Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):91–94. doi: 10.1107/S2056989019016852

Bis{4-[(2-hy­droxy-5-meth­oxy-3-nitro­benzyl­idene)amino]­phen­yl} ether

Md Azharul Arafath a,*, Huey Chong Kwong b, Farook Adam c, Md Mohiuddin a, Md Sohug Sarker a,*, Mohammad Salim a, Md Mahbubul Alam a
PMCID: PMC6944087  PMID: 31921459

The mol­ecule of the title oxybis compound lies on a twofold rotational axis. The conformation of the title compound is discussed and compared to those of related structures. In the crystal, mol­ecules of the title compound are assembled into layers parallel to the ab plane through C—H⋯O hydrogen bonds.

Keywords: crystal structure, oxybis Schiff base, inter­molecular inter­action

Abstract

The mol­ecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the mol­ecule exhibits an imine E configuration. An intra­molecular O—H⋯N hydrogen bond is present. In the crystal, the mol­ecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin.

Chemical context  

Bisthio­semicarbazones are formed by connecting separated thio­semicarbazone moieties through a pair of oxybisphenyl rings. These tetra­dentate ligands trap metals inside to form square-planar complexes (Alsop et al., 2005; Blower et al., 2003; Jasinski et al., 2003). The length of the C—C bond in the backbone affects the stability of the complexes. A higher number of C—C bonds obtained via alkyl­ation or aryl­ation allows metal ions to better fit inside the ligand cavity (Blower et al., 2003). These tetra­dentate ligands and transition-metal complexes exhibit promising anti­cancer and anti­bacterial activities (Lobana et al., 2009). In view of this and our research inter­est in the synthesis of oxybis Schiff base compounds, we herein report the crystal structure, supra­molecular features and conformational comparison of the title compound.graphic file with name e-76-00091-scheme1.jpg

Structural commentary  

In the title compound (Fig. 1), the asymmetric unit comprises one half of the oxybisbenzenyl mol­ecule where the oxygen atom (O1) lies on a twofold rotation axis. The complete mol­ecule is generated through the symmetry operation −x, y, Inline graphic − z. The planes of the benzene rings bonded to the central oxygen atom form a dihedral angle of 66.0 (2)°. The dihedral angle between the benzene and 4-meth­oxy-2-nitro­phenol rings in the same half of the mol­ecules is 4.9 (2)°, indicating an almost coplanar arrangement of the benzene and phenol rings. The sp 2-hybridized character of atoms N1 and C7 is confirmed by the N1—C7 [1.287 (6) Å] bond length and C7—N1—C8 [121.9 (4)°] and N1—C7—C6 [121.7 (4)°] bond angles (Arafath et al., 2018). Each half of the mol­ecule exhibits an imine E configuration with a C6—C7—N1—C8 torsion angle of 177.7 (4)°. In the mol­ecule, atom N1 of the imine moiety acts as a hydrogen-bond acceptor for the adjacent phenol group, forming an intra­molecular O—H⋯N hydrogen bond with an S(6) ring motif (Fig. 1, Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Intra­molecular hydrogen bonds are shown as dashed lines. Atoms with the label suffix A are generated by the symmetry operation −x, y, Inline graphic − z.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N1 0.85 (9) 1.81 (10) 2.591 (6) 153 (7)
C7—H7A⋯O5i 0.95 2.54 3.470 (7) 167
C13—H13A⋯O5i 0.95 2.48 3.404 (7) 165

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, atom O5 acts as a bifurcated-hydrogen-bond acceptor, linking mol­ecules into layers parallel to the ab plane (Fig. 2) through C7—H7A⋯O5 and C13—H13A⋯O5 hydrogen bonds (Table 1). No C—H⋯π or π–π inter­actions are observed.

Figure 2.

Figure 2

Partial packing diagram for the title compound, showing inter­molecular hydrogen bonds (cyan dotted lines). Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) −Inline graphic + x, Inline graphic + y, z; (ii) −1 + x, 1 + y, z.

Database survey  

In a search of the Cambridge Structure Database (CSD, version 5.40, last update August 2019; Groom et al., 2016), twelve structures containing the (1E,1′E)-N,N′-[oxybis(4,1-phenyl­ene)]bis­(1-phenyl­methanimine) moiety with different substituents were found. The reference moiety is illustrated in Fig. 3. Details regarding different substituents (R1) together with the dihedral and torsion angles for oxybisbenzenyl moiety in these structures are tabulated in Table 2. In analogy with the title mol­ecule, the planes of the central benzene ring bonded to the central oxygen atom are always V-shaped with dihedral angle 1 in the range of 54.6–84.8°. The dihedral angle between the planes of central and terminal benzene rings exists in two conformations, viz. non-coplanar [dihedral 2 = 18.0–73.5°] and nearly coplanar [dihedral 2 = 4.8–9.9°]. In all of these structures, the imine C=N double bond adopts an E configuration with torsion angles corresponding to C6—C7—N1—C8 in the range 172.9–180.0°.

Figure 3.

Figure 3

Structural fragment for the CSD search.

Table 2. Selected dihedral and torsion angles (°).

Dihedral 1 is the dihedral angle between the planes of the central benzene rings. Dihedral 2 is the dihedral angle between the planes of the central and terminal benzene rings.

Compound R1 Dihedral 1 Dihedral 2 C6—C7—N1—C8
(I) 4-meth­oxy-2-nitro­phenol 66.0 (2) 4.9 (2), 4.9 (2) −177.7 (4), −177.7 (4)
DICKUW (Chu & Huang, 2007) 2,4-di-tert-butyl­phenol 73.8 4.8, 35.5 178.2, 177.2
DICLAD (Chu & Huang, 2007) 2-(tert-but­yl)-4-methyl­phenol 73.8 47.9, 46.3 175.2, −179.9
GIFCEG (Arafath et al., 2018) 2-methyl­phenol 59.5 36.0, 31.5 178.3, 179.0
HUDJEW (Lee & Lee, 2009) 4-nitro­phen­yl 75.7 53.0, 18.0 −174.0, 179.2
NATWEM (Khalaji et al., 2012) 2,3,4-tri­meth­oxy­phen­yl 84.8 57.6, 73.1 −179.2, −175.7
PEHGOA (Kadu et al., 2013) phen­yl 59.8 8.8, 6.0 −179.9, 179.8
PEHHAN (Kadu et al., 2013) 4-meth­oxy­phen­yl 60.1 5.3, 5.3 −179.3, −179.3
RIZFEM (Xu et al., 2008) 2-meth­oxy­phenol 69.2 24.3, 24.3 −180.0, −180.0
TOWSOP (Kaabi et al., 2015) 3-(di­ethyl­amino)­phenol 65.7 41.4, 30.6 −173.1, −176.5
UNUFEP (Shahverdizadeh & Tiekink, 2011) phenol 54.6 51.6, 51.6 173.5, 173.4
WEFLUQ (Krishna et al., 2012) naphthalen-2-ol 75.1/70.1 7.7, 9.9/6.1, 19.4 176.5, 177.6/-179.3, −172.9
WIGPOT (Haffar et al., 2013) naphthalen-2-ol 74.6/69.9 7.7. 9.9/19.6, 5.8 177.2, 176.3/ −172.9, −178.6

Note: there is more than one data set for compounds WEFLUQ and WIGPOT because there is more than one independent mol­ecule in their asymmetric units.

Synthesis and crystallization  

To a sample of 2-hy­droxy-5-meth­oxy-3-nitro­benzaldehyde (0.98 g, 5.00 mmol) dissolved in 25.0 mL of methanol, 0.20 mL of glacial acetic acid were added, and the mixture was refluxed for 30 min. A solution of 4,4′-oxydianiline (0.50 g, 2.50 mmol) in 20.0 mL of methanol was added dropwise under stirring to the aldehyde solution. The resulting deep-red solution was refluxed for 4 h with stirring. The reaction scheme is shown in Fig. 4. The deep-red precipitate that formed was filtered off and washed with 5.0 mL of methanol and 5.0 mL of n-hexane. The recovered product was dissolved in chloro­form for recrystallization. Purple single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent, m.p. 547–548 K, yield 96%. Analysis calculated for C28H22N4O9 (f.w. 558.50 g mol−1) C, 60.16; H, 3.93; N, 10; found: C, 59.04; H, 3.85; N, 9.90%. 1H NMR (500 MHz, DMSO-d 6, Me4Si ppm): δ 10.23 (s, OH), δ 9.12 (s, HC=N), δ 7.69–7.21 (multiplet, aromatic), δ 3.83 (s, Ph—OCH3). 13C NMR (DMSO-d 6, Me4Si ppm): δ 161.69 (C=N), δ 156.21–114.96 (C-aromatic), δ 56.25 (OCH3). IR (KBr pellets υmax/cm−1): 3441 υ(OH), 3109 υ(C—H, sp 2), 2956 υ(CH3), 1598 υ(C=N), 1529 υ(C=C, aromatic), 1497 υ(NO2, asym.), 1326 υ(NO2, sym.), 1257 υ(C—O, phenolic), 1194 υ(C—O, Ph—OCH3), 1056 υ(C—N), 979 υ(CH, bend. aromatic).

Figure 4.

Figure 4

Reaction scheme for the synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The phenolic hydrogen atom was located in a difference-Fourier map and refined freely. All other H atoms attached to C were positioned geometrically and refined using a riding model with C—H= 0.95–0.98 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C) for methyl H atoms. A rotating model was used for the methyl group. The crystal investigated was refined as a two-component pseudomerohedral twin resulting from a 180° rotation about the [001] reciprocal lattice direction, with a twin ratio of 0.977 (3):0.023 (3).

Table 3. Experimental details.

Crystal data
Chemical formula C28H22N4O9
M r 558.49
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 15.954 (4), 5.4599 (12), 28.397 (6)
β (°) 92.299 (5)
V3) 2471.7 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.38 × 0.24 × 0.14
 
Data collection
Diffractometer Bruker APEX DUO CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.879, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 35811, 2830, 2591
R int 0.038
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.100, 0.353, 1.15
No. of reflections 2830
No. of parameters 192
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.31

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016852/rz5267sup1.cif

e-76-00091-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016852/rz5267Isup2.hkl

e-76-00091-Isup2.hkl (226.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016852/rz5267Isup3.cml

CCDC reference: 1445336

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C28H22N4O9 F(000) = 1160
Mr = 558.49 Dx = 1.501 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 15.954 (4) Å Cell parameters from 9905 reflections
b = 5.4599 (12) Å θ = 3–31°
c = 28.397 (6) Å µ = 0.11 mm1
β = 92.299 (5)° T = 100 K
V = 2471.7 (10) Å3 Block, purple
Z = 4 0.38 × 0.24 × 0.14 mm

Data collection

Bruker APEX DUO CCD area detector diffractometer 2830 independent reflections
Radiation source: fine-focus sealed tube 2591 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
φ and ω scans θmax = 27.5°, θmin = 0.7°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −20→20
Tmin = 0.879, Tmax = 0.956 k = −7→7
35811 measured reflections l = −36→36

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.100 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.353 w = 1/[σ2(Fo2) + (0.1539P)2 + 17.7934P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max < 0.001
2830 reflections Δρmax = 0.31 e Å3
192 parameters Δρmin = −0.31 e Å3

Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71095 5.463 8.443 28.418 92.106 89.981 108.897
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.000000 −0.2692 (9) 0.250000 0.0444 (13)
O2 0.4044 (2) 0.9524 (8) 0.47761 (16) 0.0525 (11)
O3 0.4346 (3) 0.1480 (8) 0.36154 (14) 0.0475 (10)
O4 0.6359 (2) 0.4545 (9) 0.43220 (19) 0.0664 (14)
O5 0.5853 (3) 0.1292 (9) 0.4007 (2) 0.0710 (15)
N1 0.2747 (2) 0.1732 (8) 0.34224 (14) 0.0371 (9)
N2 0.5771 (3) 0.3336 (9) 0.41607 (16) 0.0417 (10)
C1 0.3380 (3) 0.6629 (9) 0.42249 (18) 0.0364 (10)
H1A 0.284746 0.739136 0.424432 0.044*
C2 0.4061 (3) 0.7544 (9) 0.44839 (17) 0.0355 (10)
C3 0.4833 (3) 0.6438 (9) 0.44506 (17) 0.0365 (10)
H3A 0.530272 0.707394 0.462653 0.044*
C4 0.4934 (3) 0.4407 (9) 0.41635 (16) 0.0337 (10)
C5 0.4255 (3) 0.3424 (9) 0.38929 (16) 0.0332 (10)
C6 0.3471 (3) 0.4586 (9) 0.39343 (16) 0.0337 (10)
C7 0.2723 (3) 0.3645 (9) 0.36861 (17) 0.0366 (10)
H7A 0.220289 0.446315 0.371966 0.044*
C8 0.2016 (3) 0.0754 (9) 0.31932 (16) 0.0335 (10)
C9 0.2115 (3) −0.1371 (9) 0.29336 (17) 0.0366 (10)
H9A 0.265646 −0.208522 0.291709 0.044*
C10 0.1439 (3) −0.2462 (9) 0.26992 (16) 0.0369 (10)
H10A 0.151248 −0.392646 0.252498 0.044*
C11 0.0657 (3) −0.1405 (9) 0.27200 (16) 0.0349 (10)
C12 0.0535 (3) 0.0722 (9) 0.29753 (18) 0.0395 (11)
H12A −0.000735 0.142841 0.298889 0.047*
C13 0.1217 (3) 0.1799 (9) 0.32098 (17) 0.0386 (11)
H13A 0.114209 0.326303 0.338386 0.046*
C14 0.3252 (3) 1.0498 (11) 0.4876 (2) 0.0477 (13)
H14A 0.332369 1.185096 0.510095 0.072*
H14B 0.290647 0.921682 0.501263 0.072*
H14C 0.297545 1.110264 0.458451 0.072*
H1O3 0.386 (6) 0.117 (15) 0.350 (3) 0.08 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.047 (3) 0.029 (2) 0.055 (3) 0.000 −0.023 (2) 0.000
O2 0.0300 (17) 0.054 (2) 0.073 (3) 0.0037 (16) −0.0050 (16) −0.031 (2)
O3 0.0378 (19) 0.054 (2) 0.050 (2) 0.0037 (16) −0.0020 (15) −0.0231 (18)
O4 0.0290 (18) 0.074 (3) 0.095 (3) 0.0049 (19) −0.013 (2) −0.024 (3)
O5 0.044 (2) 0.069 (3) 0.099 (4) 0.018 (2) −0.008 (2) −0.039 (3)
N1 0.0291 (18) 0.043 (2) 0.039 (2) −0.0034 (16) −0.0033 (15) −0.0025 (17)
N2 0.0296 (19) 0.052 (2) 0.044 (2) 0.0046 (18) 0.0000 (16) −0.0073 (19)
C1 0.027 (2) 0.035 (2) 0.047 (2) 0.0005 (17) −0.0033 (18) −0.003 (2)
C2 0.030 (2) 0.037 (2) 0.039 (2) −0.0011 (18) 0.0016 (17) −0.0075 (19)
C3 0.027 (2) 0.041 (2) 0.042 (2) −0.0031 (18) −0.0018 (17) −0.006 (2)
C4 0.0241 (19) 0.041 (2) 0.036 (2) 0.0020 (17) −0.0006 (16) −0.0026 (18)
C5 0.030 (2) 0.037 (2) 0.033 (2) −0.0002 (18) 0.0015 (16) −0.0051 (18)
C6 0.028 (2) 0.040 (2) 0.033 (2) −0.0040 (18) −0.0020 (16) −0.0031 (18)
C7 0.027 (2) 0.043 (3) 0.040 (2) −0.0021 (18) −0.0027 (17) −0.003 (2)
C8 0.031 (2) 0.037 (2) 0.032 (2) −0.0019 (18) −0.0028 (16) 0.0004 (18)
C9 0.034 (2) 0.036 (2) 0.039 (2) 0.0035 (18) −0.0025 (18) −0.0007 (19)
C10 0.042 (2) 0.033 (2) 0.035 (2) 0.0023 (19) −0.0030 (18) −0.0017 (18)
C11 0.039 (2) 0.034 (2) 0.032 (2) −0.0052 (18) −0.0086 (17) 0.0028 (18)
C12 0.034 (2) 0.037 (2) 0.046 (3) 0.0053 (19) −0.0107 (19) −0.004 (2)
C13 0.037 (2) 0.038 (2) 0.041 (2) 0.0022 (19) −0.0072 (18) −0.011 (2)
C14 0.037 (2) 0.046 (3) 0.060 (3) 0.007 (2) 0.003 (2) −0.017 (3)

Geometric parameters (Å, º)

O1—C11i 1.389 (5) C4—C5 1.409 (6)
O1—C11 1.389 (5) C5—C6 1.412 (6)
O2—C2 1.364 (6) C6—C7 1.456 (6)
O2—C14 1.410 (6) C7—H7A 0.9500
O3—C5 1.333 (6) C8—C9 1.387 (7)
O3—H1O3 0.85 (9) C8—C13 1.398 (6)
O4—N2 1.221 (6) C9—C10 1.380 (7)
O5—N2 1.207 (6) C9—H9A 0.9500
N1—C7 1.287 (6) C10—C11 1.379 (7)
N1—C8 1.418 (6) C10—H10A 0.9500
N2—C4 1.458 (6) C11—C12 1.387 (7)
C1—C2 1.381 (6) C12—C13 1.384 (6)
C1—C6 1.398 (7) C12—H12A 0.9500
C1—H1A 0.9500 C13—H13A 0.9500
C2—C3 1.377 (6) C14—H14A 0.9800
C3—C4 1.390 (7) C14—H14B 0.9800
C3—H3A 0.9500 C14—H14C 0.9800
C11i—O1—C11 119.2 (5) N1—C7—H7A 119.2
C2—O2—C14 117.5 (4) C6—C7—H7A 119.2
C5—O3—H1O3 106 (6) C9—C8—C13 118.9 (4)
C7—N1—C8 121.9 (4) C9—C8—N1 116.7 (4)
O5—N2—O4 122.8 (5) C13—C8—N1 124.4 (4)
O5—N2—C4 119.0 (4) C10—C9—C8 120.9 (4)
O4—N2—C4 118.1 (4) C10—C9—H9A 119.6
C2—C1—C6 120.3 (4) C8—C9—H9A 119.6
C2—C1—H1A 119.8 C11—C10—C9 119.4 (4)
C6—C1—H1A 119.8 C11—C10—H10A 120.3
O2—C2—C3 115.4 (4) C9—C10—H10A 120.3
O2—C2—C1 125.2 (4) C10—C11—C12 121.2 (4)
C3—C2—C1 119.4 (4) C10—C11—O1 115.9 (4)
C2—C3—C4 121.0 (4) C12—C11—O1 122.7 (4)
C2—C3—H3A 119.5 C13—C12—C11 118.9 (4)
C4—C3—H3A 119.5 C13—C12—H12A 120.5
C3—C4—C5 121.3 (4) C11—C12—H12A 120.5
C3—C4—N2 116.8 (4) C12—C13—C8 120.7 (4)
C5—C4—N2 121.9 (4) C12—C13—H13A 119.7
O3—C5—C4 121.8 (4) C8—C13—H13A 119.7
O3—C5—C6 121.6 (4) O2—C14—H14A 109.5
C4—C5—C6 116.6 (4) O2—C14—H14B 109.5
C1—C6—C5 121.4 (4) H14A—C14—H14B 109.5
C1—C6—C7 117.7 (4) O2—C14—H14C 109.5
C5—C6—C7 120.9 (4) H14A—C14—H14C 109.5
N1—C7—C6 121.7 (4) H14B—C14—H14C 109.5
C14—O2—C2—C3 −170.9 (5) O3—C5—C6—C7 2.1 (7)
C14—O2—C2—C1 9.8 (8) C4—C5—C6—C7 −177.2 (4)
C6—C1—C2—O2 179.7 (5) C8—N1—C7—C6 177.7 (4)
C6—C1—C2—C3 0.5 (8) C1—C6—C7—N1 −178.0 (5)
O2—C2—C3—C4 −179.8 (5) C5—C6—C7—N1 0.1 (7)
C1—C2—C3—C4 −0.5 (8) C7—N1—C8—C9 −177.5 (4)
C2—C3—C4—C5 0.7 (7) C7—N1—C8—C13 3.2 (8)
C2—C3—C4—N2 −178.6 (5) C13—C8—C9—C10 −0.7 (7)
O5—N2—C4—C3 163.3 (5) N1—C8—C9—C10 179.9 (4)
O4—N2—C4—C3 −15.5 (7) C8—C9—C10—C11 0.7 (7)
O5—N2—C4—C5 −16.1 (8) C9—C10—C11—C12 −0.5 (7)
O4—N2—C4—C5 165.1 (5) C9—C10—C11—O1 −176.1 (4)
C3—C4—C5—O3 179.8 (5) C11i—O1—C11—C10 −145.5 (5)
N2—C4—C5—O3 −0.9 (7) C11i—O1—C11—C12 39.0 (4)
C3—C4—C5—C6 −0.8 (7) C10—C11—C12—C13 0.4 (8)
N2—C4—C5—C6 178.5 (4) O1—C11—C12—C13 175.7 (4)
C2—C1—C6—C5 −0.7 (7) C11—C12—C13—C8 −0.5 (8)
C2—C1—C6—C7 177.4 (5) C9—C8—C13—C12 0.6 (8)
O3—C5—C6—C1 −179.8 (5) N1—C8—C13—C12 180.0 (5)
C4—C5—C6—C1 0.8 (7)

Symmetry code: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H1O3···N1 0.85 (9) 1.81 (10) 2.591 (6) 153 (7)
C7—H7A···O5ii 0.95 2.54 3.470 (7) 167
C13—H13A···O5ii 0.95 2.48 3.404 (7) 165

Symmetry code: (ii) x−1/2, y+1/2, z.

Funding Statement

This work was funded by Universiti Sains Malaysia grant 1001/PKIMIA/811269. The World Academy of Sciences grant .

References

  1. Alsop, L., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Peach, J. M. & Rider, J. T. (2005). Inorg. Chim. Acta, 358, 2770–2780.
  2. Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 687–690. [DOI] [PMC free article] [PubMed]
  3. Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425.
  4. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15–22.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Haffar, D., Daoud, D., Douadi, T., Bouzidi, L. & Chafaa, S. (2013). Acta Cryst. E69, o581–o582. [DOI] [PMC free article] [PubMed]
  8. Jasinski, J. P., Bianchani, J. R., Cueva, J., El-Saied, F. A., El-Asmy, A. A. & West, D. X. (2003). Z. Anorg. Allg. Chem. 629, 202–206.
  9. Kaabi, I., Sibous, L., Douadi, T. & Chafaa, S. (2015). J. Mol. Struct. 1084, 216–222.
  10. Kadu, R., Singh, V. K., Verma, S. K., Raghavaiah, P. & Shaikh, M. M. (2013). J. Mol. Struct. 1033, 298–311.
  11. Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266.
  12. Krishna, V., Basavoju, S. & Ramachandraiah, A. (2012). Mol. Cryst. Liq. Cryst. 562, 265–290.
  13. Lee, H. K. & Lee, S. W. (2009). Acta Cryst. E65, o2263. [DOI] [PMC free article] [PubMed]
  14. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  15. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  16. Shahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Xu, H.-W., Li, J.-X. & Li, Y.-H. (2008). Acta Cryst. E64, o1145. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016852/rz5267sup1.cif

e-76-00091-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016852/rz5267Isup2.hkl

e-76-00091-Isup2.hkl (226.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016852/rz5267Isup3.cml

CCDC reference: 1445336

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES