Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):32–37. doi: 10.1107/S2056989019016268

Synthesis and crystal structure of catena-poly[[bis[(2,2′;6′,2′′-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

Felix Danker a, Christian Näther a, Wolfgang Bensch a,*
PMCID: PMC6944084  PMID: 31921448

In the crystal structure of the title compound, two [Sb2S5 [anions built up of two SbS3 units sharing common corners with each linked by two [Mn(terpyridine)]2+ cations into chains that are further linked into a 3D network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonding.

Keywords: crystal structure,thio­anti­monate; chain compound; hydrogen bonding

Abstract

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.

Chemical context  

Inorganic–organic chalcogenidometallates are an important class of compounds that have been systematically investigated for several decades (Sheldrick & Wachhold, 1998; Dehnen & Melullis, 2007; Zhou et al., 2009; Seidlhofer et al., 2010; Wang et al., 2016; Zhou, 2016; Zhu & Dai, 2017). Therefore, a variety of compounds have been reported and some of them have potential for applications in different fields (Seidlhofer et al., 2011; Nie et al., 2014, 2016, 2017; Yue et al.; 2014). In this context, thio­anti­monates and thio­selenates are of special inter­est because they consist of primary building units that show a variety of coordination numbers, which can be traced back to the lone electron pair of anti­mony (Bensch et al., 1997; Spetzler et al., 2004; Stähler et al., 2001; Lühmann et al., 2008). These primary building units can be further linked into discrete anions or networks of different dimensionality (Jia et al., 2004; Powell et al., 2005; Zhang et al., 2007; Liu & Zhou, 2011). This is the main reason why we have been inter­ested in this class of compounds for many years.

In the course of these investigations we have prepared compounds with the general composition Mn2 LSb2S5 or Mn2 L 2Sb2S5 with L as an mono-coordinating or a bis-chelating amine ligand such as, for example, methyl­amine, ethyl­amine, ethyl­enedi­amine or 1,3-di­amino­propane (Bensch & Schur, 1996; Schur & Bensch, 2002; Schur et al., 2001). All of these compounds consist of SbS3 pyramids as primary building units as well as MnS6 and MnS4N2 distorted octa­hedra. These units are linked to form Mn2Sb2S4 hetero-cubane-like units that share common corners, edges and faces with a neighbouring heterocubane unit. These secondary building units are inter­connected into layers. Within the MnSbS network, the SbS3 pyramids are linked via common edges into chains. Thus, no discrete [Sb2S5]4− anions are present. The N atoms of the amine ligands in these compounds are coordinated to the MnII ions and are always in the cis-position, thus arranged to form extended networks via Mn—S bond formation. Similar compounds have also been reported with 1,3-di­amino­pentane, di­ethyl­enetri­amine and N-methyl-1,3-di­amino­propane as ligands (Puls et al., 2006; Engelke et al., 2004). It is noted that di­ethyl­enetri­amine acts as a bis-chelating ligand, because the central N atom is not involved in the Mn coordination.

To reduce the dimensionality of the MnSbS network that might allow access to discrete [Sb2S5]4− anions, we used the tetra­dentate ligand tris­(2-amino­eth­yl)amine for the synthesis of such MnSbS compounds. In this case, a compound with the composition Mn2(tris­(2-amino­eth­yl)amine)2Sb2S5 was obtained, in which all four N atoms of the amine ligand are involved in the Mn coordination (Schaefer et al., 2004). In this case, only two of the six coordination sites of the MnII cations are accessible for Mn—S bond formation. This compound consists of discrete [Sb2S5]4− anions, in which two SbS3 pyramids are joined together via a common sulfur atom, which is in contrast to the compound mentioned above, where the SbS3 units are linked by common sulfur edges into chains. These anions are connected to two [Mn(tris­(2-amino­eth­yl)amine)]2+ cations via the cis-coordinating terminal S atoms, forming discrete units instead of the condensed networks with mono-coordinating or bis-chelating ligands.graphic file with name e-76-00032-scheme1.jpg

Based on these results, the question arose as to what kind of compound would be obtained with a tris-chelate ligand, in which all three N atoms are coordinated to the MnII ions but no such compound was obtained. In this context it is noted that all of these thio­anti­monates were prepared under solvothermal conditions using the elements as educts, but in future work we developed an alternative synthetic route using Na3SbS3 as reactant, for which the synthesis of such compounds is easier. Therefore, the tris-chelating ligand 2,2′;6′,2′′-terpyridine was reacted with Na3SbS3, leading to the formation of a new manganese thio­anti­monate with the composition Mn2(terpyridine)2Sb2S5 .4(H2O) in which discrete [Sb2S5]4− anions are present that link the [Mn(terpyridine)]2+ cations into a one-dimensional MnSbS network. X-ray powder measurements prove that the major phase consists of the title compound, but that some amorphous and a very small amount of an unknown crystalline phase is present (see Fig. S1 in the supporting information). This compound decomposes on storage, presumably because of the loss of the water mol­ecules.

Structural commentary  

The asymmetric unit of the title compound consists of one [Sb2S5]4− anion, two [Mn(terpyridine)]2+ cations and four solvent water mol­ecules in general positions (Fig. 1). Each MnII ion is fivefold coordinated by the three N atoms of the terpyridine ligand and two S atoms of two [Sb2S5]4− anions that are related by symmetry (Fig. 2). The Mn—N and Mn—S distances are very similar for both independent MnII ions and correspond to literature values (Table 1). The Mn coordination environment is highly distorted with the three N atoms of the neutral terpyridine ligand and the MnII ion in the same plane and the two S atoms above and below this plane, leading to an irregular coordination (Fig. 1 and Table 1). The [Sb2S5]4− anion consists of two trigonal–pyramidal SbS3 units that are linked by common corners (Fig. 3: top). The Sb—S bond lengths to the bridging S atom S3 are significantly longer than that to the terminal S atoms (Table 1). Two such anions are linked into eight-membered Mn2Sb2S4 rings that are located on centers of inversion and show a chair-like conformation. Two crystallographically independent rings are present that either contain Mn1 or Mn2 and which show a significantly different conformation (Fig. 3: top and Table 1). The MnII ions are each linked by two [Mn(terpyridine)]2+ cations into chains in the c-axis direction (Fig. 3: bottom). It is noted that this topology of the MnSbS network is completely different from that observed in all other Mn2Sb2S5 compounds with N-donor coligands (see above and Database survey).

Figure 1.

Figure 1

The asymmetric unit of the title compound with the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms are included to complete the coordination of the MnII ions [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].

Figure 2.

Figure 2

View of the Mn coordination sphere for Mn1 (top) and Mn2 (bottom). Symmetry codes used to generate symmetry-equivalent atoms: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].

Table 1. Selected geometric parameters (Å, °).

Sb1—S2 2.391 (2) S2—Mn1i 2.414 (3)
Sb1—S1 2.404 (2) S4—Mn2 2.411 (3)
Sb1—S3 2.445 (2) S5—Mn2ii 2.405 (3)
Sb2—S5 2.396 (2) Mn1—N2 2.228 (7)
Sb2—S4 2.402 (2) Mn1—N3 2.258 (7)
Sb2—S3 2.467 (3) Mn1—N1 2.285 (8)
S1—Mn1 2.419 (3)    
       
S2—Sb1—S1 100.84 (9) N2—Mn1—N3 71.6 (3)
S2—Sb1—S3 97.77 (8) N2—Mn1—N1 71.9 (3)
S1—Sb1—S3 98.41 (8) N3—Mn1—N1 143.5 (3)
S5—Sb2—S4 99.08 (9) N2—Mn1—S2i 118.1 (2)
S5—Sb2—S3 93.00 (8) N3—Mn1—S2i 93.7 (2)
S4—Sb2—S3 96.64 (9) N1—Mn1—S2i 105.6 (2)
Sb1—S1—Mn1 102.22 (9) N2—Mn1—S1 122.2 (2)
Sb1—S2—Mn1i 100.17 (10) N3—Mn1—S1 103.9 (2)
Sb1—S3—Sb2 100.47 (9) N1—Mn1—S1 93.1 (2)
Sb2—S4—Mn2 109.95 (10) S2i—Mn1—S1 119.71 (10)
Sb2—S5—Mn2ii 98.38 (10)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

View of the eight-membered Mn2Sb2S4 rings for Mn1 (top: left) and Mn2 (top: right) as well as of the Mn2Sb2S5 chains (bottom). Symmetry codes used to generate symmetry-equivalent atoms: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].

Supra­molecular features  

In the crystal of the title compound, the MnSbS chains are linked to the solvent water mol­ecules by strong inter­molecular O—H⋯S hydrogen bonds (Fig. 4 and Table 2). The water mol­ecules of neighbouring chains are inter­linked by additional water mol­ecules via strong inter­molecular O—H⋯O hydrogen bonds into a three-dimensional network (Fig. 4 and Table 2). There are additional C—H⋯S and C—H⋯O inter­actions, but most of the C—H⋯S and C—H⋯O angles are far from linearity and thus, they should represent relatively weak inter­actions (Table 2).

Figure 4.

Figure 4

Crystal packing of the title compound viewed along the b axis with inter­molecular O—H⋯O and O—H⋯S hydrogen bonds shown as dashed lines.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯S1 0.84 2.63 3.239 (10) 131
O1—H1B⋯S2 0.84 2.44 3.283 (11) 180
O2—H2A⋯O1 0.84 2.20 2.897 (19) 140
O2—H2B⋯O3 0.84 2.04 2.87 (2) 170
O3—H3A⋯S4iii 0.84 2.71 3.490 (14) 154
O3—H3B⋯S5iii 0.84 2.82 3.427 (14) 131
O4—H4A⋯O1 0.84 2.23 3.07 (2) 180
O4—H4B⋯S4ii 0.84 2.33 3.165 (17) 180
C4—H4⋯S3iv 0.95 2.81 3.747 (12) 170
C7—H7⋯S3iv 0.95 2.93 3.831 (12) 158
C9—H9⋯S3v 0.95 2.97 3.690 (10) 134
C9—H9⋯S5v 0.95 3.02 3.706 (11) 130
C12—H12⋯S1v 0.95 2.86 3.657 (10) 142
C21—H21⋯O4 0.95 2.34 3.15 (2) 143
C24—H24⋯S5vi 0.95 2.83 3.652 (15) 145
C29—H29⋯O4vii 0.95 2.12 2.98 (3) 150
C32—H32⋯S4viii 0.95 2.97 3.599 (13) 125

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Database survey  

There are a number of other manganese thio­anti­monates with the general formula Mn2 LSb2S5 or Mn2 L 2Sb2S5 (L = amine ligand) reported in the literature that contain neutral Mn2Sb2S5 units and additional N-donor coligands. This includes Mn2(methyl­amino)2Sb2S5 and Mn2(1,3-di­amino­propane)Sb2S5 as well as Mn2(ethyl­enedi­amine)2Sb2S5 Mn2(ethyl­amino)2Sb2S5, with the latter showing a reversible phase transition (Bensch & Schur, 1996; Schur & Bensch, 2002; Schur et al., 2001). This also includes Mn2(1,3-di­amino­pentene)Sb2S5 and two further compounds with di­ethyl­enetri­amine and N-methyl-1,3-di­amino­propane as ligands (Puls, et al., 2006; Engelke et al., 2004). Amongst these Mn compounds, there are some others with different transition metal cations such as, for example, CuII or CoII (Spetzler et al., 2005; Stähler & Bensch, 2001).

For reviews of chalcogenido thio­metallates including thio­anti­monates, see: Sheldrick & Wachhold (1998); Dehnen & Melullis (2007); Zhou et al. (2009); Seidlhofer et al. (2010); Wang et al. (2016); Zhou (2016); Zhu & Dai (2017).

Synthesis and crystallization  

General: Na3SbS3 was prepared by the reaction of anhydrous Na2S (ABCR, 95%), Sb (99.5%, Sigma Aldrich) and sulfur (99%, ABCR) in a molar ratio of 3:2:3 at 870 K in a silica glass ampoule according to a literature procedure (Pompe & Pfitzner, 2013). The pale-yellow compound is sensitive to air and moisture and must be stored under a nitro­gen atmosphere.

Mn(terpy)2(ClO4)2] was prepared according to the literature (Rao et al., 1976). 0.5 mmol of Mn(ClO4)2·6H2O (ABCR 99%) was dissolved in 25 mL of dry ethanol. Another solution containing 1.2 mmol of 2,2′;6′,2′′-terpyridine (ABCR 97%) was added to the the first solution. Upon mixing, a yellow solid precipitated that was filtered off and recrystallized from dry ethanol.

Synthesis:

Single crystals of the title compound were obtained by adding 2 mL of H2O in a glass tube to a mixture of 72.0 mg (0.1 mmol) Mn(terpy)2(ClO4)2 and 57.4 mg (0.2 mmol) of Na3SbS3. The slurry was heated to 413 K for 2 h. After cooling to room temperature, small red needles with a yield of 10% were obtained together with a very small amount of an unknown crystalline phase and of a colourless solid that is amorphous against X-rays.

Experimental methods:

The XRPD measurements were performed by using a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα radiation that was equipped with a linear, position-sensitive MYTHEN detector from Stoe & Cie.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned with idealized geometry and were refined with U iso(H) = 1.2U eq(C) using a riding model. Some of the water H atoms were located in a difference-Fourier map; their bond lengths were set to ideal values and finally they were refined isotropically with U iso(H) = 1.5U eq(O). The water H atoms that could not be located in a difference-Fourier map were included in idealized calculated positions that gave the most sensible geometry as donors for hydrogen bonds.

Table 3. Experimental details.

Crystal data
Chemical formula [Mn2Sb2S5(C15H11N3)2]·4H2O
M r 1052.28
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 200
a, b, c (Å) 11.9227 (5), 12.1592 (6), 14.9217 (7)
α, β, γ (°) 104.293 (3), 101.701 (3), 112.585 (3)
V3) 1825.27 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.47
Crystal size (mm) 0.13 × 0.08 × 0.06
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008)
T min, T max 0.624, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 7084, 7084, 5834
(sin θ/λ)max−1) 0.621
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.182, 1.07
No. of reflections 7084
No. of parameters 444
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.98

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

The crystal studied was twinned by non-merohedry around a pseudo twofold rotation axis, with a matrix close to 0 Inline graphic 0 Inline graphic 0 0 0 0 Inline graphic but refinement in SHELXL (Sheldrick, 2015) assuming this kind of twinning lead to only very poor reliability factors. Therefore, both individual domains were indexed separately and the overlapping reflections were removed. In this case, relatively good reliability factors were observed but the completeness was only 68.6%. Thus, the data were integrated neglecting the twinning, corrected for absorption and merged. Afterwards the twin law was determined and the data were transformed into HKLF-5 format (Sheldrick, 2015), leading to full completeness and acceptable reliability factors.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938sup1.cif

e-76-00032-sup1.cif (318.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938Isup2.hkl

e-76-00032-Isup2.hkl (562.7KB, hkl)

Fig. S1. Experimental and simulated X-ray powder pattern for the title compound. DOI: 10.1107/S2056989019016268/lh5938sup3.jpg

CCDC reference: 1969700

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the state of Schleswig–Holstein is gratefully acknowledged.

supplementary crystallographic information

Crystal data

[Mn2Sb2S5(C15H11N3)2]·4H2O Z = 2
Mr = 1052.28 F(000) = 1032
Triclinic, P1 Dx = 1.915 Mg m3
a = 11.9227 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.1592 (6) Å Cell parameters from 12925 reflections
c = 14.9217 (7) Å θ = 1.5–26.2°
α = 104.293 (3)° µ = 2.47 mm1
β = 101.701 (3)° T = 200 K
γ = 112.585 (3)° Block, red
V = 1825.27 (15) Å3 0.13 × 0.08 × 0.06 mm

Data collection

Stoe IPDS-2 diffractometer 5834 reflections with I > 2σ(I)
ω scans θmax = 26.2°, θmin = 1.5°
Absorption correction: numerical (X-Red and X-Shape; Stoe & Cie, 2008) h = −14→14
Tmin = 0.624, Tmax = 0.748 k = −14→14
7084 measured reflections l = −9→18
7084 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.1094P)2 + 7.9201P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.182 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 1.08 e Å3
7084 reflections Δρmin = −0.98 e Å3
444 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0156 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sb1 0.37778 (6) 0.39853 (6) 0.56716 (4) 0.0362 (2)
Sb2 0.43666 (6) 0.42290 (5) 0.83131 (4) 0.0347 (2)
S1 0.5789 (2) 0.3987 (2) 0.63453 (17) 0.0391 (5)
S2 0.4300 (3) 0.6161 (2) 0.64977 (18) 0.0409 (5)
S3 0.2644 (2) 0.3063 (2) 0.67019 (19) 0.0410 (5)
S4 0.3019 (2) 0.4485 (2) 0.9261 (2) 0.0460 (6)
S5 0.4355 (2) 0.2315 (2) 0.84793 (19) 0.0428 (5)
Mn1 0.62903 (13) 0.32502 (12) 0.48902 (10) 0.0347 (3)
N1 0.8453 (8) 0.4535 (7) 0.5649 (6) 0.0404 (17)
N2 0.7276 (8) 0.2017 (7) 0.4772 (6) 0.0368 (16)
N3 0.4774 (7) 0.1195 (7) 0.4132 (6) 0.0364 (16)
C1 0.8982 (10) 0.5779 (9) 0.6095 (7) 0.043 (2)
H1 0.843905 0.618064 0.606305 0.052*
C2 1.0295 (11) 0.6544 (10) 0.6615 (9) 0.053 (3)
H2 1.063976 0.744043 0.692727 0.064*
C3 1.1084 (12) 0.5942 (11) 0.6657 (10) 0.057 (3)
H3 1.198416 0.642938 0.699585 0.068*
C4 1.0541 (10) 0.4624 (11) 0.6200 (9) 0.052 (3)
H4 1.105988 0.419606 0.623773 0.063*
C5 0.9220 (10) 0.3942 (9) 0.5685 (8) 0.041 (2)
C6 0.8559 (9) 0.2540 (9) 0.5134 (8) 0.041 (2)
C7 0.9208 (11) 0.1819 (10) 0.4992 (10) 0.054 (3)
H7 1.012020 0.220266 0.526538 0.065*
C8 0.8517 (12) 0.0550 (11) 0.4452 (9) 0.057 (3)
H8 0.895377 0.005087 0.432484 0.069*
C9 0.7186 (11) −0.0023 (10) 0.4085 (8) 0.049 (2)
H9 0.669897 −0.091173 0.371658 0.059*
C10 0.6575 (9) 0.0760 (8) 0.4277 (7) 0.0361 (19)
C11 0.5173 (10) 0.0297 (8) 0.3953 (6) 0.0357 (18)
C12 0.4295 (11) −0.1001 (9) 0.3504 (7) 0.044 (2)
H12 0.459932 −0.162278 0.340345 0.052*
C13 0.3003 (11) −0.1376 (9) 0.3211 (7) 0.045 (2)
H13 0.240224 −0.225324 0.289009 0.054*
C14 0.2583 (11) −0.0453 (10) 0.3390 (8) 0.050 (2)
H14 0.169008 −0.068183 0.320257 0.060*
C15 0.3504 (10) 0.0818 (9) 0.3851 (7) 0.043 (2)
H15 0.321825 0.145279 0.397316 0.052*
Mn2 0.37319 (16) 0.67226 (14) 1.01113 (11) 0.0413 (4)
N21 0.4598 (13) 0.7905 (9) 0.9250 (7) 0.062 (3)
N22 0.2544 (11) 0.7693 (9) 0.9747 (6) 0.054 (2)
N23 0.2195 (9) 0.6283 (8) 1.0844 (6) 0.0436 (18)
C21 0.5691 (16) 0.8057 (11) 0.9108 (9) 0.069 (4)
H21 0.608757 0.757593 0.931466 0.083*
C22 0.630 (2) 0.8900 (13) 0.8665 (10) 0.090 (6)
H22 0.709957 0.900042 0.858841 0.109*
C23 0.573 (3) 0.9559 (12) 0.8351 (10) 0.105 (8)
H23 0.611734 1.012190 0.803711 0.126*
C24 0.460 (2) 0.9413 (13) 0.8487 (9) 0.091 (7)
H24 0.417808 0.986953 0.826740 0.110*
C25 0.4057 (19) 0.8587 (11) 0.8951 (8) 0.074 (5)
C26 0.2881 (17) 0.8444 (11) 0.9202 (8) 0.070 (4)
C27 0.209 (3) 0.9006 (17) 0.8945 (10) 0.113 (9)
H27 0.228365 0.950793 0.854799 0.135*
C28 0.105 (3) 0.8844 (19) 0.9258 (12) 0.109 (8)
H28 0.054054 0.924278 0.908344 0.131*
C29 0.0757 (17) 0.8124 (17) 0.9811 (11) 0.086 (5)
H29 0.003705 0.800505 1.002708 0.103*
C30 0.1548 (13) 0.7546 (11) 1.0064 (9) 0.057 (3)
C31 0.1317 (10) 0.6736 (11) 1.0656 (8) 0.051 (3)
C32 0.0314 (12) 0.6440 (12) 1.0990 (10) 0.064 (3)
H32 −0.028291 0.676671 1.085717 0.076*
C33 0.0169 (11) 0.5651 (14) 1.1530 (10) 0.070 (4)
H33 −0.054269 0.542127 1.176270 0.085*
C34 0.1030 (12) 0.5205 (12) 1.1730 (9) 0.058 (3)
H34 0.094179 0.466582 1.210361 0.069*
C35 0.2051 (11) 0.5563 (12) 1.1371 (8) 0.051 (2)
H35 0.267249 0.526746 1.151685 0.061*
O1 0.7367 (10) 0.7040 (9) 0.7526 (8) 0.087 (3)
H1A 0.747033 0.638528 0.734270 0.131*
H1B 0.658273 0.681508 0.726219 0.131*
O2 0.9205 (14) 0.8717 (13) 0.6860 (10) 0.102 (4)
H2A 0.848835 0.842934 0.694566 0.153*
H2B 0.981845 0.944124 0.720865 0.153*
O3 1.1152 (14) 1.1177 (13) 0.8230 (13) 0.124 (5)
H3A 1.150095 1.194473 0.827743 0.186*
H3B 1.178715 1.104813 0.842072 0.186*
O4 0.8058 (16) 0.7512 (19) 0.9728 (15) 0.146 (7)
H4A 0.787124 0.738460 0.912575 0.219*
H4B 0.777494 0.698331 0.999835 0.219*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sb1 0.0422 (4) 0.0341 (3) 0.0340 (3) 0.0206 (3) 0.0104 (3) 0.0116 (2)
Sb2 0.0375 (3) 0.0307 (3) 0.0394 (3) 0.0173 (2) 0.0150 (3) 0.0136 (2)
S1 0.0417 (12) 0.0417 (12) 0.0393 (12) 0.0262 (10) 0.0118 (10) 0.0127 (10)
S2 0.0495 (13) 0.0332 (11) 0.0444 (12) 0.0229 (10) 0.0145 (10) 0.0154 (9)
S3 0.0427 (12) 0.0335 (11) 0.0476 (13) 0.0167 (10) 0.0142 (10) 0.0179 (10)
S4 0.0438 (13) 0.0386 (12) 0.0571 (15) 0.0202 (10) 0.0247 (12) 0.0106 (11)
S5 0.0453 (13) 0.0337 (11) 0.0514 (13) 0.0215 (10) 0.0121 (11) 0.0160 (10)
Mn1 0.0358 (7) 0.0303 (7) 0.0394 (7) 0.0173 (6) 0.0120 (6) 0.0116 (6)
N1 0.034 (4) 0.033 (4) 0.048 (4) 0.014 (3) 0.010 (3) 0.012 (3)
N2 0.043 (4) 0.034 (4) 0.046 (4) 0.026 (3) 0.020 (4) 0.016 (3)
N3 0.035 (4) 0.028 (4) 0.039 (4) 0.012 (3) 0.009 (3) 0.008 (3)
C1 0.038 (5) 0.035 (5) 0.047 (5) 0.015 (4) 0.010 (4) 0.005 (4)
C2 0.043 (6) 0.038 (5) 0.062 (7) 0.008 (4) 0.014 (5) 0.011 (5)
C3 0.043 (6) 0.045 (6) 0.068 (7) 0.016 (5) 0.013 (5) 0.007 (5)
C4 0.035 (5) 0.048 (6) 0.064 (7) 0.017 (5) 0.011 (5) 0.013 (5)
C5 0.040 (5) 0.036 (5) 0.054 (6) 0.023 (4) 0.018 (4) 0.014 (4)
C6 0.036 (5) 0.034 (5) 0.054 (6) 0.020 (4) 0.014 (4) 0.009 (4)
C7 0.038 (5) 0.038 (5) 0.080 (8) 0.021 (4) 0.008 (5) 0.012 (5)
C8 0.055 (7) 0.039 (5) 0.066 (7) 0.028 (5) 0.006 (6) 0.003 (5)
C9 0.058 (6) 0.032 (5) 0.058 (6) 0.030 (5) 0.013 (5) 0.006 (4)
C10 0.040 (5) 0.026 (4) 0.044 (5) 0.020 (4) 0.011 (4) 0.009 (4)
C11 0.051 (5) 0.027 (4) 0.032 (4) 0.020 (4) 0.013 (4) 0.011 (3)
C12 0.061 (6) 0.032 (4) 0.037 (5) 0.020 (4) 0.013 (4) 0.014 (4)
C13 0.053 (6) 0.024 (4) 0.043 (5) 0.010 (4) 0.012 (4) 0.005 (4)
C14 0.040 (5) 0.045 (6) 0.052 (6) 0.014 (4) 0.010 (5) 0.008 (5)
C15 0.052 (6) 0.035 (5) 0.042 (5) 0.022 (4) 0.018 (4) 0.009 (4)
Mn2 0.0557 (9) 0.0386 (8) 0.0376 (7) 0.0287 (7) 0.0152 (7) 0.0150 (6)
N21 0.106 (9) 0.040 (5) 0.042 (5) 0.031 (5) 0.032 (5) 0.020 (4)
N22 0.070 (6) 0.048 (5) 0.038 (4) 0.038 (5) −0.004 (4) 0.005 (4)
N23 0.050 (5) 0.046 (4) 0.043 (4) 0.032 (4) 0.014 (4) 0.013 (4)
C21 0.110 (11) 0.034 (5) 0.048 (6) 0.017 (6) 0.039 (7) 0.007 (5)
C22 0.142 (16) 0.051 (7) 0.051 (7) 0.011 (9) 0.050 (9) 0.015 (6)
C23 0.21 (2) 0.034 (6) 0.038 (7) 0.022 (10) 0.041 (11) 0.014 (5)
C24 0.19 (2) 0.040 (6) 0.034 (6) 0.042 (9) 0.030 (9) 0.012 (5)
C25 0.145 (14) 0.036 (6) 0.029 (5) 0.038 (7) 0.017 (7) 0.010 (4)
C26 0.127 (13) 0.045 (6) 0.034 (5) 0.049 (7) 0.001 (7) 0.009 (5)
C27 0.23 (3) 0.085 (11) 0.036 (6) 0.113 (15) 0.001 (10) 0.011 (7)
C28 0.19 (2) 0.106 (13) 0.061 (9) 0.122 (16) 0.006 (11) 0.017 (9)
C29 0.091 (11) 0.097 (11) 0.070 (9) 0.073 (10) −0.006 (8) 0.007 (8)
C30 0.065 (7) 0.045 (6) 0.052 (6) 0.038 (6) −0.006 (5) −0.001 (5)
C31 0.040 (5) 0.055 (6) 0.048 (6) 0.032 (5) 0.001 (4) −0.002 (5)
C32 0.040 (6) 0.052 (6) 0.077 (8) 0.020 (5) 0.001 (6) 0.007 (6)
C33 0.032 (6) 0.073 (8) 0.067 (8) 0.012 (5) 0.008 (5) −0.013 (7)
C34 0.057 (7) 0.059 (7) 0.049 (6) 0.022 (6) 0.021 (5) 0.012 (5)
C35 0.044 (6) 0.066 (7) 0.043 (5) 0.027 (5) 0.015 (4) 0.018 (5)
O1 0.068 (6) 0.054 (5) 0.090 (7) 0.022 (5) −0.012 (5) −0.011 (5)
O2 0.109 (10) 0.092 (8) 0.107 (9) 0.055 (8) 0.033 (8) 0.026 (7)
O3 0.096 (10) 0.078 (8) 0.200 (16) 0.028 (7) 0.071 (10) 0.056 (9)
O4 0.109 (12) 0.157 (16) 0.190 (18) 0.066 (11) 0.034 (12) 0.096 (14)

Geometric parameters (Å, º)

Sb1—S2 2.391 (2) C15—H15 0.9500
Sb1—S1 2.404 (2) Mn2—N22 2.233 (9)
Sb1—S3 2.445 (2) Mn2—N21 2.257 (9)
Sb2—S5 2.396 (2) Mn2—N23 2.278 (9)
Sb2—S4 2.402 (2) N21—C21 1.31 (2)
Sb2—S3 2.467 (3) N21—C25 1.334 (18)
S1—Mn1 2.419 (3) N22—C30 1.331 (17)
S2—Mn1i 2.414 (3) N22—C26 1.368 (17)
S4—Mn2 2.411 (3) N23—C35 1.301 (14)
S5—Mn2ii 2.405 (3) N23—C31 1.371 (13)
Mn1—N2 2.228 (7) C21—C22 1.405 (17)
Mn1—N3 2.258 (7) C21—H21 0.9500
Mn1—N1 2.285 (8) C22—C23 1.34 (3)
N1—C1 1.315 (13) C22—H22 0.9500
N1—C5 1.366 (13) C23—C24 1.36 (3)
N2—C6 1.336 (13) C23—H23 0.9500
N2—C10 1.339 (12) C24—C25 1.39 (2)
N3—C15 1.339 (13) C24—H24 0.9500
N3—C11 1.341 (12) C25—C26 1.48 (2)
C1—C2 1.397 (15) C26—C27 1.40 (2)
C1—H1 0.9500 C27—C28 1.37 (3)
C2—C3 1.396 (17) C27—H27 0.9500
C2—H2 0.9500 C28—C29 1.34 (3)
C3—C4 1.393 (16) C28—H28 0.9500
C3—H3 0.9500 C29—C30 1.422 (17)
C4—C5 1.397 (15) C29—H29 0.9500
C4—H4 0.9500 C30—C31 1.465 (18)
C5—C6 1.488 (13) C31—C32 1.344 (18)
C6—C7 1.382 (14) C32—C33 1.38 (2)
C7—C8 1.360 (15) C32—H32 0.9500
C7—H7 0.9500 C33—C34 1.35 (2)
C8—C9 1.383 (17) C33—H33 0.9500
C8—H8 0.9500 C34—C35 1.390 (16)
C9—C10 1.415 (13) C34—H34 0.9500
C9—H9 0.9500 C35—H35 0.9500
C10—C11 1.469 (14) O1—H1A 0.8400
C11—C12 1.400 (13) O1—H1B 0.8401
C12—C13 1.364 (16) O2—H2A 0.8400
C12—H12 0.9500 O2—H2B 0.8400
C13—C14 1.385 (16) O3—H3A 0.8400
C13—H13 0.9500 O3—H3B 0.8400
C14—C15 1.390 (14) O4—H4A 0.8399
C14—H14 0.9500 O4—H4B 0.8401
S2—Sb1—S1 100.84 (9) N3—C15—C14 123.4 (10)
S2—Sb1—S3 97.77 (8) N3—C15—H15 118.3
S1—Sb1—S3 98.41 (8) C14—C15—H15 118.3
S5—Sb2—S4 99.08 (9) N22—Mn2—N21 72.0 (4)
S5—Sb2—S3 93.00 (8) N22—Mn2—N23 71.3 (4)
S4—Sb2—S3 96.64 (9) N21—Mn2—N23 143.0 (4)
Sb1—S1—Mn1 102.22 (9) N22—Mn2—S5ii 123.9 (3)
Sb1—S2—Mn1i 100.17 (10) N21—Mn2—S5ii 96.5 (3)
Sb1—S3—Sb2 100.47 (9) N23—Mn2—S5ii 100.3 (2)
Sb2—S4—Mn2 109.95 (10) N22—Mn2—S4 122.1 (3)
Sb2—S5—Mn2ii 98.38 (10) N21—Mn2—S4 111.3 (3)
N2—Mn1—N3 71.6 (3) N23—Mn2—S4 91.9 (2)
N2—Mn1—N1 71.9 (3) S5ii—Mn2—S4 113.34 (10)
N3—Mn1—N1 143.5 (3) C21—N21—C25 117.5 (12)
N2—Mn1—S2i 118.1 (2) C21—N21—Mn2 122.8 (9)
N3—Mn1—S2i 93.7 (2) C25—N21—Mn2 119.3 (11)
N1—Mn1—S2i 105.6 (2) C30—N22—C26 121.8 (11)
N2—Mn1—S1 122.2 (2) C30—N22—Mn2 120.2 (8)
N3—Mn1—S1 103.9 (2) C26—N22—Mn2 118.0 (10)
N1—Mn1—S1 93.1 (2) C35—N23—C31 118.4 (10)
S2i—Mn1—S1 119.71 (10) C35—N23—Mn2 124.1 (7)
C1—N1—C5 118.9 (9) C31—N23—Mn2 117.3 (7)
C1—N1—Mn1 124.3 (7) N21—C21—C22 122.8 (16)
C5—N1—Mn1 116.7 (6) N21—C21—H21 118.6
C6—N2—C10 120.5 (8) C22—C21—H21 118.6
C6—N2—Mn1 120.2 (6) C23—C22—C21 119 (2)
C10—N2—Mn1 119.2 (6) C23—C22—H22 120.5
C15—N3—C11 118.1 (8) C21—C22—H22 120.5
C15—N3—Mn1 124.1 (6) C22—C23—C24 119.1 (14)
C11—N3—Mn1 117.8 (6) C22—C23—H23 120.5
N1—C1—C2 123.8 (10) C24—C23—H23 120.5
N1—C1—H1 118.1 C23—C24—C25 119.3 (17)
C2—C1—H1 118.1 C23—C24—H24 120.4
C3—C2—C1 117.6 (10) C25—C24—H24 120.4
C3—C2—H2 121.2 N21—C25—C24 122.3 (18)
C1—C2—H2 121.2 N21—C25—C26 114.6 (11)
C4—C3—C2 119.6 (11) C24—C25—C26 123.1 (15)
C4—C3—H3 120.2 N22—C26—C27 117.3 (18)
C2—C3—H3 120.2 N22—C26—C25 116.1 (11)
C3—C4—C5 118.7 (11) C27—C26—C25 126.6 (15)
C3—C4—H4 120.7 C28—C27—C26 121.2 (17)
C5—C4—H4 120.7 C28—C27—H27 119.4
N1—C5—C4 121.5 (9) C26—C27—H27 119.4
N1—C5—C6 115.7 (9) C29—C28—C27 120.4 (15)
C4—C5—C6 122.9 (9) C29—C28—H28 119.8
N2—C6—C7 121.7 (9) C27—C28—H28 119.8
N2—C6—C5 115.1 (8) C28—C29—C30 118.4 (18)
C7—C6—C5 123.2 (9) C28—C29—H29 120.8
C8—C7—C6 118.7 (10) C30—C29—H29 120.8
C8—C7—H7 120.7 N22—C30—C29 120.8 (14)
C6—C7—H7 120.7 N22—C30—C31 115.7 (9)
C7—C8—C9 120.9 (10) C29—C30—C31 123.4 (14)
C7—C8—H8 119.5 C32—C31—N23 121.6 (12)
C9—C8—H8 119.5 C32—C31—C30 123.1 (11)
C8—C9—C10 117.7 (9) N23—C31—C30 115.3 (10)
C8—C9—H9 121.2 C31—C32—C33 118.7 (12)
C10—C9—H9 121.2 C31—C32—H32 120.6
N2—C10—C9 120.4 (9) C33—C32—H32 120.6
N2—C10—C11 115.1 (8) C34—C33—C32 120.5 (12)
C9—C10—C11 124.4 (9) C34—C33—H33 119.8
N3—C11—C12 121.3 (10) C32—C33—H33 119.8
N3—C11—C10 115.9 (8) C33—C34—C35 117.7 (13)
C12—C11—C10 122.8 (9) C33—C34—H34 121.2
C13—C12—C11 120.2 (10) C35—C34—H34 121.2
C13—C12—H12 119.9 N23—C35—C34 123.1 (12)
C11—C12—H12 119.9 N23—C35—H35 118.5
C12—C13—C14 118.8 (9) C34—C35—H35 118.5
C12—C13—H13 120.6 H1A—O1—H1B 106.5
C14—C13—H13 120.6 H2A—O2—H2B 123.6
C13—C14—C15 118.2 (10) H3A—O3—H3B 102.7
C13—C14—H14 120.9 H4A—O4—H4B 127.9
C15—C14—H14 120.9

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···S1 0.84 2.63 3.239 (10) 131
O1—H1B···S2 0.84 2.44 3.283 (11) 180
O2—H2A···O1 0.84 2.20 2.897 (19) 140
O2—H2B···O3 0.84 2.04 2.87 (2) 170
O3—H3A···S4iii 0.84 2.71 3.490 (14) 154
O3—H3B···S5iii 0.84 2.82 3.427 (14) 131
O4—H4A···O1 0.84 2.23 3.07 (2) 180
O4—H4B···S4ii 0.84 2.33 3.165 (17) 180
C4—H4···S3iv 0.95 2.81 3.747 (12) 170
C7—H7···S3iv 0.95 2.93 3.831 (12) 158
C9—H9···S3v 0.95 2.97 3.690 (10) 134
C9—H9···S5v 0.95 3.02 3.706 (11) 130
C12—H12···S1v 0.95 2.86 3.657 (10) 142
C21—H21···O4 0.95 2.34 3.15 (2) 143
C24—H24···S5vi 0.95 2.83 3.652 (15) 145
C29—H29···O4vii 0.95 2.12 2.98 (3) 150
C32—H32···S4viii 0.95 2.97 3.599 (13) 125

Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) −x+1, −y, −z+1; (vi) x, y+1, z; (vii) x−1, y, z; (viii) −x, −y+1, −z+2.

References

  1. Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773–1774.
  2. Bensch, W. & Schur, M. (1996). Eur. J. Solid State Chem. 33, 1149–1160.
  3. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259–1280.
  5. Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869–876.
  6. Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.
  7. Liu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.
  8. Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687–1695.
  9. Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front. 4, 945-959.
  10. Nie, L., Xiong, W. W., Li, P., Han, J., Zhang, G., Yin, S., Zhao, Y., Xu, R. & Zhang, Q. (2014). J. Solid State Chem. 220, 118–123.
  11. Nie, L., Zhang, Y., Xiong, W. W., Lim, T. T., Quingyu Yan, R. X. & Zhang, Q. (2016). Inorg. Chem. Front. 3, 111-116.
  12. Pompe, C. & Pfitzner, A. (2013). Z. Anorg. Allg. Chem. 639, 296–300.
  13. Powell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414–3419.
  14. Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239–1243.
  15. Rao, M., Hughes, M. C. & Macero, D. J. (1976). Inorg. Chim. Acta, 18, 127–131.
  16. Schaefer, M., Näther, C., Lehnert, N. & Bensch, W. (2004). Inorg. Chem. 43, 2914–2921. [DOI] [PubMed]
  17. Schur, M. & Bensch, W. (2002). Z. Naturforsch. B, 57, 1–7.
  18. Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. B, 56, 79–84.
  19. Seidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554–5560.
  20. Seidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. B, 65, 937–975.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Sheldrick, W. S. & Wachhold, M. (1998). Coord Chem Rev. 176, 211-322.
  24. Spetzler, V., Näther, C. & Bensch, W. (2005). Inorg. Chem. 44, 5805–5812. [DOI] [PubMed]
  25. Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.
  26. Stähler, R. & Bensch, W. (2001). J. Chem. Soc. Dalton Trans. pp. 2518–2522.
  27. Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27. [DOI] [PubMed]
  28. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
  29. Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41–68.
  30. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  31. Yue, C. Y., Lei, X. W., Liu, R. Q., Zhang, H. P., Zhai, X. R., Li, W. P., Zhou, M., Zhao, Z. F., Ma, Y. X. & Yang, Y. D. (2014). Cryst. Growth Des. 14, 2411–2421.
  32. Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.
  33. Zhou, J. (2016). Coord. Chem. Rev. 315, 112–134.
  34. Zhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221–1247.
  35. Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938sup1.cif

e-76-00032-sup1.cif (318.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938Isup2.hkl

e-76-00032-Isup2.hkl (562.7KB, hkl)

Fig. S1. Experimental and simulated X-ray powder pattern for the title compound. DOI: 10.1107/S2056989019016268/lh5938sup3.jpg

CCDC reference: 1969700

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES