In the crystal structure of the title compound, two [Sb2S5 [anions built up of two SbS3 units sharing common corners with each linked by two [Mn(terpyridine)]2+ cations into chains that are further linked into a 3D network by intermolecular O—H⋯O and O—H⋯S hydrogen bonding.
Keywords: crystal structure,thioantimonate; chain compound; hydrogen bonding
Abstract
The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water molecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by intermolecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015 ▸). Acta Cryst. C71, 3–8] format was performed.
Chemical context
Inorganic–organic chalcogenidometallates are an important class of compounds that have been systematically investigated for several decades (Sheldrick & Wachhold, 1998 ▸; Dehnen & Melullis, 2007 ▸; Zhou et al., 2009 ▸; Seidlhofer et al., 2010 ▸; Wang et al., 2016 ▸; Zhou, 2016 ▸; Zhu & Dai, 2017 ▸). Therefore, a variety of compounds have been reported and some of them have potential for applications in different fields (Seidlhofer et al., 2011 ▸; Nie et al., 2014 ▸, 2016 ▸, 2017 ▸; Yue et al.; 2014 ▸). In this context, thioantimonates and thioselenates are of special interest because they consist of primary building units that show a variety of coordination numbers, which can be traced back to the lone electron pair of antimony (Bensch et al., 1997 ▸; Spetzler et al., 2004 ▸; Stähler et al., 2001 ▸; Lühmann et al., 2008 ▸). These primary building units can be further linked into discrete anions or networks of different dimensionality (Jia et al., 2004 ▸; Powell et al., 2005 ▸; Zhang et al., 2007 ▸; Liu & Zhou, 2011 ▸). This is the main reason why we have been interested in this class of compounds for many years.
In the course of these investigations we have prepared compounds with the general composition Mn2 LSb2S5 or Mn2 L 2Sb2S5 with L as an mono-coordinating or a bis-chelating amine ligand such as, for example, methylamine, ethylamine, ethylenediamine or 1,3-diaminopropane (Bensch & Schur, 1996 ▸; Schur & Bensch, 2002 ▸; Schur et al., 2001 ▸). All of these compounds consist of SbS3 pyramids as primary building units as well as MnS6 and MnS4N2 distorted octahedra. These units are linked to form Mn2Sb2S4 hetero-cubane-like units that share common corners, edges and faces with a neighbouring heterocubane unit. These secondary building units are interconnected into layers. Within the MnSbS network, the SbS3 pyramids are linked via common edges into chains. Thus, no discrete [Sb2S5]4− anions are present. The N atoms of the amine ligands in these compounds are coordinated to the MnII ions and are always in the cis-position, thus arranged to form extended networks via Mn—S bond formation. Similar compounds have also been reported with 1,3-diaminopentane, diethylenetriamine and N-methyl-1,3-diaminopropane as ligands (Puls et al., 2006 ▸; Engelke et al., 2004 ▸). It is noted that diethylenetriamine acts as a bis-chelating ligand, because the central N atom is not involved in the Mn coordination.
To reduce the dimensionality of the MnSbS network that might allow access to discrete [Sb2S5]4− anions, we used the tetradentate ligand tris(2-aminoethyl)amine for the synthesis of such MnSbS compounds. In this case, a compound with the composition Mn2(tris(2-aminoethyl)amine)2Sb2S5 was obtained, in which all four N atoms of the amine ligand are involved in the Mn coordination (Schaefer et al., 2004 ▸). In this case, only two of the six coordination sites of the MnII cations are accessible for Mn—S bond formation. This compound consists of discrete [Sb2S5]4− anions, in which two SbS3 pyramids are joined together via a common sulfur atom, which is in contrast to the compound mentioned above, where the SbS3 units are linked by common sulfur edges into chains. These anions are connected to two [Mn(tris(2-aminoethyl)amine)]2+ cations via the cis-coordinating terminal S atoms, forming discrete units instead of the condensed networks with mono-coordinating or bis-chelating ligands.
Based on these results, the question arose as to what kind of compound would be obtained with a tris-chelate ligand, in which all three N atoms are coordinated to the MnII ions but no such compound was obtained. In this context it is noted that all of these thioantimonates were prepared under solvothermal conditions using the elements as educts, but in future work we developed an alternative synthetic route using Na3SbS3 as reactant, for which the synthesis of such compounds is easier. Therefore, the tris-chelating ligand 2,2′;6′,2′′-terpyridine was reacted with Na3SbS3, leading to the formation of a new manganese thioantimonate with the composition Mn2(terpyridine)2Sb2S5 .4(H2O) in which discrete [Sb2S5]4− anions are present that link the [Mn(terpyridine)]2+ cations into a one-dimensional MnSbS network. X-ray powder measurements prove that the major phase consists of the title compound, but that some amorphous and a very small amount of an unknown crystalline phase is present (see Fig. S1 in the supporting information). This compound decomposes on storage, presumably because of the loss of the water molecules.
Structural commentary
The asymmetric unit of the title compound consists of one [Sb2S5]4− anion, two [Mn(terpyridine)]2+ cations and four solvent water molecules in general positions (Fig. 1 ▸). Each MnII ion is fivefold coordinated by the three N atoms of the terpyridine ligand and two S atoms of two [Sb2S5]4− anions that are related by symmetry (Fig. 2 ▸). The Mn—N and Mn—S distances are very similar for both independent MnII ions and correspond to literature values (Table 1 ▸). The Mn coordination environment is highly distorted with the three N atoms of the neutral terpyridine ligand and the MnII ion in the same plane and the two S atoms above and below this plane, leading to an irregular coordination (Fig. 1 ▸ and Table 1 ▸). The [Sb2S5]4− anion consists of two trigonal–pyramidal SbS3 units that are linked by common corners (Fig. 3 ▸: top). The Sb—S bond lengths to the bridging S atom S3 are significantly longer than that to the terminal S atoms (Table 1 ▸). Two such anions are linked into eight-membered Mn2Sb2S4 rings that are located on centers of inversion and show a chair-like conformation. Two crystallographically independent rings are present that either contain Mn1 or Mn2 and which show a significantly different conformation (Fig. 3 ▸: top and Table 1 ▸). The MnII ions are each linked by two [Mn(terpyridine)]2+ cations into chains in the c-axis direction (Fig. 3 ▸: bottom). It is noted that this topology of the MnSbS network is completely different from that observed in all other Mn2Sb2S5 compounds with N-donor coligands (see above and Database survey).
Figure 1.
The asymmetric unit of the title compound with the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms are included to complete the coordination of the MnII ions [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].
Figure 2.
View of the Mn coordination sphere for Mn1 (top) and Mn2 (bottom). Symmetry codes used to generate symmetry-equivalent atoms: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].
Table 1. Selected geometric parameters (Å, °).
| Sb1—S2 | 2.391 (2) | S2—Mn1i | 2.414 (3) |
| Sb1—S1 | 2.404 (2) | S4—Mn2 | 2.411 (3) |
| Sb1—S3 | 2.445 (2) | S5—Mn2ii | 2.405 (3) |
| Sb2—S5 | 2.396 (2) | Mn1—N2 | 2.228 (7) |
| Sb2—S4 | 2.402 (2) | Mn1—N3 | 2.258 (7) |
| Sb2—S3 | 2.467 (3) | Mn1—N1 | 2.285 (8) |
| S1—Mn1 | 2.419 (3) | ||
| S2—Sb1—S1 | 100.84 (9) | N2—Mn1—N3 | 71.6 (3) |
| S2—Sb1—S3 | 97.77 (8) | N2—Mn1—N1 | 71.9 (3) |
| S1—Sb1—S3 | 98.41 (8) | N3—Mn1—N1 | 143.5 (3) |
| S5—Sb2—S4 | 99.08 (9) | N2—Mn1—S2i | 118.1 (2) |
| S5—Sb2—S3 | 93.00 (8) | N3—Mn1—S2i | 93.7 (2) |
| S4—Sb2—S3 | 96.64 (9) | N1—Mn1—S2i | 105.6 (2) |
| Sb1—S1—Mn1 | 102.22 (9) | N2—Mn1—S1 | 122.2 (2) |
| Sb1—S2—Mn1i | 100.17 (10) | N3—Mn1—S1 | 103.9 (2) |
| Sb1—S3—Sb2 | 100.47 (9) | N1—Mn1—S1 | 93.1 (2) |
| Sb2—S4—Mn2 | 109.95 (10) | S2i—Mn1—S1 | 119.71 (10) |
| Sb2—S5—Mn2ii | 98.38 (10) |
Symmetry codes: (i)
; (ii)
.
Figure 3.
View of the eight-membered Mn2Sb2S4 rings for Mn1 (top: left) and Mn2 (top: right) as well as of the Mn2Sb2S5 chains (bottom). Symmetry codes used to generate symmetry-equivalent atoms: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].
Supramolecular features
In the crystal of the title compound, the MnSbS chains are linked to the solvent water molecules by strong intermolecular O—H⋯S hydrogen bonds (Fig. 4 ▸ and Table 2 ▸). The water molecules of neighbouring chains are interlinked by additional water molecules via strong intermolecular O—H⋯O hydrogen bonds into a three-dimensional network (Fig. 4 ▸ and Table 2 ▸). There are additional C—H⋯S and C—H⋯O interactions, but most of the C—H⋯S and C—H⋯O angles are far from linearity and thus, they should represent relatively weak interactions (Table 2 ▸).
Figure 4.
Crystal packing of the title compound viewed along the b axis with intermolecular O—H⋯O and O—H⋯S hydrogen bonds shown as dashed lines.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1A⋯S1 | 0.84 | 2.63 | 3.239 (10) | 131 |
| O1—H1B⋯S2 | 0.84 | 2.44 | 3.283 (11) | 180 |
| O2—H2A⋯O1 | 0.84 | 2.20 | 2.897 (19) | 140 |
| O2—H2B⋯O3 | 0.84 | 2.04 | 2.87 (2) | 170 |
| O3—H3A⋯S4iii | 0.84 | 2.71 | 3.490 (14) | 154 |
| O3—H3B⋯S5iii | 0.84 | 2.82 | 3.427 (14) | 131 |
| O4—H4A⋯O1 | 0.84 | 2.23 | 3.07 (2) | 180 |
| O4—H4B⋯S4ii | 0.84 | 2.33 | 3.165 (17) | 180 |
| C4—H4⋯S3iv | 0.95 | 2.81 | 3.747 (12) | 170 |
| C7—H7⋯S3iv | 0.95 | 2.93 | 3.831 (12) | 158 |
| C9—H9⋯S3v | 0.95 | 2.97 | 3.690 (10) | 134 |
| C9—H9⋯S5v | 0.95 | 3.02 | 3.706 (11) | 130 |
| C12—H12⋯S1v | 0.95 | 2.86 | 3.657 (10) | 142 |
| C21—H21⋯O4 | 0.95 | 2.34 | 3.15 (2) | 143 |
| C24—H24⋯S5vi | 0.95 | 2.83 | 3.652 (15) | 145 |
| C29—H29⋯O4vii | 0.95 | 2.12 | 2.98 (3) | 150 |
| C32—H32⋯S4viii | 0.95 | 2.97 | 3.599 (13) | 125 |
Symmetry codes: (ii)
; (iii)
; (iv)
; (v)
; (vi)
; (vii)
; (viii)
.
Database survey
There are a number of other manganese thioantimonates with the general formula Mn2 LSb2S5 or Mn2 L 2Sb2S5 (L = amine ligand) reported in the literature that contain neutral Mn2Sb2S5 units and additional N-donor coligands. This includes Mn2(methylamino)2Sb2S5 and Mn2(1,3-diaminopropane)Sb2S5 as well as Mn2(ethylenediamine)2Sb2S5 Mn2(ethylamino)2Sb2S5, with the latter showing a reversible phase transition (Bensch & Schur, 1996 ▸; Schur & Bensch, 2002 ▸; Schur et al., 2001 ▸). This also includes Mn2(1,3-diaminopentene)Sb2S5 and two further compounds with diethylenetriamine and N-methyl-1,3-diaminopropane as ligands (Puls, et al., 2006 ▸; Engelke et al., 2004 ▸). Amongst these Mn compounds, there are some others with different transition metal cations such as, for example, CuII or CoII (Spetzler et al., 2005 ▸; Stähler & Bensch, 2001 ▸).
For reviews of chalcogenido thiometallates including thioantimonates, see: Sheldrick & Wachhold (1998 ▸); Dehnen & Melullis (2007 ▸); Zhou et al. (2009 ▸); Seidlhofer et al. (2010 ▸); Wang et al. (2016 ▸); Zhou (2016 ▸); Zhu & Dai (2017 ▸).
Synthesis and crystallization
General: Na3SbS3 was prepared by the reaction of anhydrous Na2S (ABCR, 95%), Sb (99.5%, Sigma Aldrich) and sulfur (99%, ABCR) in a molar ratio of 3:2:3 at 870 K in a silica glass ampoule according to a literature procedure (Pompe & Pfitzner, 2013 ▸). The pale-yellow compound is sensitive to air and moisture and must be stored under a nitrogen atmosphere.
Mn(terpy)2(ClO4)2] was prepared according to the literature (Rao et al., 1976 ▸). 0.5 mmol of Mn(ClO4)2·6H2O (ABCR 99%) was dissolved in 25 mL of dry ethanol. Another solution containing 1.2 mmol of 2,2′;6′,2′′-terpyridine (ABCR 97%) was added to the the first solution. Upon mixing, a yellow solid precipitated that was filtered off and recrystallized from dry ethanol.
Synthesis:
Single crystals of the title compound were obtained by adding 2 mL of H2O in a glass tube to a mixture of 72.0 mg (0.1 mmol) Mn(terpy)2(ClO4)2 and 57.4 mg (0.2 mmol) of Na3SbS3. The slurry was heated to 413 K for 2 h. After cooling to room temperature, small red needles with a yield of 10% were obtained together with a very small amount of an unknown crystalline phase and of a colourless solid that is amorphous against X-rays.
Experimental methods:
The XRPD measurements were performed by using a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα radiation that was equipped with a linear, position-sensitive MYTHEN detector from Stoe & Cie.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. Hydrogen atoms were positioned with idealized geometry and were refined with U iso(H) = 1.2U eq(C) using a riding model. Some of the water H atoms were located in a difference-Fourier map; their bond lengths were set to ideal values and finally they were refined isotropically with U iso(H) = 1.5U eq(O). The water H atoms that could not be located in a difference-Fourier map were included in idealized calculated positions that gave the most sensible geometry as donors for hydrogen bonds.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Mn2Sb2S5(C15H11N3)2]·4H2O |
| M r | 1052.28 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 200 |
| a, b, c (Å) | 11.9227 (5), 12.1592 (6), 14.9217 (7) |
| α, β, γ (°) | 104.293 (3), 101.701 (3), 112.585 (3) |
| V (Å3) | 1825.27 (15) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 2.47 |
| Crystal size (mm) | 0.13 × 0.08 × 0.06 |
| Data collection | |
| Diffractometer | Stoe IPDS2 |
| Absorption correction | Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008 ▸) |
| T min, T max | 0.624, 0.748 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 7084, 7084, 5834 |
| (sin θ/λ)max (Å−1) | 0.621 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.054, 0.182, 1.07 |
| No. of reflections | 7084 |
| No. of parameters | 444 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.08, −0.98 |
The crystal studied was twinned by non-merohedry around a pseudo twofold rotation axis, with a matrix close to 0
0
0 0 0 0
but refinement in SHELXL (Sheldrick, 2015 ▸) assuming this kind of twinning lead to only very poor reliability factors. Therefore, both individual domains were indexed separately and the overlapping reflections were removed. In this case, relatively good reliability factors were observed but the completeness was only 68.6%. Thus, the data were integrated neglecting the twinning, corrected for absorption and merged. Afterwards the twin law was determined and the data were transformed into HKLF-5 format (Sheldrick, 2015 ▸), leading to full completeness and acceptable reliability factors.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938Isup2.hkl
Fig. S1. Experimental and simulated X-ray powder pattern for the title compound. DOI: 10.1107/S2056989019016268/lh5938sup3.jpg
CCDC reference: 1969700
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Financial support by the state of Schleswig–Holstein is gratefully acknowledged.
supplementary crystallographic information
Crystal data
| [Mn2Sb2S5(C15H11N3)2]·4H2O | Z = 2 |
| Mr = 1052.28 | F(000) = 1032 |
| Triclinic, P1 | Dx = 1.915 Mg m−3 |
| a = 11.9227 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 12.1592 (6) Å | Cell parameters from 12925 reflections |
| c = 14.9217 (7) Å | θ = 1.5–26.2° |
| α = 104.293 (3)° | µ = 2.47 mm−1 |
| β = 101.701 (3)° | T = 200 K |
| γ = 112.585 (3)° | Block, red |
| V = 1825.27 (15) Å3 | 0.13 × 0.08 × 0.06 mm |
Data collection
| Stoe IPDS-2 diffractometer | 5834 reflections with I > 2σ(I) |
| ω scans | θmax = 26.2°, θmin = 1.5° |
| Absorption correction: numerical (X-Red and X-Shape; Stoe & Cie, 2008) | h = −14→14 |
| Tmin = 0.624, Tmax = 0.748 | k = −14→14 |
| 7084 measured reflections | l = −9→18 |
| 7084 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.1094P)2 + 7.9201P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.182 | (Δ/σ)max < 0.001 |
| S = 1.07 | Δρmax = 1.08 e Å−3 |
| 7084 reflections | Δρmin = −0.98 e Å−3 |
| 444 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.0156 (14) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refined as a two-component twin. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Sb1 | 0.37778 (6) | 0.39853 (6) | 0.56716 (4) | 0.0362 (2) | |
| Sb2 | 0.43666 (6) | 0.42290 (5) | 0.83131 (4) | 0.0347 (2) | |
| S1 | 0.5789 (2) | 0.3987 (2) | 0.63453 (17) | 0.0391 (5) | |
| S2 | 0.4300 (3) | 0.6161 (2) | 0.64977 (18) | 0.0409 (5) | |
| S3 | 0.2644 (2) | 0.3063 (2) | 0.67019 (19) | 0.0410 (5) | |
| S4 | 0.3019 (2) | 0.4485 (2) | 0.9261 (2) | 0.0460 (6) | |
| S5 | 0.4355 (2) | 0.2315 (2) | 0.84793 (19) | 0.0428 (5) | |
| Mn1 | 0.62903 (13) | 0.32502 (12) | 0.48902 (10) | 0.0347 (3) | |
| N1 | 0.8453 (8) | 0.4535 (7) | 0.5649 (6) | 0.0404 (17) | |
| N2 | 0.7276 (8) | 0.2017 (7) | 0.4772 (6) | 0.0368 (16) | |
| N3 | 0.4774 (7) | 0.1195 (7) | 0.4132 (6) | 0.0364 (16) | |
| C1 | 0.8982 (10) | 0.5779 (9) | 0.6095 (7) | 0.043 (2) | |
| H1 | 0.843905 | 0.618064 | 0.606305 | 0.052* | |
| C2 | 1.0295 (11) | 0.6544 (10) | 0.6615 (9) | 0.053 (3) | |
| H2 | 1.063976 | 0.744043 | 0.692727 | 0.064* | |
| C3 | 1.1084 (12) | 0.5942 (11) | 0.6657 (10) | 0.057 (3) | |
| H3 | 1.198416 | 0.642938 | 0.699585 | 0.068* | |
| C4 | 1.0541 (10) | 0.4624 (11) | 0.6200 (9) | 0.052 (3) | |
| H4 | 1.105988 | 0.419606 | 0.623773 | 0.063* | |
| C5 | 0.9220 (10) | 0.3942 (9) | 0.5685 (8) | 0.041 (2) | |
| C6 | 0.8559 (9) | 0.2540 (9) | 0.5134 (8) | 0.041 (2) | |
| C7 | 0.9208 (11) | 0.1819 (10) | 0.4992 (10) | 0.054 (3) | |
| H7 | 1.012020 | 0.220266 | 0.526538 | 0.065* | |
| C8 | 0.8517 (12) | 0.0550 (11) | 0.4452 (9) | 0.057 (3) | |
| H8 | 0.895377 | 0.005087 | 0.432484 | 0.069* | |
| C9 | 0.7186 (11) | −0.0023 (10) | 0.4085 (8) | 0.049 (2) | |
| H9 | 0.669897 | −0.091173 | 0.371658 | 0.059* | |
| C10 | 0.6575 (9) | 0.0760 (8) | 0.4277 (7) | 0.0361 (19) | |
| C11 | 0.5173 (10) | 0.0297 (8) | 0.3953 (6) | 0.0357 (18) | |
| C12 | 0.4295 (11) | −0.1001 (9) | 0.3504 (7) | 0.044 (2) | |
| H12 | 0.459932 | −0.162278 | 0.340345 | 0.052* | |
| C13 | 0.3003 (11) | −0.1376 (9) | 0.3211 (7) | 0.045 (2) | |
| H13 | 0.240224 | −0.225324 | 0.289009 | 0.054* | |
| C14 | 0.2583 (11) | −0.0453 (10) | 0.3390 (8) | 0.050 (2) | |
| H14 | 0.169008 | −0.068183 | 0.320257 | 0.060* | |
| C15 | 0.3504 (10) | 0.0818 (9) | 0.3851 (7) | 0.043 (2) | |
| H15 | 0.321825 | 0.145279 | 0.397316 | 0.052* | |
| Mn2 | 0.37319 (16) | 0.67226 (14) | 1.01113 (11) | 0.0413 (4) | |
| N21 | 0.4598 (13) | 0.7905 (9) | 0.9250 (7) | 0.062 (3) | |
| N22 | 0.2544 (11) | 0.7693 (9) | 0.9747 (6) | 0.054 (2) | |
| N23 | 0.2195 (9) | 0.6283 (8) | 1.0844 (6) | 0.0436 (18) | |
| C21 | 0.5691 (16) | 0.8057 (11) | 0.9108 (9) | 0.069 (4) | |
| H21 | 0.608757 | 0.757593 | 0.931466 | 0.083* | |
| C22 | 0.630 (2) | 0.8900 (13) | 0.8665 (10) | 0.090 (6) | |
| H22 | 0.709957 | 0.900042 | 0.858841 | 0.109* | |
| C23 | 0.573 (3) | 0.9559 (12) | 0.8351 (10) | 0.105 (8) | |
| H23 | 0.611734 | 1.012190 | 0.803711 | 0.126* | |
| C24 | 0.460 (2) | 0.9413 (13) | 0.8487 (9) | 0.091 (7) | |
| H24 | 0.417808 | 0.986953 | 0.826740 | 0.110* | |
| C25 | 0.4057 (19) | 0.8587 (11) | 0.8951 (8) | 0.074 (5) | |
| C26 | 0.2881 (17) | 0.8444 (11) | 0.9202 (8) | 0.070 (4) | |
| C27 | 0.209 (3) | 0.9006 (17) | 0.8945 (10) | 0.113 (9) | |
| H27 | 0.228365 | 0.950793 | 0.854799 | 0.135* | |
| C28 | 0.105 (3) | 0.8844 (19) | 0.9258 (12) | 0.109 (8) | |
| H28 | 0.054054 | 0.924278 | 0.908344 | 0.131* | |
| C29 | 0.0757 (17) | 0.8124 (17) | 0.9811 (11) | 0.086 (5) | |
| H29 | 0.003705 | 0.800505 | 1.002708 | 0.103* | |
| C30 | 0.1548 (13) | 0.7546 (11) | 1.0064 (9) | 0.057 (3) | |
| C31 | 0.1317 (10) | 0.6736 (11) | 1.0656 (8) | 0.051 (3) | |
| C32 | 0.0314 (12) | 0.6440 (12) | 1.0990 (10) | 0.064 (3) | |
| H32 | −0.028291 | 0.676671 | 1.085717 | 0.076* | |
| C33 | 0.0169 (11) | 0.5651 (14) | 1.1530 (10) | 0.070 (4) | |
| H33 | −0.054269 | 0.542127 | 1.176270 | 0.085* | |
| C34 | 0.1030 (12) | 0.5205 (12) | 1.1730 (9) | 0.058 (3) | |
| H34 | 0.094179 | 0.466582 | 1.210361 | 0.069* | |
| C35 | 0.2051 (11) | 0.5563 (12) | 1.1371 (8) | 0.051 (2) | |
| H35 | 0.267249 | 0.526746 | 1.151685 | 0.061* | |
| O1 | 0.7367 (10) | 0.7040 (9) | 0.7526 (8) | 0.087 (3) | |
| H1A | 0.747033 | 0.638528 | 0.734270 | 0.131* | |
| H1B | 0.658273 | 0.681508 | 0.726219 | 0.131* | |
| O2 | 0.9205 (14) | 0.8717 (13) | 0.6860 (10) | 0.102 (4) | |
| H2A | 0.848835 | 0.842934 | 0.694566 | 0.153* | |
| H2B | 0.981845 | 0.944124 | 0.720865 | 0.153* | |
| O3 | 1.1152 (14) | 1.1177 (13) | 0.8230 (13) | 0.124 (5) | |
| H3A | 1.150095 | 1.194473 | 0.827743 | 0.186* | |
| H3B | 1.178715 | 1.104813 | 0.842072 | 0.186* | |
| O4 | 0.8058 (16) | 0.7512 (19) | 0.9728 (15) | 0.146 (7) | |
| H4A | 0.787124 | 0.738460 | 0.912575 | 0.219* | |
| H4B | 0.777494 | 0.698331 | 0.999835 | 0.219* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Sb1 | 0.0422 (4) | 0.0341 (3) | 0.0340 (3) | 0.0206 (3) | 0.0104 (3) | 0.0116 (2) |
| Sb2 | 0.0375 (3) | 0.0307 (3) | 0.0394 (3) | 0.0173 (2) | 0.0150 (3) | 0.0136 (2) |
| S1 | 0.0417 (12) | 0.0417 (12) | 0.0393 (12) | 0.0262 (10) | 0.0118 (10) | 0.0127 (10) |
| S2 | 0.0495 (13) | 0.0332 (11) | 0.0444 (12) | 0.0229 (10) | 0.0145 (10) | 0.0154 (9) |
| S3 | 0.0427 (12) | 0.0335 (11) | 0.0476 (13) | 0.0167 (10) | 0.0142 (10) | 0.0179 (10) |
| S4 | 0.0438 (13) | 0.0386 (12) | 0.0571 (15) | 0.0202 (10) | 0.0247 (12) | 0.0106 (11) |
| S5 | 0.0453 (13) | 0.0337 (11) | 0.0514 (13) | 0.0215 (10) | 0.0121 (11) | 0.0160 (10) |
| Mn1 | 0.0358 (7) | 0.0303 (7) | 0.0394 (7) | 0.0173 (6) | 0.0120 (6) | 0.0116 (6) |
| N1 | 0.034 (4) | 0.033 (4) | 0.048 (4) | 0.014 (3) | 0.010 (3) | 0.012 (3) |
| N2 | 0.043 (4) | 0.034 (4) | 0.046 (4) | 0.026 (3) | 0.020 (4) | 0.016 (3) |
| N3 | 0.035 (4) | 0.028 (4) | 0.039 (4) | 0.012 (3) | 0.009 (3) | 0.008 (3) |
| C1 | 0.038 (5) | 0.035 (5) | 0.047 (5) | 0.015 (4) | 0.010 (4) | 0.005 (4) |
| C2 | 0.043 (6) | 0.038 (5) | 0.062 (7) | 0.008 (4) | 0.014 (5) | 0.011 (5) |
| C3 | 0.043 (6) | 0.045 (6) | 0.068 (7) | 0.016 (5) | 0.013 (5) | 0.007 (5) |
| C4 | 0.035 (5) | 0.048 (6) | 0.064 (7) | 0.017 (5) | 0.011 (5) | 0.013 (5) |
| C5 | 0.040 (5) | 0.036 (5) | 0.054 (6) | 0.023 (4) | 0.018 (4) | 0.014 (4) |
| C6 | 0.036 (5) | 0.034 (5) | 0.054 (6) | 0.020 (4) | 0.014 (4) | 0.009 (4) |
| C7 | 0.038 (5) | 0.038 (5) | 0.080 (8) | 0.021 (4) | 0.008 (5) | 0.012 (5) |
| C8 | 0.055 (7) | 0.039 (5) | 0.066 (7) | 0.028 (5) | 0.006 (6) | 0.003 (5) |
| C9 | 0.058 (6) | 0.032 (5) | 0.058 (6) | 0.030 (5) | 0.013 (5) | 0.006 (4) |
| C10 | 0.040 (5) | 0.026 (4) | 0.044 (5) | 0.020 (4) | 0.011 (4) | 0.009 (4) |
| C11 | 0.051 (5) | 0.027 (4) | 0.032 (4) | 0.020 (4) | 0.013 (4) | 0.011 (3) |
| C12 | 0.061 (6) | 0.032 (4) | 0.037 (5) | 0.020 (4) | 0.013 (4) | 0.014 (4) |
| C13 | 0.053 (6) | 0.024 (4) | 0.043 (5) | 0.010 (4) | 0.012 (4) | 0.005 (4) |
| C14 | 0.040 (5) | 0.045 (6) | 0.052 (6) | 0.014 (4) | 0.010 (5) | 0.008 (5) |
| C15 | 0.052 (6) | 0.035 (5) | 0.042 (5) | 0.022 (4) | 0.018 (4) | 0.009 (4) |
| Mn2 | 0.0557 (9) | 0.0386 (8) | 0.0376 (7) | 0.0287 (7) | 0.0152 (7) | 0.0150 (6) |
| N21 | 0.106 (9) | 0.040 (5) | 0.042 (5) | 0.031 (5) | 0.032 (5) | 0.020 (4) |
| N22 | 0.070 (6) | 0.048 (5) | 0.038 (4) | 0.038 (5) | −0.004 (4) | 0.005 (4) |
| N23 | 0.050 (5) | 0.046 (4) | 0.043 (4) | 0.032 (4) | 0.014 (4) | 0.013 (4) |
| C21 | 0.110 (11) | 0.034 (5) | 0.048 (6) | 0.017 (6) | 0.039 (7) | 0.007 (5) |
| C22 | 0.142 (16) | 0.051 (7) | 0.051 (7) | 0.011 (9) | 0.050 (9) | 0.015 (6) |
| C23 | 0.21 (2) | 0.034 (6) | 0.038 (7) | 0.022 (10) | 0.041 (11) | 0.014 (5) |
| C24 | 0.19 (2) | 0.040 (6) | 0.034 (6) | 0.042 (9) | 0.030 (9) | 0.012 (5) |
| C25 | 0.145 (14) | 0.036 (6) | 0.029 (5) | 0.038 (7) | 0.017 (7) | 0.010 (4) |
| C26 | 0.127 (13) | 0.045 (6) | 0.034 (5) | 0.049 (7) | 0.001 (7) | 0.009 (5) |
| C27 | 0.23 (3) | 0.085 (11) | 0.036 (6) | 0.113 (15) | 0.001 (10) | 0.011 (7) |
| C28 | 0.19 (2) | 0.106 (13) | 0.061 (9) | 0.122 (16) | 0.006 (11) | 0.017 (9) |
| C29 | 0.091 (11) | 0.097 (11) | 0.070 (9) | 0.073 (10) | −0.006 (8) | 0.007 (8) |
| C30 | 0.065 (7) | 0.045 (6) | 0.052 (6) | 0.038 (6) | −0.006 (5) | −0.001 (5) |
| C31 | 0.040 (5) | 0.055 (6) | 0.048 (6) | 0.032 (5) | 0.001 (4) | −0.002 (5) |
| C32 | 0.040 (6) | 0.052 (6) | 0.077 (8) | 0.020 (5) | 0.001 (6) | 0.007 (6) |
| C33 | 0.032 (6) | 0.073 (8) | 0.067 (8) | 0.012 (5) | 0.008 (5) | −0.013 (7) |
| C34 | 0.057 (7) | 0.059 (7) | 0.049 (6) | 0.022 (6) | 0.021 (5) | 0.012 (5) |
| C35 | 0.044 (6) | 0.066 (7) | 0.043 (5) | 0.027 (5) | 0.015 (4) | 0.018 (5) |
| O1 | 0.068 (6) | 0.054 (5) | 0.090 (7) | 0.022 (5) | −0.012 (5) | −0.011 (5) |
| O2 | 0.109 (10) | 0.092 (8) | 0.107 (9) | 0.055 (8) | 0.033 (8) | 0.026 (7) |
| O3 | 0.096 (10) | 0.078 (8) | 0.200 (16) | 0.028 (7) | 0.071 (10) | 0.056 (9) |
| O4 | 0.109 (12) | 0.157 (16) | 0.190 (18) | 0.066 (11) | 0.034 (12) | 0.096 (14) |
Geometric parameters (Å, º)
| Sb1—S2 | 2.391 (2) | C15—H15 | 0.9500 |
| Sb1—S1 | 2.404 (2) | Mn2—N22 | 2.233 (9) |
| Sb1—S3 | 2.445 (2) | Mn2—N21 | 2.257 (9) |
| Sb2—S5 | 2.396 (2) | Mn2—N23 | 2.278 (9) |
| Sb2—S4 | 2.402 (2) | N21—C21 | 1.31 (2) |
| Sb2—S3 | 2.467 (3) | N21—C25 | 1.334 (18) |
| S1—Mn1 | 2.419 (3) | N22—C30 | 1.331 (17) |
| S2—Mn1i | 2.414 (3) | N22—C26 | 1.368 (17) |
| S4—Mn2 | 2.411 (3) | N23—C35 | 1.301 (14) |
| S5—Mn2ii | 2.405 (3) | N23—C31 | 1.371 (13) |
| Mn1—N2 | 2.228 (7) | C21—C22 | 1.405 (17) |
| Mn1—N3 | 2.258 (7) | C21—H21 | 0.9500 |
| Mn1—N1 | 2.285 (8) | C22—C23 | 1.34 (3) |
| N1—C1 | 1.315 (13) | C22—H22 | 0.9500 |
| N1—C5 | 1.366 (13) | C23—C24 | 1.36 (3) |
| N2—C6 | 1.336 (13) | C23—H23 | 0.9500 |
| N2—C10 | 1.339 (12) | C24—C25 | 1.39 (2) |
| N3—C15 | 1.339 (13) | C24—H24 | 0.9500 |
| N3—C11 | 1.341 (12) | C25—C26 | 1.48 (2) |
| C1—C2 | 1.397 (15) | C26—C27 | 1.40 (2) |
| C1—H1 | 0.9500 | C27—C28 | 1.37 (3) |
| C2—C3 | 1.396 (17) | C27—H27 | 0.9500 |
| C2—H2 | 0.9500 | C28—C29 | 1.34 (3) |
| C3—C4 | 1.393 (16) | C28—H28 | 0.9500 |
| C3—H3 | 0.9500 | C29—C30 | 1.422 (17) |
| C4—C5 | 1.397 (15) | C29—H29 | 0.9500 |
| C4—H4 | 0.9500 | C30—C31 | 1.465 (18) |
| C5—C6 | 1.488 (13) | C31—C32 | 1.344 (18) |
| C6—C7 | 1.382 (14) | C32—C33 | 1.38 (2) |
| C7—C8 | 1.360 (15) | C32—H32 | 0.9500 |
| C7—H7 | 0.9500 | C33—C34 | 1.35 (2) |
| C8—C9 | 1.383 (17) | C33—H33 | 0.9500 |
| C8—H8 | 0.9500 | C34—C35 | 1.390 (16) |
| C9—C10 | 1.415 (13) | C34—H34 | 0.9500 |
| C9—H9 | 0.9500 | C35—H35 | 0.9500 |
| C10—C11 | 1.469 (14) | O1—H1A | 0.8400 |
| C11—C12 | 1.400 (13) | O1—H1B | 0.8401 |
| C12—C13 | 1.364 (16) | O2—H2A | 0.8400 |
| C12—H12 | 0.9500 | O2—H2B | 0.8400 |
| C13—C14 | 1.385 (16) | O3—H3A | 0.8400 |
| C13—H13 | 0.9500 | O3—H3B | 0.8400 |
| C14—C15 | 1.390 (14) | O4—H4A | 0.8399 |
| C14—H14 | 0.9500 | O4—H4B | 0.8401 |
| S2—Sb1—S1 | 100.84 (9) | N3—C15—C14 | 123.4 (10) |
| S2—Sb1—S3 | 97.77 (8) | N3—C15—H15 | 118.3 |
| S1—Sb1—S3 | 98.41 (8) | C14—C15—H15 | 118.3 |
| S5—Sb2—S4 | 99.08 (9) | N22—Mn2—N21 | 72.0 (4) |
| S5—Sb2—S3 | 93.00 (8) | N22—Mn2—N23 | 71.3 (4) |
| S4—Sb2—S3 | 96.64 (9) | N21—Mn2—N23 | 143.0 (4) |
| Sb1—S1—Mn1 | 102.22 (9) | N22—Mn2—S5ii | 123.9 (3) |
| Sb1—S2—Mn1i | 100.17 (10) | N21—Mn2—S5ii | 96.5 (3) |
| Sb1—S3—Sb2 | 100.47 (9) | N23—Mn2—S5ii | 100.3 (2) |
| Sb2—S4—Mn2 | 109.95 (10) | N22—Mn2—S4 | 122.1 (3) |
| Sb2—S5—Mn2ii | 98.38 (10) | N21—Mn2—S4 | 111.3 (3) |
| N2—Mn1—N3 | 71.6 (3) | N23—Mn2—S4 | 91.9 (2) |
| N2—Mn1—N1 | 71.9 (3) | S5ii—Mn2—S4 | 113.34 (10) |
| N3—Mn1—N1 | 143.5 (3) | C21—N21—C25 | 117.5 (12) |
| N2—Mn1—S2i | 118.1 (2) | C21—N21—Mn2 | 122.8 (9) |
| N3—Mn1—S2i | 93.7 (2) | C25—N21—Mn2 | 119.3 (11) |
| N1—Mn1—S2i | 105.6 (2) | C30—N22—C26 | 121.8 (11) |
| N2—Mn1—S1 | 122.2 (2) | C30—N22—Mn2 | 120.2 (8) |
| N3—Mn1—S1 | 103.9 (2) | C26—N22—Mn2 | 118.0 (10) |
| N1—Mn1—S1 | 93.1 (2) | C35—N23—C31 | 118.4 (10) |
| S2i—Mn1—S1 | 119.71 (10) | C35—N23—Mn2 | 124.1 (7) |
| C1—N1—C5 | 118.9 (9) | C31—N23—Mn2 | 117.3 (7) |
| C1—N1—Mn1 | 124.3 (7) | N21—C21—C22 | 122.8 (16) |
| C5—N1—Mn1 | 116.7 (6) | N21—C21—H21 | 118.6 |
| C6—N2—C10 | 120.5 (8) | C22—C21—H21 | 118.6 |
| C6—N2—Mn1 | 120.2 (6) | C23—C22—C21 | 119 (2) |
| C10—N2—Mn1 | 119.2 (6) | C23—C22—H22 | 120.5 |
| C15—N3—C11 | 118.1 (8) | C21—C22—H22 | 120.5 |
| C15—N3—Mn1 | 124.1 (6) | C22—C23—C24 | 119.1 (14) |
| C11—N3—Mn1 | 117.8 (6) | C22—C23—H23 | 120.5 |
| N1—C1—C2 | 123.8 (10) | C24—C23—H23 | 120.5 |
| N1—C1—H1 | 118.1 | C23—C24—C25 | 119.3 (17) |
| C2—C1—H1 | 118.1 | C23—C24—H24 | 120.4 |
| C3—C2—C1 | 117.6 (10) | C25—C24—H24 | 120.4 |
| C3—C2—H2 | 121.2 | N21—C25—C24 | 122.3 (18) |
| C1—C2—H2 | 121.2 | N21—C25—C26 | 114.6 (11) |
| C4—C3—C2 | 119.6 (11) | C24—C25—C26 | 123.1 (15) |
| C4—C3—H3 | 120.2 | N22—C26—C27 | 117.3 (18) |
| C2—C3—H3 | 120.2 | N22—C26—C25 | 116.1 (11) |
| C3—C4—C5 | 118.7 (11) | C27—C26—C25 | 126.6 (15) |
| C3—C4—H4 | 120.7 | C28—C27—C26 | 121.2 (17) |
| C5—C4—H4 | 120.7 | C28—C27—H27 | 119.4 |
| N1—C5—C4 | 121.5 (9) | C26—C27—H27 | 119.4 |
| N1—C5—C6 | 115.7 (9) | C29—C28—C27 | 120.4 (15) |
| C4—C5—C6 | 122.9 (9) | C29—C28—H28 | 119.8 |
| N2—C6—C7 | 121.7 (9) | C27—C28—H28 | 119.8 |
| N2—C6—C5 | 115.1 (8) | C28—C29—C30 | 118.4 (18) |
| C7—C6—C5 | 123.2 (9) | C28—C29—H29 | 120.8 |
| C8—C7—C6 | 118.7 (10) | C30—C29—H29 | 120.8 |
| C8—C7—H7 | 120.7 | N22—C30—C29 | 120.8 (14) |
| C6—C7—H7 | 120.7 | N22—C30—C31 | 115.7 (9) |
| C7—C8—C9 | 120.9 (10) | C29—C30—C31 | 123.4 (14) |
| C7—C8—H8 | 119.5 | C32—C31—N23 | 121.6 (12) |
| C9—C8—H8 | 119.5 | C32—C31—C30 | 123.1 (11) |
| C8—C9—C10 | 117.7 (9) | N23—C31—C30 | 115.3 (10) |
| C8—C9—H9 | 121.2 | C31—C32—C33 | 118.7 (12) |
| C10—C9—H9 | 121.2 | C31—C32—H32 | 120.6 |
| N2—C10—C9 | 120.4 (9) | C33—C32—H32 | 120.6 |
| N2—C10—C11 | 115.1 (8) | C34—C33—C32 | 120.5 (12) |
| C9—C10—C11 | 124.4 (9) | C34—C33—H33 | 119.8 |
| N3—C11—C12 | 121.3 (10) | C32—C33—H33 | 119.8 |
| N3—C11—C10 | 115.9 (8) | C33—C34—C35 | 117.7 (13) |
| C12—C11—C10 | 122.8 (9) | C33—C34—H34 | 121.2 |
| C13—C12—C11 | 120.2 (10) | C35—C34—H34 | 121.2 |
| C13—C12—H12 | 119.9 | N23—C35—C34 | 123.1 (12) |
| C11—C12—H12 | 119.9 | N23—C35—H35 | 118.5 |
| C12—C13—C14 | 118.8 (9) | C34—C35—H35 | 118.5 |
| C12—C13—H13 | 120.6 | H1A—O1—H1B | 106.5 |
| C14—C13—H13 | 120.6 | H2A—O2—H2B | 123.6 |
| C13—C14—C15 | 118.2 (10) | H3A—O3—H3B | 102.7 |
| C13—C14—H14 | 120.9 | H4A—O4—H4B | 127.9 |
| C15—C14—H14 | 120.9 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1A···S1 | 0.84 | 2.63 | 3.239 (10) | 131 |
| O1—H1B···S2 | 0.84 | 2.44 | 3.283 (11) | 180 |
| O2—H2A···O1 | 0.84 | 2.20 | 2.897 (19) | 140 |
| O2—H2B···O3 | 0.84 | 2.04 | 2.87 (2) | 170 |
| O3—H3A···S4iii | 0.84 | 2.71 | 3.490 (14) | 154 |
| O3—H3B···S5iii | 0.84 | 2.82 | 3.427 (14) | 131 |
| O4—H4A···O1 | 0.84 | 2.23 | 3.07 (2) | 180 |
| O4—H4B···S4ii | 0.84 | 2.33 | 3.165 (17) | 180 |
| C4—H4···S3iv | 0.95 | 2.81 | 3.747 (12) | 170 |
| C7—H7···S3iv | 0.95 | 2.93 | 3.831 (12) | 158 |
| C9—H9···S3v | 0.95 | 2.97 | 3.690 (10) | 134 |
| C9—H9···S5v | 0.95 | 3.02 | 3.706 (11) | 130 |
| C12—H12···S1v | 0.95 | 2.86 | 3.657 (10) | 142 |
| C21—H21···O4 | 0.95 | 2.34 | 3.15 (2) | 143 |
| C24—H24···S5vi | 0.95 | 2.83 | 3.652 (15) | 145 |
| C29—H29···O4vii | 0.95 | 2.12 | 2.98 (3) | 150 |
| C32—H32···S4viii | 0.95 | 2.97 | 3.599 (13) | 125 |
Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) −x+1, −y, −z+1; (vi) x, y+1, z; (vii) x−1, y, z; (viii) −x, −y+1, −z+2.
References
- Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773–1774.
- Bensch, W. & Schur, M. (1996). Eur. J. Solid State Chem. 33, 1149–1160.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259–1280.
- Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869–876.
- Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.
- Liu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.
- Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687–1695.
- Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front. 4, 945-959.
- Nie, L., Xiong, W. W., Li, P., Han, J., Zhang, G., Yin, S., Zhao, Y., Xu, R. & Zhang, Q. (2014). J. Solid State Chem. 220, 118–123.
- Nie, L., Zhang, Y., Xiong, W. W., Lim, T. T., Quingyu Yan, R. X. & Zhang, Q. (2016). Inorg. Chem. Front. 3, 111-116.
- Pompe, C. & Pfitzner, A. (2013). Z. Anorg. Allg. Chem. 639, 296–300.
- Powell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414–3419.
- Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239–1243.
- Rao, M., Hughes, M. C. & Macero, D. J. (1976). Inorg. Chim. Acta, 18, 127–131.
- Schaefer, M., Näther, C., Lehnert, N. & Bensch, W. (2004). Inorg. Chem. 43, 2914–2921. [DOI] [PubMed]
- Schur, M. & Bensch, W. (2002). Z. Naturforsch. B, 57, 1–7.
- Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. B, 56, 79–84.
- Seidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554–5560.
- Seidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. B, 65, 937–975.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Sheldrick, W. S. & Wachhold, M. (1998). Coord Chem Rev. 176, 211-322.
- Spetzler, V., Näther, C. & Bensch, W. (2005). Inorg. Chem. 44, 5805–5812. [DOI] [PubMed]
- Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.
- Stähler, R. & Bensch, W. (2001). J. Chem. Soc. Dalton Trans. pp. 2518–2522.
- Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27. [DOI] [PubMed]
- Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41–68.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yue, C. Y., Lei, X. W., Liu, R. Q., Zhang, H. P., Zhai, X. R., Li, W. P., Zhou, M., Zhao, Z. F., Ma, Y. X. & Yang, Y. D. (2014). Cryst. Growth Des. 14, 2411–2421.
- Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.
- Zhou, J. (2016). Coord. Chem. Rev. 315, 112–134.
- Zhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221–1247.
- Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016268/lh5938Isup2.hkl
Fig. S1. Experimental and simulated X-ray powder pattern for the title compound. DOI: 10.1107/S2056989019016268/lh5938sup3.jpg
CCDC reference: 1969700
Additional supporting information: crystallographic information; 3D view; checkCIF report




