0.6089 0.5928 0.141*
H2 0.8838 0.5506 0.5029 0.141*
C2 0.7888 (2) 0.66910 (16) 0.53114 (14) 0.0593 (5)
C3 0.8405 (2) 0.75159 (16) 0.50286 (17) 0.0664 (6)
H4 0.9308 0.7532 0.5070 0.080*
C4 0.76938 (18) 0.83223 (14) 0.46880 (15) 0.0568 (5)
C5 0.8448 (2) 0.91826 (18) 0.4505 (2) 0.0885 (8)
H5 0.9136 0.9006 0.4178 0.133*
H6 0.8827 0.9477 0.5138 0.133*
H7 0.7860 0.9611 0.4082 0.133*
C6 0.4607 (2) 0.89848 (16) 0.77048 (18) 0.0714 (6)
H8 0.5521 0.9144 0.7936 0.107*
H10 0.4263 0.8782 0.8267 0.107*
H9 0.4125 0.9522 0.7400 0.107*
C7 0.44674 (17) 0.82045 (13) 0.69347 (13) 0.0498 (4)
C8 0.3712 (2) 0.74328 (13) 0.70557 (16) 0.0568 (5)
H11 0.3367 0.7416 0.7629 0.068*
C9 0.34284 (19) 0.66822 (13) 0.63927 (15) 0.0558 (4)
C10 0.2576 (3) 0.59062 (18) 0.6645 (2) 0.0920 (9)
H12 0.2171 0.6107 0.7176 0.138*
H13 0.3109 0.5365 0.6861 0.138*
H14 0.1904 0.5754 0.6057 0.138*
C11 0.3189 (2) 0.69516 (18) 0.28808 (16) 0.0693 (6)
H16 0.2506 0.6684 0.3173 0.083*
H15 0.3030 0.6753 0.2182 0.083*
C12 0.3114 (2) 0.79961 (18) 0.29216 (16) 0.0703 (6)
H17 0.3781 0.8263 0.2612 0.084*
H18 0.2260 0.8199 0.2535 0.084*
C13 0.4397 (3) 0.55956 (14) 0.36410 (18) 0.0728 (6)
H20 0.3743 0.5496 0.4026 0.109*
H21 0.5236 0.5378 0.4018 0.109*
H19 0.4156 0.5258 0.3016 0.109*
C14 0.5481 (2) 0.67378 (17) 0.28339 (15) 0.0647 (5)
H24 0.5227 0.6403 0.2208 0.097*
H22 0.6316 0.6509 0.3207 0.097*
H23 0.5553 0.7392 0.2698 0.097*
C15 0.21051 (19) 0.82208 (18) 0.43395 (18) 0.0711 (6)
H25 0.1889 0.7568 0.4331 0.107*
H27 0.1393 0.8557 0.3914 0.107*
H26 0.2246 0.8454 0.5017 0.107*
C16 0.3638 (2) 0.93462 (15) 0.4003 (2) 0.0784 (7)
H29 0.2945 0.9685 0.3560 0.118*
H28 0.4448 0.9435 0.3793 0.118*
H30 0.3736 0.9572 0.4680 0.118*

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn 0.03895 (15) 0.04541 (18) 0.03899 (15) −0.00103 (10) 0.00838 (10) 0.00066 (10)
O1 0.0612 (8) 0.0613 (8) 0.0561 (8) 0.0159 (6) 0.0090 (6) 0.0076 (6)
O2 0.0433 (6) 0.0523 (7) 0.0725 (9) −0.0029 (5) 0.0168 (6) 0.0043 (6)
O3 0.0591 (7) 0.0537 (7) 0.0526 (7) −0.0101 (6) 0.0160 (6) −0.0103 (6)
O4 0.0700 (8) 0.0495 (7) 0.0567 (8) −0.0136 (6) 0.0282 (6) −0.0085 (6)
N1 0.0538 (8) 0.0612 (9) 0.0426 (8) −0.0076 (7) 0.0124 (6) −0.0048 (7)
N2 0.0431 (7) 0.0595 (9) 0.0546 (9) 0.0040 (7) 0.0054 (6) 0.0063 (7)
C1 0.0924 (18) 0.108 (2) 0.0744 (15) 0.0575 (16) 0.0027 (13) −0.0049 (14)
C2 0.0561 (11) 0.0758 (14) 0.0411 (9) 0.0216 (10) 0.0009 (8) −0.0109 (9)
C3 0.0392 (9) 0.0933 (17) 0.0658 (13) 0.0089 (10) 0.0100 (9) −0.0196 (11)
C4 0.0454 (9) 0.0699 (12) 0.0589 (11) −0.0094 (9) 0.0197 (8) −0.0190 (9)
C5 0.0657 (14) 0.0870 (17) 0.124 (2) −0.0267 (13) 0.0450 (15) −0.0239 (16)
C6 0.0770 (14) 0.0710 (14) 0.0676 (13) 0.0026 (11) 0.0191 (11) −0.0237 (11)
C7 0.0473 (9) 0.0556 (10) 0.0450 (9) 0.0070 (8) 0.0076 (7) −0.0062 (8)
C8 0.0628 (12) 0.0614 (12) 0.0525 (10) −0.0014 (9) 0.0262 (9) −0.0058 (8)
C9 0.0581 (10) 0.0560 (11) 0.0590 (11) −0.0039 (9) 0.0253 (9) −0.0014 (9)
C10 0.110 (2) 0.0822 (17) 0.104 (2) −0.0364 (15) 0.0658 (17) −0.0179 (15)
C11 0.0544 (11) 0.0974 (17) 0.0505 (11) −0.0062 (11) 0.0004 (9) −0.0157 (11)
C12 0.0594 (12) 0.0975 (17) 0.0483 (11) 0.0137 (11) 0.0000 (9) 0.0114 (11)
C13 0.1012 (17) 0.0554 (12) 0.0660 (13) −0.0177 (11) 0.0276 (12) −0.0174 (10)
C14 0.0666 (12) 0.0849 (15) 0.0466 (10) −0.0047 (11) 0.0210 (9) −0.0051 (10)
C15 0.0432 (10) 0.0931 (16) 0.0760 (14) 0.0085 (10) 0.0118 (9) 0.0033 (12)
C16 0.0653 (13) 0.0614 (13) 0.1024 (19) 0.0125 (10) 0.0063 (12) 0.0203 (12)

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) . Geometric parameters (Å, º)

Mn—O1 2.1271 (13) C6—H10 0.9600
Mn—O2 2.1500 (12) C6—H9 0.9600
Mn—O3 2.1375 (12) C6—C7 1.515 (3)
Mn—O4 2.1365 (12) C7—C8 1.388 (3)
Mn—N1 2.3643 (15) C8—H11 0.9300
Mn—N2 2.3560 (15) C8—C9 1.391 (3)
O1—C2 1.255 (2) C9—C10 1.510 (3)
O2—C4 1.258 (2) C10—H12 0.9600
O3—C7 1.263 (2) C10—H13 0.9600
O4—C9 1.266 (2) C10—H14 0.9600
N1—C11 1.472 (3) C11—H16 0.9700
N1—C13 1.472 (3) C11—H15 0.9700
N1—C14 1.472 (2) C11—C12 1.499 (4)
N2—C12 1.478 (3) C12—H17 0.9700
N2—C15 1.468 (2) C12—H18 0.9700
N2—C16 1.467 (3) C13—H20 0.9600
C1—H1 0.9600 C13—H21 0.9600
C1—H3 0.9600 C13—H19 0.9600
C1—H2 0.9600 C14—H24 0.9600
C1—C2 1.512 (3) C14—H22 0.9600
C2—C3 1.388 (3) C14—H23 0.9600
C3—H4 0.9300 C15—H25 0.9600
C3—C4 1.393 (3) C15—H27 0.9600
C4—C5 1.512 (3) C15—H26 0.9600
C5—H5 0.9600 C16—H29 0.9600
C5—H6 0.9600 C16—H28 0.9600
C5—H7 0.9600 C16—H30 0.9600
C6—H8 0.9600
O1—Mn—O2 83.61 (5) C7—C6—H8 109.5
O1—Mn—O3 107.00 (5) C7—C6—H10 109.5
O1—Mn—O4 93.25 (5) C7—C6—H9 109.5
O1—Mn—N1 86.01 (5) O3—C7—C6 115.89 (17)
O1—Mn—N2 161.29 (6) O3—C7—C8 125.92 (17)
O2—Mn—O3 89.71 (5) C8—C7—C6 118.18 (17)
O2—Mn—O4 171.63 (5) C7—C8—H11 117.2
O2—Mn—N1 98.41 (5) C7—C8—C9 125.50 (18)
O2—Mn—N2 90.36 (5) C9—C8—H11 117.2
O3—Mn—O4 83.78 (5) O4—C9—C8 125.99 (17)
O3—Mn—N1 165.43 (5) O4—C9—C10 115.94 (18)
O3—Mn—N2 90.61 (5) C8—C9—C10 118.07 (18)
O4—Mn—N1 89.07 (5) C9—C10—H12 109.5
O4—Mn—N2 94.95 (6) C9—C10—H13 109.5
N1—Mn—N2 77.34 (6) C9—C10—H14 109.5
C2—O1—Mn 129.95 (14) H12—C10—H13 109.5
C4—O2—Mn 128.56 (13) H12—C10—H14 109.5
C7—O3—Mn 129.44 (12) H13—C10—H14 109.5
C9—O4—Mn 129.29 (12) N1—C11—H16 109.2
C11—N1—Mn 106.37 (12) N1—C11—H15 109.2
C13—N1—Mn 111.10 (12) N1—C11—C12 111.88 (17)
C13—N1—C11 110.20 (18) H16—C11—H15 107.9
C13—N1—C14 108.71 (17) C12—C11—H16 109.2
C14—N1—Mn 109.60 (12) C12—C11—H15 109.2
C14—N1—C11 110.86 (16) N2—C12—C11 112.25 (17)
C12—N2—Mn 106.22 (12) N2—C12—H17 109.2
C15—N2—Mn 110.63 (12) N2—C12—H18 109.2
C15—N2—C12 110.40 (17) C11—C12—H17 109.2
C16—N2—Mn 110.75 (12) C11—C12—H18 109.2
C16—N2—C12 110.14 (18) H17—C12—H18 107.9
C16—N2—C15 108.69 (17) N1—C13—H20 109.5
H1—C1—H3 109.5 N1—C13—H21 109.5
H1—C1—H2 109.5 N1—C13—H19 109.5
H3—C1—H2 109.5 H20—C13—H21 109.5
C2—C1—H1 109.5 H20—C13—H19 109.5
C2—C1—H3 109.5 H21—C13—H19 109.5
C2—C1—H2 109.5 N1—C14—H24 109.5
O1—C2—C1 115.9 (2) N1—C14—H22 109.5
O1—C2—C3 125.51 (18) N1—C14—H23 109.5
C3—C2—C1 118.6 (2) H24—C14—H22 109.5
C2—C3—H4 117.1 H24—C14—H23 109.5
C2—C3—C4 125.86 (18) H22—C14—H23 109.5
C4—C3—H4 117.1 N2—C15—H25 109.5
O2—C4—C3 125.44 (19) N2—C15—H27 109.5
O2—C4—C5 116.4 (2) N2—C15—H26 109.5
C3—C4—C5 118.17 (19) H25—C15—H27 109.5
C4—C5—H5 109.5 H25—C15—H26 109.5
C4—C5—H6 109.5 H27—C15—H26 109.5
C4—C5—H7 109.5 N2—C16—H29 109.5
H5—C5—H6 109.5 N2—C16—H28 109.5
H5—C5—H7 109.5 N2—C16—H30 109.5
H6—C5—H7 109.5 H29—C16—H28 109.5
H8—C6—H10 109.5 H29—C16—H30 109.5
H8—C6—H9 109.5 H28—C16—H30 109.5
H10—C6—H9 109.5
Mn—O1—C2—C1 −177.50 (14) N1—C11—C12—N2 −60.6 (2)
Mn—O1—C2—C3 2.8 (3) C1—C2—C3—C4 177.1 (2)
Mn—O2—C4—C3 13.4 (3) C2—C3—C4—O2 −5.6 (3)
Mn—O2—C4—C5 −166.67 (16) C2—C3—C4—C5 174.5 (2)
Mn—O3—C7—C6 −176.26 (13) C6—C7—C8—C9 176.5 (2)
Mn—O3—C7—C8 3.2 (3) C7—C8—C9—O4 0.7 (4)
Mn—O4—C9—C8 1.1 (3) C7—C8—C9—C10 −179.4 (2)
Mn—O4—C9—C10 −178.82 (17) C13—N1—C11—C12 162.74 (17)
Mn—N1—C11—C12 42.22 (19) C14—N1—C11—C12 −76.9 (2)
Mn—N2—C12—C11 42.41 (19) C15—N2—C12—C11 −77.6 (2)
O1—C2—C3—C4 −3.2 (3) C16—N2—C12—C11 162.39 (17)
O3—C7—C8—C9 −3.0 (3)

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Crystal data

[Fe(C5H7O2)2(C6H16N2)] F(000) = 792
Mr = 370.27 Dx = 1.253 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.2021 (3) Å Cell parameters from 16780 reflections
b = 15.4708 (4) Å θ = 1.6–29.6°
c = 12.4881 (4) Å µ = 0.79 mm1
β = 95.382 (3)° T = 213 K
V = 1962.37 (10) Å3 Block, clear reddish brown
Z = 4 0.26 × 0.25 × 0.23 mm

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Data collection

STOE IPDS 2 diffractometer 5276 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs 4425 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.037
Detector resolution: 6.67 pixels mm-1 θmax = 29.3°, θmin = 2.1°
rotation method scans h = −13→13
Absorption correction: numerical (X-AREA; Stoe & Cie, 2016) k = −21→20
Tmin = 0.814, Tmax = 0.894 l = −17→17
18586 measured reflections

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3681P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
5276 reflections Δρmax = 0.32 e Å3
216 parameters Δρmin = −0.22 e Å3

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.63613 (15) 0.53037 (11) 0.42322 (12) 0.0444 (3)
H2 0.5847 0.4797 0.4338 0.067*
H3 0.7061 0.5160 0.3800 0.067*
H1 0.5810 0.5739 0.3874 0.067*
C2 0.69359 (13) 0.56425 (9) 0.53071 (11) 0.0352 (3)
C3 0.81769 (14) 0.53357 (9) 0.57243 (12) 0.0396 (3)
H4 0.8603 0.4948 0.5305 0.047*
C4 0.88149 (13) 0.55660 (9) 0.67116 (12) 0.0388 (3)
C5 1.01582 (16) 0.51923 (13) 0.70525 (16) 0.0584 (4)
H7 1.0343 0.4733 0.6572 0.088*
H5 1.0172 0.4970 0.7771 0.088*
H6 1.0813 0.5636 0.7031 0.088*
C6 0.39240 (17) 0.48770 (10) 0.87153 (14) 0.0496 (4)
H10 0.3000 0.4817 0.8499 0.074*
H9 0.4064 0.4888 0.9486 0.074*
H8 0.4391 0.4397 0.8446 0.074*
C7 0.44227 (13) 0.57093 (9) 0.82668 (11) 0.0359 (3)
C8 0.35444 (13) 0.64029 (10) 0.81410 (12) 0.0379 (3)
H11 0.2707 0.6321 0.8359 0.046*
C9 0.38200 (13) 0.72026 (9) 0.77178 (11) 0.0350 (3)
C10 0.27918 (16) 0.79023 (12) 0.77050 (16) 0.0542 (4)
H14 0.2694 0.8171 0.7009 0.081*
H13 0.3059 0.8328 0.8241 0.081*
H12 0.1967 0.7654 0.7857 0.081*
C11 0.78186 (19) 0.85071 (11) 0.76164 (14) 0.0537 (4)
H16 0.7020 0.8793 0.7792 0.064*
H15 0.8440 0.8949 0.7446 0.064*
C12 0.83901 (17) 0.80004 (13) 0.85721 (14) 0.0545 (4)
H17 0.9192 0.7718 0.8398 0.065*
H18 0.8617 0.8393 0.9167 0.065*
C13 0.6596 (2) 0.83936 (13) 0.58754 (16) 0.0593 (4)
H19 0.6381 0.8022 0.5269 0.089*
H21 0.7000 0.8912 0.5641 0.089*
H20 0.5807 0.8539 0.6198 0.089*
C14 0.87086 (16) 0.77473 (12) 0.61406 (14) 0.0519 (4)
H24 0.9042 0.8268 0.5847 0.078*
H22 0.8499 0.7338 0.5572 0.078*
H23 0.9363 0.7506 0.6658 0.078*
C15 0.64471 (18) 0.77489 (13) 0.94987 (14) 0.0549 (4)
H26 0.5825 0.7319 0.9677 0.082*
H25 0.6001 0.8188 0.9060 0.082*
H27 0.6853 0.8005 1.0147 0.082*
C16 0.8174 (2) 0.67090 (14) 0.96194 (14) 0.0619 (5)
H29 0.8834 0.6428 0.9244 0.093*
H28 0.7566 0.6286 0.9840 0.093*
H30 0.8587 0.7000 1.0242 0.093*
Fe 0.65967 (2) 0.67126 (2) 0.73081 (2) 0.03242 (7)
N1 0.75139 (12) 0.79468 (8) 0.66685 (10) 0.0407 (3)
N2 0.74634 (12) 0.73421 (9) 0.89046 (10) 0.0418 (3)
O1 0.62568 (9) 0.61851 (7) 0.57684 (8) 0.0395 (2)
O2 0.83743 (9) 0.60880 (7) 0.73746 (9) 0.0426 (2)
O3 0.55981 (10) 0.57212 (6) 0.80388 (9) 0.0414 (2)
O4 0.48936 (9) 0.74134 (6) 0.73429 (8) 0.0384 (2)

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0435 (7) 0.0512 (8) 0.0393 (7) −0.0086 (6) 0.0082 (6) −0.0108 (6)
C2 0.0360 (6) 0.0341 (6) 0.0368 (7) −0.0081 (5) 0.0096 (5) −0.0039 (5)
C3 0.0380 (7) 0.0368 (7) 0.0453 (8) 0.0022 (5) 0.0111 (6) −0.0064 (6)
C4 0.0301 (6) 0.0407 (7) 0.0465 (8) 0.0000 (5) 0.0089 (5) 0.0000 (6)
C5 0.0374 (8) 0.0703 (12) 0.0670 (11) 0.0127 (8) 0.0019 (7) −0.0056 (9)
C6 0.0539 (9) 0.0434 (8) 0.0515 (9) −0.0121 (7) 0.0050 (7) 0.0076 (7)
C7 0.0380 (6) 0.0369 (7) 0.0328 (6) −0.0079 (5) 0.0028 (5) −0.0029 (5)
C8 0.0303 (6) 0.0435 (7) 0.0413 (7) −0.0049 (5) 0.0102 (5) −0.0045 (6)
C9 0.0315 (6) 0.0393 (7) 0.0349 (6) 0.0017 (5) 0.0056 (5) −0.0047 (5)
C10 0.0439 (8) 0.0539 (9) 0.0670 (11) 0.0149 (7) 0.0163 (7) 0.0022 (8)
C11 0.0674 (11) 0.0428 (8) 0.0540 (10) −0.0207 (8) 0.0222 (8) −0.0125 (7)
C12 0.0508 (9) 0.0685 (11) 0.0451 (9) −0.0275 (8) 0.0092 (7) −0.0158 (8)
C13 0.0626 (11) 0.0614 (11) 0.0559 (10) −0.0011 (8) 0.0154 (8) 0.0167 (8)
C14 0.0496 (8) 0.0561 (9) 0.0537 (9) −0.0149 (7) 0.0247 (7) −0.0073 (7)
C15 0.0550 (9) 0.0690 (11) 0.0429 (8) −0.0094 (8) 0.0167 (7) −0.0164 (8)
C16 0.0650 (11) 0.0792 (13) 0.0401 (9) 0.0011 (9) −0.0027 (8) −0.0002 (8)
Fe 0.02688 (10) 0.03490 (11) 0.03626 (11) −0.00268 (7) 0.00714 (7) −0.00567 (7)
N1 0.0432 (6) 0.0415 (6) 0.0395 (6) −0.0086 (5) 0.0147 (5) −0.0039 (5)
N2 0.0395 (6) 0.0513 (7) 0.0354 (6) −0.0101 (5) 0.0077 (5) −0.0055 (5)
O1 0.0329 (5) 0.0440 (5) 0.0416 (5) 0.0005 (4) 0.0028 (4) −0.0112 (4)
O2 0.0313 (5) 0.0535 (6) 0.0429 (5) 0.0021 (4) 0.0031 (4) −0.0100 (5)
O3 0.0352 (5) 0.0352 (5) 0.0543 (6) −0.0009 (4) 0.0075 (4) 0.0014 (4)
O4 0.0349 (5) 0.0348 (5) 0.0471 (5) 0.0018 (4) 0.0124 (4) 0.0023 (4)

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Geometric parameters (Å, º)

C1—H2 0.9600 C11—C12 1.499 (3)
C1—H3 0.9600 C11—N1 1.477 (2)
C1—H1 0.9600 C12—H17 0.9700
C1—C2 1.5076 (19) C12—H18 0.9700
C2—C3 1.406 (2) C12—N2 1.475 (2)
C2—O1 1.2615 (16) C13—H19 0.9600
C3—H4 0.9300 C13—H21 0.9600
C3—C4 1.386 (2) C13—H20 0.9600
C4—C5 1.511 (2) C13—N1 1.471 (2)
C4—O2 1.2687 (17) C14—H24 0.9600
C5—H7 0.9600 C14—H22 0.9600
C5—H5 0.9600 C14—H23 0.9600
C5—H6 0.9600 C14—N1 1.4718 (19)
C6—H10 0.9600 C15—H26 0.9600
C6—H9 0.9600 C15—H25 0.9600
C6—H8 0.9600 C15—H27 0.9600
C6—C7 1.511 (2) C15—N2 1.472 (2)
C7—C8 1.397 (2) C16—H29 0.9600
C7—O3 1.2583 (17) C16—H28 0.9600
C8—H11 0.9300 C16—H30 0.9600
C8—C9 1.385 (2) C16—N2 1.470 (2)
C9—C10 1.506 (2) Fe—O1 2.0876 (10)
C9—O4 1.2734 (16) Fe—O2 2.0497 (10)
C10—H14 0.9600 Fe—O3 2.0970 (10)
C10—H13 0.9600 Fe—O4 2.0520 (9)
C10—H12 0.9600 Fe—N1 2.3021 (12)
C11—H16 0.9700 Fe—N2 2.3184 (12)
C11—H15 0.9700
H2—C1—H3 109.5 H19—C13—H20 109.5
H2—C1—H1 109.5 H21—C13—H20 109.5
H3—C1—H1 109.5 N1—C13—H19 109.5
C2—C1—H2 109.5 N1—C13—H21 109.5
C2—C1—H3 109.5 N1—C13—H20 109.5
C2—C1—H1 109.5 H24—C14—H22 109.5
C3—C2—C1 118.30 (12) H24—C14—H23 109.5
O1—C2—C1 116.98 (13) H22—C14—H23 109.5
O1—C2—C3 124.72 (13) N1—C14—H24 109.5
C2—C3—H4 117.5 N1—C14—H22 109.5
C4—C3—C2 125.07 (13) N1—C14—H23 109.5
C4—C3—H4 117.5 H26—C15—H25 109.5
C3—C4—C5 119.35 (14) H26—C15—H27 109.5
O2—C4—C3 125.36 (13) H25—C15—H27 109.5
O2—C4—C5 115.28 (14) N2—C15—H26 109.5
C4—C5—H7 109.5 N2—C15—H25 109.5
C4—C5—H5 109.5 N2—C15—H27 109.5
C4—C5—H6 109.5 H29—C16—H28 109.5
H7—C5—H5 109.5 H29—C16—H30 109.5
H7—C5—H6 109.5 H28—C16—H30 109.5
H5—C5—H6 109.5 N2—C16—H29 109.5
H10—C6—H9 109.5 N2—C16—H28 109.5
H10—C6—H8 109.5 N2—C16—H30 109.5
H9—C6—H8 109.5 O1—Fe—O2 85.58 (4)
C7—C6—H10 109.5 O1—Fe—O3 93.98 (4)
C7—C6—H9 109.5 O1—Fe—O4 99.11 (4)
C7—C6—H8 109.5 O1—Fe—N1 92.44 (4)
C8—C7—C6 117.47 (13) O1—Fe—N2 166.73 (4)
O3—C7—C6 117.22 (13) O2—Fe—O3 95.84 (4)
O3—C7—C8 125.31 (13) O2—Fe—O4 174.85 (4)
C7—C8—H11 117.3 O2—Fe—N1 91.04 (5)
C9—C8—C7 125.32 (12) O2—Fe—N2 84.18 (4)
C9—C8—H11 117.3 O3—Fe—O4 86.00 (4)
C8—C9—C10 118.69 (13) O3—Fe—N1 170.93 (4)
O4—C9—C8 125.57 (12) O3—Fe—N2 95.43 (4)
O4—C9—C10 115.74 (13) O4—Fe—N1 86.66 (4)
C9—C10—H14 109.5 O4—Fe—N2 90.87 (4)
C9—C10—H13 109.5 N1—Fe—N2 79.35 (4)
C9—C10—H12 109.5 C11—N1—Fe 105.70 (9)
H14—C10—H13 109.5 C13—N1—C11 109.69 (14)
H14—C10—H12 109.5 C13—N1—C14 107.39 (13)
H13—C10—H12 109.5 C13—N1—Fe 111.69 (10)
H16—C11—H15 108.0 C14—N1—C11 111.18 (13)
C12—C11—H16 109.3 C14—N1—Fe 111.24 (10)
C12—C11—H15 109.3 C12—N2—Fe 104.52 (9)
N1—C11—H16 109.3 C15—N2—C12 110.31 (14)
N1—C11—H15 109.3 C15—N2—Fe 112.54 (10)
N1—C11—C12 111.60 (14) C16—N2—C12 109.77 (14)
C11—C12—H17 109.2 C16—N2—C15 108.03 (14)
C11—C12—H18 109.2 C16—N2—Fe 111.65 (10)
H17—C12—H18 107.9 C2—O1—Fe 129.04 (9)
N2—C12—C11 111.91 (13) C4—O2—Fe 129.79 (9)
N2—C12—H17 109.2 C7—O3—Fe 128.42 (10)
N2—C12—H18 109.2 C9—O4—Fe 129.18 (9)
H19—C13—H21 109.5

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H2···O1i 0.96 2.62 3.5269 (18) 157

Symmetry code: (i) −x+1, −y+1, −z+1.

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) . Crystal data

[Zn(C5H7O2)2(C6H16N2)] F(000) = 808
Mr = 379.79 Dx = 1.293 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.2335 (3) Å Cell parameters from 19126 reflections
b = 14.2134 (6) Å θ = 2.1–27.2°
c = 13.6738 (5) Å µ = 1.28 mm1
β = 101.208 (3)° T = 200 K
V = 1950.96 (12) Å3 Block, clear colourless
Z = 4 0.45 × 0.39 × 0.33 mm

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) . Data collection

STOE IPDS 2T diffractometer 3456 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.047
rotation method, ω scans θmax = 26.7°, θmin = 2.1°
Absorption correction: numerical (X-AREA; Stoe & Cie, 2016) h = −12→12
Tmin = 0.627, Tmax = 0.779 k = −17→16
22385 measured reflections l = −17→17
4124 independent reflections

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0494P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4124 reflections Δρmax = 0.37 e Å3
216 parameters Δρmin = −0.26 e Å3

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.74026 (2) 0.26429 (2) 0.54676 (2) 0.03991 (8)
O1 0.73445 (12) 0.33774 (8) 0.41466 (9) 0.0534 (3)
O2 0.85986 (11) 0.16705 (8) 0.49492 (8) 0.0507 (3)
O3 0.57869 (11) 0.17554 (8) 0.50853 (9) 0.0529 (3)
O4 0.61242 (9) 0.36299 (8) 0.58630 (8) 0.0441 (2)
N1 0.91461 (12) 0.35505 (11) 0.62041 (10) 0.0499 (3)
N2 0.78674 (12) 0.19573 (11) 0.69813 (10) 0.0459 (3)
C1 0.76595 (19) 0.38103 (13) 0.25509 (13) 0.0575 (4)
H1 0.6725 0.4006 0.2373 0.086*
H2 0.7922 0.3504 0.1977 0.086*
H3 0.8222 0.4363 0.2743 0.086*
C2 0.78276 (15) 0.31277 (12) 0.34146 (11) 0.0450 (4)
C3 0.85137 (17) 0.22957 (12) 0.33344 (13) 0.0492 (4)
H4 0.8764 0.2169 0.2714 0.059*
C4 0.88628 (15) 0.16331 (12) 0.40893 (12) 0.0462 (4)
C5 0.9672 (2) 0.07864 (15) 0.38836 (14) 0.0672 (5)
H5 1.0493 0.0752 0.4389 0.101*
H6 0.9896 0.0849 0.3222 0.101*
H7 0.9149 0.0212 0.3907 0.101*
C6 0.3632 (2) 0.11210 (15) 0.48710 (15) 0.0691 (5)
H8 0.3797 0.0646 0.5401 0.104*
H9 0.3758 0.0838 0.4242 0.104*
H10 0.2717 0.1354 0.4796 0.104*
C7 0.45930 (16) 0.19273 (13) 0.51387 (11) 0.0476 (4)
C8 0.41127 (15) 0.27812 (12) 0.54200 (12) 0.0475 (4)
H11 0.3180 0.2826 0.5391 0.057*
C9 0.48712 (14) 0.35764 (11) 0.57395 (11) 0.0412 (3)
C10 0.41684 (16) 0.44556 (13) 0.59729 (13) 0.0554 (4)
H12 0.3393 0.4283 0.6257 0.083*
H13 0.3875 0.4817 0.5359 0.083*
H14 0.4780 0.4838 0.6454 0.083*
C11 0.93211 (19) 0.33443 (17) 0.72727 (14) 0.0676 (5)
H15 0.8644 0.3692 0.7556 0.081*
H16 1.0212 0.3563 0.7615 0.081*
C12 0.91917 (19) 0.23151 (16) 0.74583 (15) 0.0651 (5)
H17 0.9887 0.1969 0.7194 0.078*
H18 0.9335 0.2200 0.8185 0.078*
C13 0.88618 (18) 0.45547 (14) 0.60157 (16) 0.0671 (5)
H19 0.9629 0.4929 0.6341 0.101*
H20 0.8076 0.4732 0.6285 0.101*
H21 0.8691 0.4673 0.5296 0.101*
C14 1.03600 (16) 0.33196 (16) 0.58256 (16) 0.0651 (5)
H22 1.0212 0.3449 0.5108 0.098*
H23 1.0573 0.2652 0.5944 0.098*
H24 1.1102 0.3704 0.6172 0.098*
C15 0.68709 (18) 0.21961 (14) 0.75840 (13) 0.0560 (4)
H25 0.6835 0.2881 0.7660 0.084*
H26 0.7118 0.1902 0.8243 0.084*
H27 0.5995 0.1964 0.7251 0.084*
C16 0.7902 (2) 0.09286 (14) 0.68935 (15) 0.0680 (5)
H28 0.7024 0.0700 0.6562 0.102*
H29 0.8137 0.0649 0.7560 0.102*
H30 0.8568 0.0750 0.6500 0.102*

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.03590 (11) 0.04475 (13) 0.04087 (12) 0.00666 (7) 0.01186 (8) −0.00208 (7)
O1 0.0628 (7) 0.0534 (7) 0.0470 (6) 0.0178 (6) 0.0187 (5) 0.0051 (5)
O2 0.0555 (6) 0.0545 (7) 0.0465 (6) 0.0158 (5) 0.0204 (5) 0.0024 (5)
O3 0.0488 (6) 0.0496 (7) 0.0592 (7) −0.0007 (5) 0.0078 (5) −0.0096 (5)
O4 0.0335 (5) 0.0470 (6) 0.0538 (6) 0.0028 (4) 0.0136 (4) −0.0040 (5)
N1 0.0353 (6) 0.0602 (9) 0.0557 (8) −0.0041 (6) 0.0125 (6) −0.0053 (7)
N2 0.0431 (7) 0.0537 (8) 0.0422 (7) 0.0079 (6) 0.0114 (5) 0.0024 (6)
C1 0.0653 (11) 0.0582 (11) 0.0492 (10) −0.0021 (9) 0.0114 (8) 0.0046 (8)
C2 0.0406 (8) 0.0525 (10) 0.0417 (8) −0.0032 (7) 0.0077 (6) −0.0012 (7)
C3 0.0529 (9) 0.0559 (10) 0.0417 (9) 0.0035 (7) 0.0163 (7) −0.0050 (7)
C4 0.0444 (8) 0.0481 (9) 0.0485 (9) 0.0042 (7) 0.0149 (7) −0.0079 (7)
C5 0.0817 (13) 0.0620 (12) 0.0632 (11) 0.0230 (10) 0.0271 (10) −0.0048 (9)
C6 0.0680 (12) 0.0741 (14) 0.0632 (12) −0.0250 (10) 0.0074 (9) −0.0086 (10)
C7 0.0474 (8) 0.0576 (10) 0.0356 (8) −0.0083 (8) 0.0028 (6) 0.0009 (7)
C8 0.0323 (7) 0.0653 (11) 0.0451 (9) −0.0004 (7) 0.0081 (6) 0.0028 (7)
C9 0.0368 (7) 0.0515 (9) 0.0370 (8) 0.0066 (6) 0.0113 (6) 0.0068 (6)
C10 0.0443 (8) 0.0596 (11) 0.0674 (11) 0.0127 (7) 0.0233 (8) 0.0043 (8)
C11 0.0517 (10) 0.0963 (16) 0.0527 (11) −0.0182 (10) 0.0053 (8) −0.0141 (10)
C12 0.0449 (9) 0.0990 (16) 0.0484 (10) 0.0056 (9) 0.0017 (8) 0.0119 (10)
C13 0.0529 (10) 0.0562 (11) 0.0935 (14) −0.0131 (9) 0.0175 (10) −0.0120 (10)
C14 0.0375 (8) 0.0825 (14) 0.0785 (13) −0.0044 (8) 0.0194 (8) −0.0032 (11)
C15 0.0540 (10) 0.0724 (12) 0.0452 (9) 0.0086 (8) 0.0183 (8) 0.0043 (8)
C16 0.0905 (14) 0.0552 (11) 0.0627 (11) 0.0198 (10) 0.0256 (10) 0.0137 (9)

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) . Geometric parameters (Å, º)

Zn—O1 2.0771 (12) C6—H9 0.9800
Zn—O2 2.0611 (11) C6—H10 0.9800
Zn—O3 2.0645 (11) C6—C7 1.508 (2)
Zn—O4 2.0607 (10) C7—C8 1.391 (3)
Zn—N1 2.2722 (13) C8—H11 0.9500
Zn—N2 2.2533 (13) C8—C9 1.393 (2)
O1—C2 1.2509 (19) C9—C10 1.507 (2)
O2—C4 1.2578 (19) C10—H12 0.9800
O3—C7 1.2619 (19) C10—H13 0.9800
O4—C9 1.2626 (17) C10—H14 0.9800
N1—C11 1.467 (2) C11—H15 0.9900
N1—C13 1.469 (2) C11—H16 0.9900
N1—C14 1.473 (2) C11—C12 1.495 (3)
N2—C12 1.476 (2) C12—H17 0.9900
N2—C15 1.470 (2) C12—H18 0.9900
N2—C16 1.468 (2) C13—H19 0.9800
C1—H1 0.9800 C13—H20 0.9800
C1—H2 0.9800 C13—H21 0.9800
C1—H3 0.9800 C14—H22 0.9800
C1—C2 1.512 (2) C14—H23 0.9800
C2—C3 1.390 (2) C14—H24 0.9800
C3—H4 0.9500 C15—H25 0.9800
C3—C4 1.392 (2) C15—H26 0.9800
C4—C5 1.518 (2) C15—H27 0.9800
C5—H5 0.9800 C16—H28 0.9800
C5—H6 0.9800 C16—H29 0.9800
C5—H7 0.9800 C16—H30 0.9800
C6—H8 0.9800
O1—Zn—O2 87.50 (4) C7—C6—H8 109.5
O1—Zn—O3 101.58 (5) C7—C6—H9 109.5
O1—Zn—O4 88.49 (4) C7—C6—H10 109.5
O1—Zn—N1 89.28 (5) O3—C7—C6 115.59 (16)
O1—Zn—N2 168.94 (5) O3—C7—C8 125.65 (15)
O2—Zn—O3 90.18 (5) C8—C7—C6 118.76 (16)
O2—Zn—O4 175.16 (4) C7—C8—H11 116.9
O2—Zn—N1 93.76 (5) C7—C8—C9 126.12 (15)
O2—Zn—N2 89.57 (5) C9—C8—H11 116.9
O3—Zn—O4 87.96 (4) O4—C9—C8 125.48 (15)
O3—Zn—N1 168.61 (5) O4—C9—C10 115.84 (15)
O3—Zn—N2 89.09 (5) C8—C9—C10 118.67 (13)
O4—Zn—N1 88.92 (5) C9—C10—H12 109.5
O4—Zn—N2 94.86 (5) C9—C10—H13 109.5
N1—Zn—N2 80.27 (5) C9—C10—H14 109.5
C2—O1—Zn 127.18 (11) H12—C10—H13 109.5
C4—O2—Zn 126.86 (11) H12—C10—H14 109.5
C7—O3—Zn 127.15 (11) H13—C10—H14 109.5
C9—O4—Zn 127.15 (10) N1—C11—H15 109.3
C11—N1—Zn 105.16 (10) N1—C11—H16 109.3
C11—N1—C13 110.51 (16) N1—C11—C12 111.53 (16)
C11—N1—C14 110.95 (15) H15—C11—H16 108.0
C13—N1—Zn 111.23 (10) C12—C11—H15 109.3
C13—N1—C14 107.86 (15) C12—C11—H16 109.3
C14—N1—Zn 111.17 (11) N2—C12—C11 111.49 (15)
C12—N2—Zn 105.59 (11) N2—C12—H17 109.3
C15—N2—Zn 111.69 (10) N2—C12—H18 109.3
C15—N2—C12 110.50 (15) C11—C12—H17 109.3
C16—N2—Zn 111.08 (11) C11—C12—H18 109.3
C16—N2—C12 110.16 (14) H17—C12—H18 108.0
C16—N2—C15 107.84 (15) N1—C13—H19 109.5
H1—C1—H2 109.5 N1—C13—H20 109.5
H1—C1—H3 109.5 N1—C13—H21 109.5
H2—C1—H3 109.5 H19—C13—H20 109.5
C2—C1—H1 109.5 H19—C13—H21 109.5
C2—C1—H2 109.5 H20—C13—H21 109.5
C2—C1—H3 109.5 N1—C14—H22 109.5
O1—C2—C1 116.12 (15) N1—C14—H23 109.5
O1—C2—C3 126.06 (16) N1—C14—H24 109.5
C3—C2—C1 117.82 (15) H22—C14—H23 109.5
C2—C3—H4 117.4 H22—C14—H24 109.5
C2—C3—C4 125.30 (15) H23—C14—H24 109.5
C4—C3—H4 117.4 N2—C15—H25 109.5
O2—C4—C3 126.43 (15) N2—C15—H26 109.5
O2—C4—C5 115.53 (15) N2—C15—H27 109.5
C3—C4—C5 118.02 (15) H25—C15—H26 109.5
C4—C5—H5 109.5 H25—C15—H27 109.5
C4—C5—H6 109.5 H26—C15—H27 109.5
C4—C5—H7 109.5 N2—C16—H28 109.5
H5—C5—H6 109.5 N2—C16—H29 109.5
H5—C5—H7 109.5 N2—C16—H30 109.5
H6—C5—H7 109.5 H28—C16—H29 109.5
H8—C6—H9 109.5 H28—C16—H30 109.5
H8—C6—H10 109.5 H29—C16—H30 109.5
H9—C6—H10 109.5

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant Open Access Publishing.

References

  1. Albrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233–240.
  2. Barreca, D., Carraro, G., Devi, A., Fois, E., Gasparotto, A., Seraglia, R., Maccato, C., Sada, C., Tabacchi, G., Tondello, E., Venzo, A. & Winter, M. (2012). Dalton Trans. 41, 149–155. [DOI] [PubMed]
  3. Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140–m143. [DOI] [PubMed]
  4. Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Dickman, M. H. (1998). Acta Cryst. C54 IUC9800048.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Gorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). Eur. J. Inorg. Chem. pp. 2255–2261.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Halbach, R. L., Nocton, G. & Andersen, R. A. (2012). Dalton Trans. 41, 8809–8812. [DOI] [PubMed]
  10. Harbach, P., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, m724–m725.
  11. Kaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525–532.
  12. Ma, Y. M., Reardon, D., Gambarotta, S., Yap, G., Zahalka, H. & Lemay, C. (1999). Organometallics, 18, 2773–2781.
  13. Malandrino, G., Toro, R. G., Catalano, M. R., Fragalà, M. E., Rossi, P. & Paoli, P. (2012). Eur. J. Inorg. Chem. pp.1021–1024.
  14. Montgomery, H. & Lingafelter, E. C. (1968). Acta Cryst. B24, 1127–1128.
  15. Nelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645–2659.
  16. Ni, J., Yan, H., Wang, A., Yang, Y., Stern, C. L., Metz, A. W., Jin, S., Wang, L., Marks, T. J., Ireland, J. R. & Kannewurf, C. R. (2005). J. Am. Chem. Soc. 127, 5613–5624. [DOI] [PubMed]
  17. Novitchi, G., Jiang, S., Shova, S., Rida, F., Hlavička, I., Orlita, M., Wernsdorfer, W., Hamze, R., Martins, C., Suaud, N., Guihéry, N., Barra, A.-L. & Train, C. (2017). Inorg. Chem. 56, 14809–14822. [DOI] [PubMed]
  18. Pasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). Polyhedron, 23, 735–741.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Stephens, F. S. (1977). Acta Cryst. B33, 3492–3495.
  23. Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.
  24. Trimmel, G., Lembacher, C., Kickelbick, G. & Schubert, U. (2002). New J. Chem. 26, 759–765.
  25. Tsodikov, M. V., Bukhtenko, O. V., Ellert, O. G., Petrunenko, I. A., Antsyshkina, A. S., Sadikov, G. G., Maksimov, Y. V., Titov, Y. V. & Novotortsev, V. M. (1995). Russ. Chem. Bull. 44, 1396–1400.
  26. Zeller, A., Herdtweck, E. & Strassner, Th. (2004). Inorg. Chem. Commun. 7, 296–301.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989019016372/wm5524sup1.cif

e-76-00066-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989019016372/wm55241sup2.hkl

e-76-00066-1sup2.hkl (329.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989019016372/wm55242sup3.hkl

e-76-00066-2sup3.hkl (419.9KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989019016372/wm55243sup4.hkl

e-76-00066-3sup4.hkl (328.7KB, hkl)

CCDC references: 1969941, 1969940, 1969939

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES