Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):62–65. doi: 10.1107/S2056989019016207

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid

Adeeba Ahmed a, Md Serajul Haque Faizi b, Aiman Ahmad a, Musheer Ahmad a, Igor O Fritsky c,*
PMCID: PMC6944086  PMID: 31921453

In mol­ecule of the title compound, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, a classical carb­oxy­lic acid inversion dimer is formed enclosing an Inline graphic(8) ring motif.

Keywords: crystal structure, 4-amino­benzoic acid (PABA), 9-anthraldehyde, hydrogen bonding, C—H⋯π inter­actions

Abstract

In the mol­ecule of the title anthracene derivative, C22H17NO2, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—H⋯π inter­actions, forming a supra­molecular framework.

Chemical context  

Anthraldehyde has been used in the synthesis of several Schiff base compounds that exhibit fluorescent properties as a result of strong π–π conjugation (Asiri et al., 2011; Pavitha et al., 2017). Many complexes synthesized using anthraldehyde have shown remarkable sensing properties and have been used as chemo sensors (Obali & Ucan, 2012; Zhou et al., 2012). Schiff base compounds are also of inter­est because of their biological applications, which include anti­bacterial, anti­cancer and anti­viral (Asiri & Khan, 2010; Cheng et al., 2010) activities. Herein, we report on the crystal and mol­ecular structures of the title Schiff base compound, 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid, synthesized via reaction of 9-anthraldehyde with 4-amino­benzoic acid (PABA) followed by reduction with sodium borohydride.graphic file with name e-76-00062-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The mol­ecule is non-planar, with the benzene ring (C2–C7) being inclined to the mean plane of the anthracene ring system (C9–C22; r.m.s. deviation = 0.024 Å) by 75.21 (9)°, and the torsional angle of the bridge, C5—N1—C8—C9, is 142.6 (2)°. The C8—N1 bond length of 1.457 (3) Å, is comparable to the C—N bond-length values obtained for the similar ligand 5-[(anthracen-9-ylmeth­yl)amino]­isophthalic acid (see §5. Database survey).

Figure 1.

Figure 1

The mol­ecular structure of the tittle compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The C1=O2 and C1—O1 bond lengths of 1.238 (3) and 1.325 (3) Å, respectively, are in the expected ranges (Cambridge Structural Database; Groom et al., 2016).

Supra­molecular features  

In the crystal, a classical carb­oxy­lic acid inversion dimer is formed enclosing an Inline graphic(8) ring motif (Table 1 and Fig. 2). The dimers pack along the a-axis direction in a herringbone fashion. They are linked by a series of C—H⋯π inter­actions (Table 1 and Fig. 3), forming a supra­molecular three-dimensional structure. The NH hydrogen atom (H1A) is not involved in hydrogen bonding but is directed towards the benzene ring (C2–C7). Approximate geometrical details of this weak N—H⋯π inter­action are given in Table 1.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, and Cg4 are the centroids of the C2–C7, C9/C10/C15–C17/C22 and C17–C22 rings, respectively. Approximative geometrical parameters are given for the weak N—H..π inter­action.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 1.05 (4) 1.58 (3) 2.621 (3) 172 (3)
N1—H1A⋯Cg1ii 0.93 (3) 3.49 4.140 129
C4—H4⋯Cg4iii 0.93 2.98 (1) 3.752 (3) 141 (1)
C6—H6⋯Cg1ii 0.93 2.69 (1) 3.410 (3) 135 (1)
C16—H16⋯Cg4iv 0.93 2.83 (1) 3.644 (3) 147 (1)
C18—H18⋯Cg2iv 0.93 2.69 (1) 3.452 (3) 140 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A partial view along the b axis of crystal packing of the title compound. The hydrogen bonds (Table 1) are shown as dashed lines.

Figure 3.

Figure 3

A view along the b axis of crystal packing of the title compound. The O—H⋯O hydrogen bonds and the C—H⋯π inter­actions are indicated by dashed lines (Table 1). For clarity, only the H atoms (grey balls) involved in these inter­actions have been included.

Hirshfeld analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, d norm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

The Hirshfeld surface of the title compound mapped over d norm, in the colour range −0.7519 to 1.6997 a.u., is given in Fig. 4. The positions of the strong O—H⋯O hydrogen bonds are indicated by the red regions on the Hirshfeld surface.

Figure 4.

Figure 4

The Hirshfeld surface of the title compound mapped over d norm, in the colour range −0.7519 to 1.6997 a.u..

The two-dimensional fingerprint plots are given in Fig. 5. They reveal that the principal contributions to the overall surface involve H⋯H contacts at 42.7% (Fig. 5 b), followed by C⋯H/H⋯C contacts at 40.0% (Fig. 5 c) and O⋯H/H⋯O contacts at 12.3% (Fig. 5 d). Apart from the C⋯C contacts, contributing 2.1%, all other atom⋯atom contact contributions are negligible.

Figure 5.

Figure 5

(a) The two-dimensional fingerprint plots of the title compound, and delineated into (b) H⋯H (42.7%), (c) C⋯H/H⋯C (40.0%) and (d) O⋯H/H⋯O (12.3%) contacts.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update August 2019; Groom et al., 2016) for the N-(anthracen-9-ylmeth­yl)aniline skeleton gave six hits (see supporting information file S1), all of which concern polymeric metal complexes of the ligand 5-[(anthracen-9-ylmeth­yl)amino]­isophthalic acid; for example, a series of four gadolinium coordination polymers (CSD refcodes VOLSOG, VOLSUM, VOLTAT, VOLTIB; Singh et al., 2014). The bridging C—N bond length varies from ca.1.389 to 1.494 Å, compared to the C8—N1 bond length of 1.457 (3) Å in the title compound.

A search for the 1-(anthracen-9-yl)-N-phenyl­methanimine skeleton gave 21 hits (see supporting information file S2), none of which involve a benzoic acid moiety.

Synthesis and crystallization  

4-Amino­benzoic acid (0.33 g, 2.42 mmol) was added to a solution of 9-anthraldehyde (0.5 g, 2.42 mmol) dissolved in ethanol and the whole mixture was heated at 343 K under reflux for 5–6 h. The mixture was then stirred for a further 10 h at room temperature to obtain a yellow precipitate of the new product, which was monitored through TLC. The yellow precipitate, which was then air dried, was obtained in 76% yield. This was further reduced with sodium borohydride taken in excess (0.183 g, 4.84 mmol) by maintaining the temperature at 277–278 K until the colour of the precipitate had changed from bright yellow to dull yellow. The precipitate was filtered, washed with water and acidified with acetic acid. The product thus obtained was dissolved in hot ethanol and kept for crystallization. Block-like pale-yellow crystals of the title compound were obtained after a few days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and NH hydrogen atoms were located in a difference-Fourier map and refined freely. The C-bound H atoms were included in calculated positions and allowed to ride on their parent C atom: C—H = 0.93–0.97Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C22H17NO2
M r 327.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.985 (2), 6.0116 (9), 19.106 (3)
β (°) 106.796 (5)
V3) 1647.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.4 × 0.27 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.629, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25595, 2913, 1975
R int 0.118
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.141, 1.12
No. of reflections 2913
No. of parameters 235
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.32

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), olex2.refine (Bourhis et al., 2015), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989019016207/su5532sup1.cif

e-76-00062-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016207/su5532Isup2.hkl

e-76-00062-Isup2.hkl (107.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016207/su5532Isup5.cml

CSD search S1. DOI: 10.1107/S2056989019016207/su5532sup3.pdf

e-76-00062-sup3.pdf (75KB, pdf)

CSD search S2. DOI: 10.1107/S2056989019016207/su5532sup4.pdf

e-76-00062-sup4.pdf (90KB, pdf)

CCDC reference: 1969448

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, India, for providing laboratory facilities.

supplementary crystallographic information

Crystal data

C22H17NO2 F(000) = 688.3239
Mr = 327.39 Dx = 1.320 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.985 (2) Å Cell parameters from 3139 reflections
b = 6.0116 (9) Å θ = 3.1–28.2°
c = 19.106 (3) Å µ = 0.09 mm1
β = 106.796 (5)° T = 100 K
V = 1647.7 (4) Å3 Block, pale-yellow
Z = 4 0.4 × 0.27 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 1975 reflections with I > 2σ(I)
φ and ω scans Rint = 0.118
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 25.1°, θmin = 2.8°
Tmin = 0.629, Tmax = 0.746 h = −20→20
25595 measured reflections k = −8→8
2913 independent reflections l = −25→25

Refinement

Refinement on F2 29 constraints
Least-squares matrix: full Primary atom site location: iterative
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.9105P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.0003
2913 reflections Δρmax = 0.38 e Å3
235 parameters Δρmin = −0.32 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47155 (12) 0.7404 (3) 0.95012 (10) 0.0304 (5)
O2 0.57543 (12) 1.0125 (3) 0.95315 (10) 0.0317 (5)
N1 0.66609 (14) 0.3342 (4) 0.72544 (12) 0.0252 (5)
C1 0.54000 (17) 0.8318 (4) 0.92904 (14) 0.0238 (6)
C2 0.57055 (16) 0.7035 (4) 0.87497 (13) 0.0212 (6)
C3 0.63813 (16) 0.7902 (4) 0.84570 (14) 0.0230 (6)
H3 0.66266 (16) 0.9303 (4) 0.86054 (14) 0.0276 (7)*
C4 0.66973 (17) 0.6741 (4) 0.79531 (13) 0.0222 (6)
H4 0.71436 (17) 0.7367 (4) 0.77612 (13) 0.0266 (7)*
C5 0.63421 (16) 0.4606 (4) 0.77302 (13) 0.0209 (6)
C6 0.56515 (17) 0.3731 (4) 0.80193 (13) 0.0224 (6)
H6 0.53997 (17) 0.2335 (4) 0.78701 (13) 0.0269 (7)*
C7 0.53463 (16) 0.4920 (4) 0.85202 (13) 0.0215 (6)
H7 0.48944 (16) 0.4312 (4) 0.87096 (13) 0.0258 (7)*
C8 0.74688 (17) 0.3903 (4) 0.70105 (14) 0.0243 (6)
H8a 0.72642 (17) 0.4653 (4) 0.65418 (14) 0.0291 (7)*
H8b 0.78696 (17) 0.4913 (4) 0.73586 (14) 0.0291 (7)*
C9 0.80133 (16) 0.1835 (4) 0.69386 (13) 0.0208 (6)
C10 0.80253 (16) 0.1014 (4) 0.62496 (13) 0.0204 (6)
C11 0.75646 (17) 0.2083 (4) 0.55691 (14) 0.0257 (6)
H11 0.72308 (17) 0.3384 (4) 0.55740 (14) 0.0308 (7)*
C12 0.76034 (18) 0.1242 (5) 0.49175 (14) 0.0294 (7)
H12 0.72945 (18) 0.1972 (5) 0.44864 (14) 0.0353 (8)*
C13 0.81084 (18) −0.0732 (5) 0.48869 (15) 0.0310 (7)
H13 0.81360 (18) −0.1278 (5) 0.44382 (15) 0.0372 (8)*
C14 0.85503 (17) −0.1822 (4) 0.55102 (14) 0.0269 (6)
H14 0.88740 (17) −0.3124 (4) 0.54841 (14) 0.0322 (7)*
C15 0.85289 (16) −0.1007 (4) 0.62098 (14) 0.0216 (6)
C16 0.89943 (16) −0.2114 (4) 0.68500 (14) 0.0225 (6)
H16 0.93082 (16) −0.3429 (4) 0.68203 (14) 0.0270 (7)*
C17 0.90025 (16) −0.1302 (4) 0.75358 (13) 0.0202 (6)
C18 0.94936 (16) −0.2430 (4) 0.81929 (14) 0.0255 (6)
H18 0.98095 (16) −0.3741 (4) 0.81619 (14) 0.0307 (7)*
C19 0.95099 (18) −0.1630 (4) 0.88627 (15) 0.0289 (7)
H19 0.98374 (18) −0.2383 (4) 0.92840 (15) 0.0347 (8)*
C20 0.90250 (17) 0.0354 (4) 0.89133 (15) 0.0287 (6)
H20 0.90346 (17) 0.0897 (4) 0.93712 (15) 0.0344 (8)*
C21 0.85437 (17) 0.1482 (4) 0.83019 (14) 0.0243 (6)
H21 0.82321 (17) 0.2784 (4) 0.83510 (14) 0.0291 (7)*
C22 0.85075 (16) 0.0706 (4) 0.75862 (14) 0.0204 (6)
H1 0.457 (2) 0.850 (6) 0.9884 (19) 0.074 (11)*
H1a 0.635 (2) 0.201 (5) 0.7113 (15) 0.042 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0321 (10) 0.0298 (10) 0.0357 (12) −0.0061 (8) 0.0198 (9) −0.0083 (9)
O2 0.0368 (11) 0.0274 (10) 0.0352 (12) −0.0070 (9) 0.0172 (9) −0.0115 (9)
N1 0.0215 (12) 0.0251 (12) 0.0322 (14) −0.0041 (10) 0.0127 (10) −0.0071 (10)
C1 0.0234 (14) 0.0238 (14) 0.0239 (15) 0.0007 (11) 0.0065 (11) 0.0001 (11)
C2 0.0200 (13) 0.0223 (13) 0.0209 (14) 0.0021 (11) 0.0053 (11) −0.0011 (11)
C3 0.0204 (13) 0.0206 (13) 0.0275 (15) 0.0013 (11) 0.0059 (11) −0.0024 (11)
C4 0.0197 (13) 0.0236 (13) 0.0242 (14) −0.0003 (11) 0.0078 (11) 0.0018 (11)
C5 0.0195 (13) 0.0207 (13) 0.0219 (14) 0.0026 (10) 0.0051 (11) 0.0004 (11)
C6 0.0215 (13) 0.0194 (13) 0.0251 (15) 0.0012 (11) 0.0050 (11) −0.0012 (11)
C7 0.0185 (13) 0.0229 (13) 0.0230 (14) 0.0015 (11) 0.0058 (11) 0.0036 (11)
C8 0.0234 (13) 0.0218 (13) 0.0295 (16) −0.0009 (11) 0.0105 (12) −0.0011 (11)
C9 0.0193 (13) 0.0202 (13) 0.0241 (14) −0.0013 (10) 0.0081 (11) −0.0007 (11)
C10 0.0147 (12) 0.0227 (13) 0.0242 (15) −0.0019 (10) 0.0063 (11) −0.0005 (11)
C11 0.0216 (13) 0.0277 (14) 0.0279 (15) 0.0013 (11) 0.0076 (11) 0.0009 (12)
C12 0.0250 (14) 0.0397 (16) 0.0215 (15) 0.0021 (12) 0.0037 (12) 0.0020 (12)
C13 0.0267 (14) 0.0393 (16) 0.0258 (16) 0.0018 (13) 0.0057 (12) −0.0067 (13)
C14 0.0238 (13) 0.0287 (14) 0.0276 (15) 0.0006 (12) 0.0066 (12) −0.0089 (12)
C15 0.0170 (12) 0.0235 (13) 0.0239 (15) −0.0030 (10) 0.0054 (11) −0.0043 (11)
C16 0.0202 (13) 0.0190 (13) 0.0297 (15) 0.0000 (11) 0.0094 (11) −0.0029 (11)
C17 0.0171 (12) 0.0212 (13) 0.0235 (14) −0.0022 (10) 0.0076 (11) 0.0009 (11)
C18 0.0195 (13) 0.0249 (14) 0.0318 (16) −0.0010 (11) 0.0066 (11) 0.0024 (12)
C19 0.0234 (14) 0.0345 (16) 0.0272 (16) −0.0043 (12) 0.0047 (11) 0.0064 (12)
C20 0.0285 (15) 0.0338 (15) 0.0245 (16) −0.0051 (12) 0.0087 (12) −0.0032 (12)
C21 0.0216 (13) 0.0261 (14) 0.0268 (15) −0.0023 (11) 0.0096 (11) −0.0029 (12)
C22 0.0181 (12) 0.0203 (13) 0.0242 (14) −0.0054 (10) 0.0085 (11) −0.0030 (11)

Geometric parameters (Å, º)

O1—C1 1.325 (3) C10—C15 1.443 (3)
O1—H1 1.05 (4) C11—H11 0.9300
O2—C1 1.238 (3) C11—C12 1.360 (3)
N1—C5 1.372 (3) C12—H12 0.9300
N1—C8 1.457 (3) C12—C13 1.418 (4)
N1—H1a 0.92 (3) C13—H13 0.9300
C1—C2 1.465 (3) C13—C14 1.353 (4)
C2—C3 1.392 (3) C14—H14 0.9300
C2—C7 1.401 (3) C14—C15 1.433 (3)
C3—H3 0.9300 C15—C16 1.390 (3)
C3—C4 1.379 (3) C16—H16 0.9300
C4—H4 0.9300 C16—C17 1.395 (3)
C4—C5 1.408 (3) C17—C18 1.429 (3)
C5—C6 1.408 (3) C17—C22 1.435 (3)
C6—H6 0.9300 C18—H18 0.9300
C6—C7 1.375 (3) C18—C19 1.360 (4)
C7—H7 0.9300 C19—H19 0.9300
C8—H8a 0.9700 C19—C20 1.414 (4)
C8—H8b 0.9700 C20—H20 0.9300
C8—C9 1.515 (3) C20—C21 1.363 (3)
C9—C10 1.411 (3) C21—H21 0.9300
C9—C22 1.418 (3) C21—C22 1.431 (3)
C10—C11 1.436 (3)
H1—O1—C1 106.6 (18) H11—C11—C10 119.13 (14)
C8—N1—C5 124.4 (2) C12—C11—C10 121.7 (2)
H1a—N1—C5 115.7 (18) C12—C11—H11 119.13 (16)
H1a—N1—C8 119.8 (18) H12—C12—C11 119.57 (16)
O2—C1—O1 122.5 (2) C13—C12—C11 120.9 (3)
C2—C1—O1 115.1 (2) C13—C12—H12 119.57 (16)
C2—C1—O2 122.5 (2) H13—C13—C12 119.99 (16)
C3—C2—C1 119.9 (2) C14—C13—C12 120.0 (3)
C7—C2—C1 121.9 (2) C14—C13—H13 119.99 (16)
C7—C2—C3 118.2 (2) H14—C14—C13 119.39 (16)
H3—C3—C2 119.07 (15) C15—C14—C13 121.2 (2)
C4—C3—C2 121.9 (2) C15—C14—H14 119.39 (15)
C4—C3—H3 119.07 (15) C14—C15—C10 119.3 (2)
H4—C4—C3 120.11 (15) C16—C15—C10 119.6 (2)
C5—C4—C3 119.8 (2) C16—C15—C14 121.1 (2)
C5—C4—H4 120.11 (14) H16—C16—C15 119.16 (14)
C4—C5—N1 122.1 (2) C17—C16—C15 121.7 (2)
C6—C5—N1 119.3 (2) C17—C16—H16 119.16 (14)
C6—C5—C4 118.6 (2) C18—C17—C16 121.5 (2)
H6—C6—C5 119.71 (14) C22—C17—C16 119.5 (2)
C7—C6—C5 120.6 (2) C22—C17—C18 119.0 (2)
C7—C6—H6 119.71 (15) H18—C18—C17 119.22 (15)
C6—C7—C2 121.0 (2) C19—C18—C17 121.6 (2)
H7—C7—C2 119.49 (14) C19—C18—H18 119.22 (16)
H7—C7—C6 119.49 (15) H19—C19—C18 120.26 (16)
H8a—C8—N1 109.44 (13) C20—C19—C18 119.5 (3)
H8b—C8—N1 109.44 (13) C20—C19—H19 120.26 (16)
H8b—C8—H8a 108.0 H20—C20—C19 119.47 (16)
C9—C8—N1 111.0 (2) C21—C20—C19 121.1 (3)
C9—C8—H8a 109.44 (14) C21—C20—H20 119.47 (16)
C9—C8—H8b 109.44 (13) H21—C21—C20 119.29 (16)
C10—C9—C8 121.6 (2) C22—C21—C20 121.4 (2)
C22—C9—C8 118.2 (2) C22—C21—H21 119.29 (14)
C22—C9—C10 120.2 (2) C17—C22—C9 119.6 (2)
C11—C10—C9 123.8 (2) C21—C22—C9 123.0 (2)
C15—C10—C9 119.4 (2) C21—C22—C17 117.4 (2)
C15—C10—C11 116.8 (2)
C8—N1—C5—C4 8.8 (4) C9—C10—C11—C12 179.3 (3)
C8—N1—C5—C6 −169.8 (2) C15—C10—C11—C12 −0.3 (4)
C5—N1—C8—C9 142.6 (2) C9—C10—C15—C14 −179.2 (2)
O1—C1—C2—C3 176.1 (2) C9—C10—C15—C16 0.0 (4)
O1—C1—C2—C7 −4.8 (4) C11—C10—C15—C14 0.4 (3)
O2—C1—C2—C3 −3.8 (4) C11—C10—C15—C16 179.6 (2)
O2—C1—C2—C7 175.3 (2) C10—C11—C12—C13 −0.3 (4)
C1—C2—C3—C4 179.2 (2) C11—C12—C13—C14 0.8 (4)
C7—C2—C3—C4 0.1 (4) C12—C13—C14—C15 −0.7 (4)
C1—C2—C7—C6 −179.1 (2) C13—C14—C15—C10 0.1 (4)
C3—C2—C7—C6 0.0 (4) C13—C14—C15—C16 −179.1 (3)
C2—C3—C4—C5 −0.8 (4) C10—C15—C16—C17 −1.1 (4)
C3—C4—C5—N1 −177.2 (2) C14—C15—C16—C17 178.0 (2)
C3—C4—C5—C6 1.4 (4) C15—C16—C17—C18 −179.1 (2)
N1—C5—C6—C7 177.3 (2) C15—C16—C17—C22 1.0 (4)
C4—C5—C6—C7 −1.4 (4) C16—C17—C18—C19 179.4 (2)
C5—C6—C7—C2 0.7 (4) C22—C17—C18—C19 −0.7 (4)
N1—C8—C9—C10 109.5 (3) C16—C17—C22—C9 0.3 (4)
N1—C8—C9—C22 −69.6 (3) C16—C17—C22—C21 −179.5 (2)
C8—C9—C10—C11 2.5 (4) C18—C17—C22—C9 −179.7 (2)
C8—C9—C10—C15 −177.9 (2) C18—C17—C22—C21 0.6 (4)
C22—C9—C10—C11 −178.4 (2) C17—C18—C19—C20 0.5 (4)
C22—C9—C10—C15 1.3 (4) C18—C19—C20—C21 −0.2 (4)
C8—C9—C22—C17 177.8 (2) C19—C20—C21—C22 0.1 (4)
C8—C9—C22—C21 −2.5 (4) C20—C21—C22—C9 179.9 (3)
C10—C9—C22—C17 −1.4 (4) C20—C21—C22—C17 −0.4 (4)
C10—C9—C22—C21 178.3 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, and Cg4 are the centroids of the C2–C7, C9/C10/C15–C17/C22 and C17–C22 rings, respectively. Approximative geometrical parameters are given for the weak N—H..π interaction.

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 1.05 (4) 1.58 (3) 2.621 (3) 172 (3)
N1—H1A···Cg1ii 0.93 (3) 3.49 4.140 129
C4—H4···Cg4iii 0.93 2.98 (1) 3.752 (3) 141 (1)
C6—H6···Cg1ii 0.93 2.69 (1) 3.410 (3) 135 (1)
C16—H16···Cg4iv 0.93 2.83 (1) 3.644 (3) 147 (1)
C18—H18···Cg2iv 0.93 2.69 (1) 3.452 (3) 140 (1)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y+1, z; (iv) −x+2, y−1/2, −z+3/2.

Funding Statement

This work was funded by University Grants Commisson (India) grant .

References

  1. Asiri, A. M., Al-Youbi, A. O., Khan, S. A. & Tahir, M. N. (2011). Acta Cryst. E67, o3419. [DOI] [PMC free article] [PubMed]
  2. Asiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850–6858. [DOI] [PMC free article] [PubMed]
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cheng, L. X., Tang, J. J., Luo, H., Jin, X.-L., Dai, F., Yang, J., Qian, Y.-P., Li, X.-Z. & Zhou, B. (2010). Bioorg. Med. Chem. Lett. 20, 2417–2420. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  11. Obali, A. Y. & Ucan, H. I. (2012). J. Fluoresc. 22, 1357–1370. [DOI] [PubMed]
  12. Pavitha, P., Prashanth, J., Ramu, G., Ramesh, G., Mamatha, K. & Reddy, B. V. (2017). J. Mol. Struct. 1147, 406–426.
  13. Singh, R., Mrozinski, J. & Bharadwaj, P. K. (2014). Cryst. Growth Des. 14, 3623–3633.
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Zhou, Y., Zhou, H., Zhang, J., Zhang, L. & Niu, J. (2012). Spectrochimica Acta Part A: Mol. Biomol. Spect. 98, 14–17. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989019016207/su5532sup1.cif

e-76-00062-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016207/su5532Isup2.hkl

e-76-00062-Isup2.hkl (107.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016207/su5532Isup5.cml

CSD search S1. DOI: 10.1107/S2056989019016207/su5532sup3.pdf

e-76-00062-sup3.pdf (75KB, pdf)

CSD search S2. DOI: 10.1107/S2056989019016207/su5532sup4.pdf

e-76-00062-sup4.pdf (90KB, pdf)

CCDC reference: 1969448

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES