Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):82–85. doi: 10.1107/S2056989019016773

Synthesis and crystal structure of (1,8-naphth­yridine-κ2 N,N′)[2-(1H-pyrazol-1-yl)phenyl-κ2 N 2,C 1]iridium(III) hexa­fluorido­phosphate di­chloro­methane monosolvate

Yunfeng Ye a, Guodong Tang b, Jun Qian c,*
PMCID: PMC6944085  PMID: 31921457

The coordination environment of the IrIII atom in the complex cation is pseudo-octa­hedral, with an N4C2 coordination set.

Keywords: crystal structure, cyclo­metalated iridium complex, 1-phenyl­pyrazole, C—H⋯F hydrogen bonds

Abstract

The solvated title salt, [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2, was obtained from the reaction between 1,8-naphthyridine (NAP) and an orthometalated iridium(III) precursor containing a 1-phenyl­pyrazole (ppz) ligand. The asymmetric unit comprises one [Ir(ppz)2(NAP)]+ cation, one PF6 counter-ion and one CH2Cl2 solvent mol­ecule. The central IrIII atom of the [Ir(ppz)2(NAP)]+ cation is distorted-octa­hedrally coordinated by four N atoms and two C atoms, whereby two N atoms stem from the NAP ligand while the ppz ligands ligate through one N and one C atom each. In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6 counter-ions are connected with each other through weak inter­molecular C—H⋯F hydrogen bonds. Together with an additional C—H⋯F inter­action involving the solvent mol­ecule, a three-dimensional network structure is formed.

Chemical context  

Over the past two decades, transition-metal complexes have attracted considerable attention in both academia and industry (Dixon et al., 2000). For example, d 6 iridium complexes with pseudo-octa­hedral coordination environments have been widely used in electroluminescent devices (sensors and light-emitting instruments) or photocatalysis because of their long excited-state lifetime, high quantum efficiency, luminescent colour adjustment and thermal stability (Lee et al., 2013; Fan et al., 2013). Among various iridium complexes, cyclo­metalated iridium(III) complexes are particularly attractive for the wide-range tunability of electronic structures via the rational mol­ecular design of different components (Zhu et al., 2016). According to the set-up of cyclo­metalated iridium(III) cations with general formula [(NInline graphicN)Ir(CInline graphicN)2]+ in which NInline graphicN refers to a di­imine ligand and CInline graphicN refers to a cyclo­metalated ligand, the combination and variation of NInline graphicN and CInline graphicN ligands provides the opportunity to modulate the properties of the target complexes (Goswami et al., 2014; Radwan et al., 2015).

In our laboratory, a key motivation for studies in this area arises from our inter­est in cyclo­metalated iridium(III) complexes, which exhibit a strong conjugated system with a high degree of delocalized π-electrons. Thus, one can enhance the non-linear optical properties of a system through the inter­action between the d orbitals of IrIII and the π-orbitals of an organic conjugated system (Liu et al., 2018). Here we report the crystal structure of a solvated cyclo­metalated iridium(III) complex, [Ir(C9H7N2)2(C8H6N2)](PF6)·CH2Cl2, obtained from the reaction between an orthometalated iridium precursor ({(ppz)2Ir(μ-Cl)}2) (ppz = 1-phenyl­pyrazole) and 1,8-naphthyridine (NAP) as an auxiliary ligand.graphic file with name e-76-00082-scheme1.jpg

Structural commentary  

The asymmetric unit of the title cyclo­metalated iridium(III) complex is composed of one [Ir(ppz)2(NAP)]+ cation, one PF6 counter-ion and one CH2Cl2 solvent mol­ecule. As shown in Fig. 1, the IrIII atom is coordinated by four N and two C atoms in the form of a pseudo-octa­hedral [IrN4C2] polyhedron. The axial positions are occupied by two N atoms from two ppz ligands, while the equatorial plane is defined by two N atoms from the NAP ligand and two C atoms from the ppz ligands.

Figure 1.

Figure 1

The structures of the mol­ecular entities in the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

The bond lengths and angles related to the ppz ligand are normal and agree with the values in other cyclo­metalated iridium(III) compounds based on this ligand (see Database survey for details).

The average Ir—NCInline graphicN (CInline graphicN refers to the ppz ligand) and Ir—C bond lengths are 2.013 and 2.008 Å, respectively, while the average Ir—NNInline graphicN (NInline graphicN refers to the NAP ligand) bond length is much longer at 2.208 Å. The bond angles around the IrIII atom involving cis-arranged ligand atoms deviate clearly from 90° and range from 60.74 (10)° (the bite angle of the NAP ligand) to 110.71 (12)°, except for N1—Ir1—N5 with a value of 90.63 (11)°. Likewise, the bond angles N3—Ir1—N1, C1—Ir1—N6 and C10—Ir1—N5 of trans-oriented atoms are 173.28 (13), 170.06 (13) and 161.07 (13)°, respectively, and indicate a distortion from the ideal octa­hedral arrangement. The planes of the two planar ppz ligands (C1–C6/C7–C9/N1/N2, r.m.s. deviation of 0.0097 Å; C10–C15/C16–C18/N3/N4, r.m.s. deviation of 0.0562 Å) and the NAP ligand (r.m.s. deviation 0.389 Å) are 76.26 (8) and 70.63 (9)°, respectively, and thus deviate significantly from a perpendicular arrangement.

Supra­molecular features  

In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6 counter-ions are linked by six charge-assisted and partly bifurcated C—H⋯F hydrogen bonds (C16—H16A⋯F5i, C16—H16A⋯F6i, C9—H9A⋯F1, C9—H9A⋯F4, C7—H7A⋯F5ii, C25—H25A⋯F5iii; Table 1) into a three-dimensional supra­molecular network, as shown in Fig. 2. In addition, a similar hydrogen bond between the CH2Cl2 solvent mol­ecule and the PF6 counter-ion (C27—H27A⋯F2iv) consolidates this arrangement.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯F1 0.93 2.47 3.239 (4) 140
C9—H9A⋯F4 0.93 2.48 3.386 (5) 164
C16—H16A⋯F5i 0.93 2.46 3.018 (5) 118
C16—H16A⋯F6i 0.93 2.51 3.418 (6) 167
C7—H7A⋯F5ii 0.93 2.46 3.201 (5) 136
C25—H25A⋯F5iii 0.93 2.32 3.215 (4) 160
C27—H27A⋯F2iv 0.97 2.52 3.370 (13) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound in a view along the a axis, showing the three-dimensional supra­molecular network structure. C—H⋯F hydrogen bonds are shown as dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, updated November 2017; Groom et al., 2016) for complexes containing an iridium(III) atom together with 1-phenyl­pyrazole ligand fragments yielded 36 hits. Among these, eight crystallize in the monoclinic system like the title compound. Five of them have similar chelating N,N′-ligands, viz. XAHXIP (Jiang et al., 2010), KISYOC/KISZIX (Davies et al., 2014), ROFZET (Sauvageot et al., 2014) and JUPTIZ (Howarth et al., 2015). Two compounds contain the same tetra­dentate ligand, N,N′-bis­(3,5-bis­(tri­fluoro­meth­yl)benzo­yl)hydrazide, and are meso and rac diastereomers, viz. NASQEG and NASQIK (Congrave et al., 2017), and one compound is constructed solely by the 1-phenyl­pyrazole ligand, viz. OHUZAS (Tamayo et al., 2003).

Synthesis and crystallization  

The iridium dichloride bridge compound, [(ppz)2Ir(μ-Cl)]2, was synthesized following a reported literature procedure (Kwon et al., 2005) by heating IrCl3·3H2O (1 equiv.) and 1-phenyl­pyrazole (2.3 equiv.) in a mixed solution of 2-eth­oxy­ethanol and water (v/v = 3/1) at 408 K.

1,8-Naphthyridine was synthesized by a slight modification of a reported procedure (Majewicz & Caluwe, 1975). The reaction of 1,3-cyclo­hexa­nedione and an excess of 2-amino­nicotinaldehyde in refluxing ethanol, which contains a few drops of methano­lic KOH, resulted in the 1,8-naphthyridine ligand.

The cyclo­metalated iridium(III) title complex (I) was synthesized from the reaction of [(ppz)2Ir(μ-Cl)]2 with 1,8-naphthyridine in a mixed solution of di­chloro­methane (CH2Cl2) and methanol (MeOH) (v/v = 2/1) at 358 K with KPF6 as counter-ion through metathesis. The reaction process was monitored by thin layer chromatography. After the reaction was complete, the mixture was dried under vacuum and separated by column chromatography on silica gel with CH2Cl2/petroleum ether (v/v = 4/1) as eluent. The pure product of the cyclo­metalated iridium(III) complex was obtained as a dark-yellow solid. Single crystals were grown by inter-diffusion between n-hexane and a di­chloro­methane solution of the pure solid with CH2Cl2/hexane (v/v = 1/1) as buffer solution at room temperature. Compared to the direct benign/inert solvents reaction system, here the inter-diffusion method was applied as a mild way for the crystallization of the title complex. The use of the buffer solution ensures stable conditions for the crystallization of co-responsive constituents (Nie et al., 2019). Therefore, well-shaped crystals of complex(I) can be obtained from the buffer area.

Elemental analysis for C27H22Cl2F6IrN6P (found): C, 36.86; H, 2.63; N, 10.19%; (calculated): C, 37.65; H, 2.62; N, 10.12%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å for [Ir(ppz)2(NAP)]+ cation, C—H = 0.97 Å for CH2Cl2 solvent mol­ecule) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2
M r 838.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.1222 (3), 15.5510 (4), 17.1579 (5)
β (°) 105.313 (1)
V3) 3119.64 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.57
Crystal size (mm) 0.20 × 0.18 × 0.15
 
Data collection
Diffractometer APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.417, 0.504
No. of measured, independent and observed [I > 2σ(I)] reflections 36216, 6387, 5528
R int 0.032
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.062, 1.04
No. of reflections 6387
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.29, −1.04

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016773/wm5533sup1.cif

e-76-00082-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016773/wm5533Isup3.hkl

e-76-00082-Isup3.hkl (507.8KB, hkl)

CCDC reference: 1874317

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2 F(000) = 1624
Mr = 838.57 Dx = 1.785 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.1222 (3) Å Cell parameters from 9905 reflections
b = 15.5510 (4) Å θ = 2.9–26.4°
c = 17.1579 (5) Å µ = 4.57 mm1
β = 105.313 (1)° T = 293 K
V = 3119.64 (14) Å3 Block, red
Z = 4 0.20 × 0.18 × 0.15 mm

Data collection

APEXII CCD area detector diffractometer 5528 reflections with I > 2σ(I)
phi and ω scans Rint = 0.032
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 26.4°, θmin = 2.9°
Tmin = 0.417, Tmax = 0.504 h = −15→15
36216 measured reflections k = −19→19
6387 independent reflections l = −21→21

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0254P)2 + 8.5285P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
6387 reflections Δρmax = 1.29 e Å3
388 parameters Δρmin = −1.03 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.69497 (2) 0.12122 (2) 0.36803 (2) 0.02071 (5)
N1 0.5244 (3) 0.11978 (17) 0.35308 (18) 0.0227 (6)
N2 0.4908 (3) 0.11594 (18) 0.42268 (19) 0.0279 (7)
N3 0.8666 (3) 0.12796 (19) 0.3960 (2) 0.0324 (7)
N4 0.9109 (3) 0.2077 (2) 0.4177 (3) 0.0446 (10)
N5 0.6867 (3) −0.00707 (18) 0.30844 (17) 0.0231 (6)
N6 0.6822 (3) 0.11475 (18) 0.23884 (18) 0.0229 (6)
C1 0.6907 (3) 0.1083 (2) 0.4841 (2) 0.0272 (8)
C2 0.7798 (4) 0.1025 (3) 0.5545 (3) 0.0423 (11)
H2A 0.8550 0.1019 0.5508 0.051*
C3 0.7581 (6) 0.0977 (3) 0.6303 (3) 0.0552 (15)
H3A 0.8190 0.0936 0.6763 0.066*
C4 0.6483 (6) 0.0990 (3) 0.6380 (3) 0.0541 (15)
H4A 0.6355 0.0960 0.6891 0.065*
C5 0.5570 (5) 0.1046 (3) 0.5705 (3) 0.0435 (11)
H5A 0.4822 0.1053 0.5749 0.052*
C6 0.5806 (4) 0.1092 (2) 0.4952 (2) 0.0295 (8)
C7 0.3761 (4) 0.1172 (3) 0.4054 (3) 0.0379 (10)
H7A 0.3329 0.1153 0.4428 0.045*
C8 0.3336 (4) 0.1219 (3) 0.3234 (3) 0.0389 (10)
H8A 0.2572 0.1237 0.2943 0.047*
C9 0.4292 (3) 0.1233 (2) 0.2927 (2) 0.0301 (8)
H9A 0.4269 0.1262 0.2381 0.036*
C10 0.7152 (3) 0.2476 (2) 0.3880 (2) 0.0280 (8)
C11 0.6328 (4) 0.3117 (2) 0.3775 (2) 0.0296 (8)
H11A 0.5559 0.2964 0.3638 0.036*
C12 0.6627 (4) 0.3982 (3) 0.3869 (3) 0.0387 (10)
H12A 0.6058 0.4399 0.3784 0.046*
C13 0.7757 (5) 0.4221 (3) 0.4087 (3) 0.0512 (13)
H13A 0.7950 0.4800 0.4149 0.061*
C14 0.8604 (5) 0.3609 (3) 0.4213 (4) 0.0572 (14)
H14A 0.9371 0.3767 0.4369 0.069*
C15 0.8290 (4) 0.2753 (3) 0.4102 (3) 0.0383 (10)
C16 1.0249 (4) 0.2038 (3) 0.4437 (4) 0.0682 (18)
H16A 1.0740 0.2498 0.4615 0.082*
C17 1.0564 (4) 0.1195 (3) 0.4393 (4) 0.0653 (17)
H17A 1.1302 0.0973 0.4536 0.078*
C18 0.9556 (4) 0.0745 (3) 0.4092 (3) 0.0451 (11)
H18A 0.9506 0.0156 0.3996 0.054*
C19 0.6751 (3) 0.1585 (2) 0.1718 (2) 0.0290 (8)
H19A 0.6762 0.2183 0.1736 0.035*
C20 0.6659 (4) 0.1168 (3) 0.0978 (2) 0.0353 (9)
H20A 0.6611 0.1492 0.0515 0.042*
C21 0.6641 (4) 0.0293 (3) 0.0932 (2) 0.0369 (9)
H21A 0.6585 0.0019 0.0441 0.044*
C22 0.6709 (3) −0.0195 (2) 0.1641 (2) 0.0292 (8)
C23 0.6710 (4) −0.1098 (3) 0.1724 (3) 0.0398 (10)
H23A 0.6657 −0.1451 0.1278 0.048*
C24 0.6790 (4) −0.1446 (3) 0.2465 (3) 0.0420 (11)
H24A 0.6796 −0.2041 0.2526 0.050*
C25 0.6864 (4) −0.0915 (2) 0.3141 (2) 0.0303 (8)
H25A 0.6913 −0.1167 0.3640 0.036*
C26 0.6794 (3) 0.0278 (2) 0.2341 (2) 0.0231 (7)
P1 0.33055 (9) 0.18918 (6) 0.06223 (6) 0.0258 (2)
F1 0.42475 (18) 0.23551 (13) 0.13286 (12) 0.0291 (5)
F2 0.2498 (2) 0.17991 (17) 0.12174 (15) 0.0450 (6)
F3 0.4115 (2) 0.20007 (16) 0.00312 (14) 0.0392 (6)
F4 0.3873 (2) 0.09807 (14) 0.09090 (15) 0.0417 (6)
F5 0.2744 (2) 0.28140 (14) 0.03324 (14) 0.0372 (5)
F6 0.2350 (2) 0.14372 (16) −0.00851 (15) 0.0435 (6)
Cl1 −0.0040 (4) 0.7352 (5) 0.2789 (3) 0.279 (3)
Cl2 0.0137 (4) 0.5589 (5) 0.3252 (4) 0.302 (3)
C27 0.0177 (11) 0.6755 (13) 0.3551 (10) 0.214 (8)
H27A −0.0402 0.6863 0.3836 0.256*
H27B 0.0918 0.6888 0.3915 0.256*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.02483 (8) 0.01435 (7) 0.02045 (8) −0.00010 (5) 0.00159 (5) −0.00110 (5)
N1 0.0284 (16) 0.0174 (14) 0.0222 (15) 0.0003 (12) 0.0064 (12) 0.0015 (11)
N2 0.0368 (18) 0.0195 (15) 0.0300 (17) 0.0019 (13) 0.0133 (14) 0.0004 (12)
N3 0.0291 (17) 0.0183 (15) 0.046 (2) −0.0023 (13) 0.0033 (15) −0.0015 (14)
N4 0.0296 (19) 0.0245 (17) 0.070 (3) −0.0053 (15) −0.0045 (18) −0.0040 (17)
N5 0.0264 (16) 0.0185 (14) 0.0221 (15) −0.0024 (12) 0.0025 (12) −0.0014 (11)
N6 0.0253 (15) 0.0186 (14) 0.0250 (15) 0.0012 (12) 0.0071 (12) 0.0016 (11)
C1 0.038 (2) 0.0158 (16) 0.0241 (18) 0.0026 (15) 0.0014 (16) −0.0021 (13)
C2 0.059 (3) 0.028 (2) 0.030 (2) 0.0075 (19) −0.007 (2) −0.0012 (16)
C3 0.102 (5) 0.031 (2) 0.021 (2) 0.012 (3) −0.004 (2) 0.0003 (17)
C4 0.110 (5) 0.028 (2) 0.026 (2) 0.012 (3) 0.021 (3) 0.0009 (17)
C5 0.078 (3) 0.027 (2) 0.033 (2) 0.008 (2) 0.026 (2) 0.0020 (17)
C6 0.049 (2) 0.0155 (17) 0.0236 (18) 0.0025 (16) 0.0089 (17) −0.0006 (13)
C7 0.033 (2) 0.030 (2) 0.056 (3) 0.0010 (17) 0.021 (2) 0.0007 (18)
C8 0.027 (2) 0.029 (2) 0.058 (3) 0.0014 (17) 0.0057 (19) 0.0043 (19)
C9 0.029 (2) 0.0230 (18) 0.034 (2) 0.0001 (15) 0.0000 (16) 0.0030 (15)
C10 0.041 (2) 0.0170 (17) 0.0242 (18) 0.0010 (15) 0.0048 (16) −0.0019 (13)
C11 0.043 (2) 0.0205 (18) 0.0253 (19) 0.0011 (16) 0.0093 (17) −0.0020 (14)
C12 0.058 (3) 0.0200 (19) 0.038 (2) 0.0073 (18) 0.013 (2) −0.0022 (16)
C13 0.062 (3) 0.018 (2) 0.071 (3) −0.005 (2) 0.012 (3) −0.007 (2)
C14 0.051 (3) 0.029 (2) 0.085 (4) −0.013 (2) 0.008 (3) −0.009 (2)
C15 0.035 (2) 0.0201 (19) 0.052 (3) −0.0029 (17) −0.002 (2) −0.0036 (17)
C16 0.031 (3) 0.039 (3) 0.119 (5) −0.008 (2) −0.008 (3) −0.006 (3)
C17 0.027 (2) 0.045 (3) 0.111 (5) 0.004 (2) −0.005 (3) −0.002 (3)
C18 0.033 (2) 0.028 (2) 0.068 (3) 0.0030 (18) 0.003 (2) −0.001 (2)
C19 0.032 (2) 0.0225 (18) 0.033 (2) 0.0021 (15) 0.0094 (17) 0.0082 (15)
C20 0.044 (2) 0.038 (2) 0.0251 (19) 0.0044 (19) 0.0111 (18) 0.0101 (16)
C21 0.050 (3) 0.037 (2) 0.0234 (19) −0.0016 (19) 0.0101 (18) −0.0004 (16)
C22 0.036 (2) 0.0276 (19) 0.0232 (18) −0.0051 (16) 0.0061 (16) −0.0022 (15)
C23 0.066 (3) 0.028 (2) 0.028 (2) −0.008 (2) 0.015 (2) −0.0095 (16)
C24 0.074 (3) 0.0171 (18) 0.036 (2) −0.008 (2) 0.018 (2) −0.0052 (16)
C25 0.045 (2) 0.0189 (17) 0.0273 (19) −0.0042 (16) 0.0102 (18) 0.0030 (14)
C26 0.0269 (19) 0.0199 (17) 0.0215 (17) −0.0008 (14) 0.0046 (14) 0.0018 (13)
P1 0.0312 (5) 0.0184 (4) 0.0244 (5) 0.0010 (4) 0.0015 (4) −0.0036 (3)
F1 0.0335 (12) 0.0243 (11) 0.0242 (11) −0.0019 (9) −0.0015 (9) −0.0027 (8)
F2 0.0416 (14) 0.0511 (16) 0.0445 (15) −0.0082 (12) 0.0155 (12) −0.0054 (12)
F3 0.0461 (15) 0.0417 (14) 0.0311 (12) 0.0004 (11) 0.0122 (11) −0.0046 (10)
F4 0.0535 (16) 0.0168 (11) 0.0486 (15) 0.0020 (10) 0.0023 (12) 0.0010 (10)
F5 0.0427 (14) 0.0249 (11) 0.0362 (13) 0.0089 (10) −0.0035 (11) −0.0021 (9)
F6 0.0433 (14) 0.0369 (13) 0.0396 (14) −0.0039 (11) −0.0077 (11) −0.0148 (11)
Cl1 0.177 (4) 0.470 (9) 0.169 (4) −0.139 (5) 0.008 (3) 0.032 (5)
Cl2 0.106 (3) 0.407 (9) 0.381 (8) −0.022 (4) 0.043 (4) 0.061 (7)
C27 0.116 (10) 0.34 (2) 0.197 (15) 0.054 (13) 0.065 (10) 0.096 (17)

Geometric parameters (Å, º)

Ir1—C10 1.999 (4) C11—H11A 0.9300
Ir1—N3 2.010 (3) C12—C13 1.373 (7)
Ir1—N1 2.015 (3) C12—H12A 0.9300
Ir1—C1 2.016 (4) C13—C14 1.374 (7)
Ir1—N6 2.183 (3) C13—H13A 0.9300
Ir1—N5 2.232 (3) C14—C15 1.384 (6)
N1—C9 1.333 (5) C14—H14A 0.9300
N1—N2 1.361 (4) C16—C17 1.372 (7)
N2—C7 1.344 (5) C16—H16A 0.9300
N2—C6 1.424 (5) C17—C18 1.385 (6)
N3—C18 1.333 (5) C17—H17A 0.9300
N3—N4 1.364 (4) C18—H18A 0.9300
N4—C16 1.336 (6) C19—C20 1.404 (6)
N4—C15 1.428 (5) C19—H19A 0.9300
N5—C25 1.317 (5) C20—C21 1.363 (6)
N5—C26 1.366 (4) C20—H20A 0.9300
N6—C19 1.319 (5) C21—C22 1.418 (5)
N6—C26 1.355 (4) C21—H21A 0.9300
C1—C2 1.394 (6) C22—C26 1.390 (5)
C1—C6 1.397 (6) C22—C23 1.411 (5)
C2—C3 1.396 (7) C23—C24 1.363 (6)
C2—H2A 0.9300 C23—H23A 0.9300
C3—C4 1.372 (8) C24—C25 1.407 (5)
C3—H3A 0.9300 C24—H24A 0.9300
C4—C5 1.378 (7) C25—H25A 0.9300
C4—H4A 0.9300 P1—F4 1.595 (2)
C5—C6 1.396 (6) P1—F3 1.595 (3)
C5—H5A 0.9300 P1—F2 1.597 (3)
C7—C8 1.366 (7) P1—F1 1.600 (2)
C7—H7A 0.9300 P1—F6 1.604 (2)
C8—C9 1.394 (6) P1—F5 1.609 (2)
C8—H8A 0.9300 Cl1—C27 1.567 (14)
C9—H9A 0.9300 Cl2—C27 1.882 (19)
C10—C11 1.388 (5) C27—H27A 0.9700
C10—C15 1.398 (6) C27—H27B 0.9700
C11—C12 1.391 (5)
C10—Ir1—N3 80.52 (14) C13—C12—C11 120.2 (4)
C10—Ir1—N1 96.21 (14) C13—C12—H12A 119.9
N3—Ir1—N1 173.28 (13) C11—C12—H12A 119.9
C10—Ir1—C1 87.88 (14) C12—C13—C14 120.4 (4)
N3—Ir1—C1 93.67 (15) C12—C13—H13A 119.8
N1—Ir1—C1 80.29 (14) C14—C13—H13A 119.8
C10—Ir1—N6 101.05 (13) C13—C14—C15 118.5 (5)
N3—Ir1—N6 92.10 (13) C13—C14—H14A 120.7
N1—Ir1—N6 94.29 (11) C15—C14—H14A 120.7
C1—Ir1—N6 170.06 (13) C14—C15—C10 123.3 (4)
C10—Ir1—N5 161.07 (13) C14—C15—N4 122.4 (4)
N3—Ir1—N5 94.28 (12) C10—C15—N4 114.2 (3)
N1—Ir1—N5 90.63 (11) N4—C16—C17 107.7 (4)
C1—Ir1—N5 110.71 (12) N4—C16—H16A 126.1
N6—Ir1—N5 60.74 (10) C17—C16—H16A 126.1
C9—N1—N2 106.6 (3) C16—C17—C18 105.7 (4)
C9—N1—Ir1 138.3 (3) C16—C17—H17A 127.1
N2—N1—Ir1 115.0 (2) C18—C17—H17A 127.1
C7—N2—N1 109.7 (3) N3—C18—C17 110.1 (4)
C7—N2—C6 134.6 (4) N3—C18—H18A 125.0
N1—N2—C6 115.7 (3) C17—C18—H18A 125.0
C18—N3—N4 106.1 (3) N6—C19—C20 121.4 (3)
C18—N3—Ir1 138.4 (3) N6—C19—H19A 119.3
N4—N3—Ir1 114.9 (2) C20—C19—H19A 119.3
C16—N4—N3 110.3 (4) C21—C20—C19 120.7 (4)
C16—N4—C15 134.2 (4) C21—C20—H20A 119.7
N3—N4—C15 115.5 (3) C19—C20—H20A 119.7
C25—N5—C26 117.6 (3) C20—C21—C22 119.2 (4)
C25—N5—Ir1 149.1 (3) C20—C21—H21A 120.4
C26—N5—Ir1 93.3 (2) C22—C21—H21A 120.4
C19—N6—C26 117.9 (3) C26—C22—C23 116.2 (3)
C19—N6—Ir1 146.3 (3) C26—C22—C21 115.6 (3)
C26—N6—Ir1 95.8 (2) C23—C22—C21 128.1 (4)
C2—C1—C6 115.7 (4) C24—C23—C22 119.1 (4)
C2—C1—Ir1 130.2 (3) C24—C23—H23A 120.4
C6—C1—Ir1 114.1 (3) C22—C23—H23A 120.4
C1—C2—C3 121.1 (5) C23—C24—C25 120.6 (4)
C1—C2—H2A 119.5 C23—C24—H24A 119.7
C3—C2—H2A 119.5 C25—C24—H24A 119.7
C4—C3—C2 121.1 (5) N5—C25—C24 121.8 (4)
C4—C3—H3A 119.5 N5—C25—H25A 119.1
C2—C3—H3A 119.5 C24—C25—H25A 119.1
C3—C4—C5 120.2 (4) N6—C26—N5 110.2 (3)
C3—C4—H4A 119.9 N6—C26—C22 125.1 (3)
C5—C4—H4A 119.9 N5—C26—C22 124.6 (3)
C4—C5—C6 117.8 (5) F4—P1—F3 90.16 (14)
C4—C5—H5A 121.1 F4—P1—F2 90.57 (15)
C6—C5—H5A 121.1 F3—P1—F2 179.07 (15)
C5—C6—C1 124.1 (4) F4—P1—F1 90.17 (12)
C5—C6—N2 121.1 (4) F3—P1—F1 89.89 (13)
C1—C6—N2 114.8 (3) F2—P1—F1 89.53 (13)
N2—C7—C8 108.4 (4) F4—P1—F6 90.47 (13)
N2—C7—H7A 125.8 F3—P1—F6 90.46 (14)
C8—C7—H7A 125.8 F2—P1—F6 90.11 (14)
C7—C8—C9 105.4 (4) F1—P1—F6 179.27 (14)
C7—C8—H8A 127.3 F4—P1—F5 179.49 (15)
C9—C8—H8A 127.3 F3—P1—F5 89.43 (14)
N1—C9—C8 109.9 (4) F2—P1—F5 89.85 (14)
N1—C9—H9A 125.1 F1—P1—F5 89.54 (12)
C8—C9—H9A 125.1 F6—P1—F5 89.83 (13)
C11—C10—C15 116.0 (3) Cl1—C27—Cl2 110.9 (11)
C11—C10—Ir1 129.2 (3) Cl1—C27—H27A 109.5
C15—C10—Ir1 114.7 (3) Cl2—C27—H27A 109.5
C10—C11—C12 121.5 (4) Cl1—C27—H27B 109.5
C10—C11—H11A 119.2 Cl2—C27—H27B 109.5
C12—C11—H11A 119.2 H27A—C27—H27B 108.1
C9—N1—N2—C7 −0.1 (4) Ir1—C10—C15—C14 175.5 (4)
Ir1—N1—N2—C7 178.7 (2) C11—C10—C15—N4 −178.0 (4)
C9—N1—N2—C6 178.2 (3) Ir1—C10—C15—N4 −2.2 (5)
Ir1—N1—N2—C6 −3.0 (4) C16—N4—C15—C14 9.1 (9)
C18—N3—N4—C16 0.1 (6) N3—N4—C15—C14 −172.8 (5)
Ir1—N3—N4—C16 173.1 (4) C16—N4—C15—C10 −173.1 (6)
C18—N3—N4—C15 −178.5 (4) N3—N4—C15—C10 5.0 (6)
Ir1—N3—N4—C15 −5.4 (5) N3—N4—C16—C17 −0.2 (7)
C6—C1—C2—C3 0.2 (6) C15—N4—C16—C17 177.9 (6)
Ir1—C1—C2—C3 177.0 (3) N4—C16—C17—C18 0.3 (8)
C1—C2—C3—C4 −0.3 (7) N4—N3—C18—C17 0.1 (6)
C2—C3—C4—C5 0.3 (7) Ir1—N3—C18—C17 −170.4 (4)
C3—C4—C5—C6 −0.2 (6) C16—C17—C18—N3 −0.3 (7)
C4—C5—C6—C1 0.1 (6) C26—N6—C19—C20 −0.5 (6)
C4—C5—C6—N2 −179.4 (4) Ir1—N6—C19—C20 −178.8 (3)
C2—C1—C6—C5 −0.1 (5) N6—C19—C20—C21 0.0 (7)
Ir1—C1—C6—C5 −177.4 (3) C19—C20—C21—C22 0.4 (7)
C2—C1—C6—N2 179.4 (3) C20—C21—C22—C26 −0.2 (6)
Ir1—C1—C6—N2 2.2 (4) C20—C21—C22—C23 −179.6 (5)
C7—N2—C6—C5 −2.1 (6) C26—C22—C23—C24 0.1 (7)
N1—N2—C6—C5 −179.9 (3) C21—C22—C23—C24 179.5 (5)
C7—N2—C6—C1 178.3 (4) C22—C23—C24—C25 0.4 (7)
N1—N2—C6—C1 0.5 (4) C26—N5—C25—C24 0.0 (6)
N1—N2—C7—C8 0.0 (4) Ir1—N5—C25—C24 −179.4 (4)
C6—N2—C7—C8 −177.8 (4) C23—C24—C25—N5 −0.5 (7)
N2—C7—C8—C9 0.0 (4) C19—N6—C26—N5 −179.5 (3)
N2—N1—C9—C8 0.1 (4) Ir1—N6—C26—N5 −0.5 (3)
Ir1—N1—C9—C8 −178.2 (3) C19—N6—C26—C22 0.7 (6)
C7—C8—C9—N1 −0.1 (4) Ir1—N6—C26—C22 179.7 (3)
C15—C10—C11—C12 1.4 (6) C25—N5—C26—N6 −179.2 (3)
Ir1—C10—C11—C12 −173.6 (3) Ir1—N5—C26—N6 0.5 (3)
C10—C11—C12—C13 −1.4 (6) C25—N5—C26—C22 0.6 (6)
C11—C12—C13—C14 0.1 (8) Ir1—N5—C26—C22 −179.7 (3)
C12—C13—C14—C15 1.1 (8) C23—C22—C26—N6 179.1 (4)
C13—C14—C15—C10 −1.0 (8) C21—C22—C26—N6 −0.3 (6)
C13—C14—C15—N4 176.6 (5) C23—C22—C26—N5 −0.6 (6)
C11—C10—C15—C14 −0.3 (7) C21—C22—C26—N5 179.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9A···F1 0.93 2.47 3.239 (4) 140
C9—H9A···F4 0.93 2.48 3.386 (5) 164
C16—H16A···F5i 0.93 2.46 3.018 (5) 118
C16—H16A···F6i 0.93 2.51 3.418 (6) 167
C7—H7A···F5ii 0.93 2.46 3.201 (5) 136
C25—H25A···F5iii 0.93 2.32 3.215 (4) 160
C27—H27A···F2iv 0.97 2.52 3.370 (13) 146

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2.

Funding Statement

This work was funded by National Natural Science Foundation of China grant 51602130.

References

  1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Congrave, D. G., Hsu, Y., Batsanov, A. S., Beeby, A. & Bryce, M. R. (2017). Organometallics, 36, 981–993.
  3. Davies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026–4039. [DOI] [PubMed]
  4. Dixon, I. M., Collin, J. P., Sauvage, J. P., Flamigni, L., Encinas, S. & Barigelletti, F. (2000). Chem. Soc. Rev. 29, 385–391.
  5. Fan, C., Zhu, L., Jiang, B., Li, Y., Zhao, F., Ma, D., Qin, J. & Yang, C. (2013). J. Phys. Chem. C, 117, 19134–19141.
  6. Goswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. (2014). Chem. Eur. J. 20, 6103–6111. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Howarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272–16279. [DOI] [PubMed]
  9. Jiang, W. L., Gao, Y., Sun, Y., Ding, F., Xu, Y., Bian, Z. Q., Li, F., Bian, J. & Huang, C. H. (2010). Inorg. Chem. 49, 3252–3260. [DOI] [PubMed]
  10. Kwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J. I. (2005). Organometallics, 24, 1578–1585.
  11. Lee, S., Kim, S. O., Shin, H., Yun, H. J., Yang, K., Kwon, S. K., Kim, J. J. & Kim, Y. H. (2013). J. Am. Chem. Soc. 135, 14321–14328. [DOI] [PubMed]
  12. Liu, B., Monro, S., Lystrom, L., Cameron, C. G., Colón, K., Yin, H., Kilina, S., McFarland, S. A. & Sun, W. (2018). Inorg. Chem. 57, 7122–7131. [DOI] [PMC free article] [PubMed]
  13. Majewicz, T. G. & Caluwe, P. (1975). J. Org. Chem. 40, 3407–3410.
  14. Nie, Q. Y., Qian, J. & Zhang, C. (2019). J. Mol. Struct. 1186, 434–439.
  15. Radwan, Y. K., Maity, A. & Teets, T. S. (2015). Inorg. Chem. 54, 7122–7131. [DOI] [PubMed]
  16. Sauvageot, E., Marion, R., Sguerra, F., Grimault, A., Daniellou, R., Hamel, M., Gaillard, S. & Renaud, J. (2014). Org. Chem. Front. 1, 639–644.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387. [DOI] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Zhu, X., Lystrom, L., Kilina, S. & Sun, W. (2016). Inorg. Chem. 55, 11908–11919. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016773/wm5533sup1.cif

e-76-00082-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016773/wm5533Isup3.hkl

e-76-00082-Isup3.hkl (507.8KB, hkl)

CCDC reference: 1874317

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES