Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):48–52. doi: 10.1107/S205698901901658X

Two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones: disorder and supra­molecular assembly

Mohammed A E Shaibah a, Hemmige S Yathirajan a,*, Nagaraj Manju b, Balakrishna Kalluraya b, Ravindranath S Rathore c, Christopher Glidewell d
PMCID: PMC6944090  PMID: 31921451

In each of two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones, the thio­phene unit is disordered over two sets of atomic sites and a combination of C—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into sheets.

Keywords: heterocyclic compounds, pyrazoles, crystal structure, disorder, mol­ecular conformation, hydrogen bonding, supra­molecular assembly

Abstract

Two new chalcones containing both pyrazole and thio­phene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thio­phene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds.

Chemical context  

Pyrazole derivatives exhibit a wide range of pharmacological activity (Karrouchi et al., 2018), including analgesic (Vijesh et al., 2013), anti­cancer (Dawood et al., 2013; Koca et al., 2013), anti­depressant (Mathew et al., 2014), anti­fungal (Zhang et al., 2017), anti-inflammatory (Badawey & El-Ashmawey, 1998) and anti­microbial (Vijesh et al., 2013) activities. In addition, a range of thio­phene-based heterocyclic compounds have been shown to exhibit anti­microbial activity (Mabkhot et al., 2016).graphic file with name e-76-00048-scheme1.jpg

With these observations in mind, we have now synthesized two new chalcones containing both pyrazole and thio­phene moieties, namely 3-(3-methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I) (Fig. 1), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II) (Fig. 2), and here we report their mol­ecular and supra­molecular structures.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom-labelling scheme, and the disorder in the thio­phen-2-yl substituent, where the major disorder component has been drawn using full lines and the minor disorder component has been drawn using dashed lines.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom-labelling scheme, and the disorder in the thio­phen-2-yl substituent, where the major disorder component has been drawn using full lines and the minor disorder component has been drawn using dashed lines.

Structural commentary  

Compounds (I) and (II) are isomorphous with unit-cell volumes which differ by only ca 1% and, with appropriate adjustment of the substituent at atom C352 (H versus CH3), each structure can be smoothly refined using the atomic coordinates of the other as the starting point.

In each structure, the thienyl group is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II): in each case, the two disorder components are approximately related by a rotation of ca 180° about the C1—C12 bond (Figs. 1 and 2). It is by no means clear why the occupancies of the two disorder components in each compound are so different, particularly as the two disorder components form similar inter­molecular hydrogen bonds (Section 3).

For both compounds, the central space unit between atoms C12 and C34, the pyrazole ring and the major disorder component of the thienyl ring are almost coplanar, and the r.m.s. deviations of the atoms from the mean planes through these units are only 0.055 Å in (I) and 0.102 Å in (II). By contrast, the two pendent aryl rings are markedly displaced from this plane: the dihedral angles between the pyrazole ring and the rings (C311–C316) and (C351–C356) are 29.99 (11) and 78.60 (6)°, respectively, in (I), and 27.90 (11) and 81.13 (6)° in (II). On the other hand, atom C35 is, in each structure, displaced from the plane (O35/C351–C356) by only 0.097 (3) Å in (I) and 0.017 (3) Å in (II). Associated with this near co-planarity, the two exocyclic C—C—O angles at atom C351 differ in each structure by ca 9°, as typically found in planar alk­oxy­arenes (Seip & Seip, 1973; Ferguson et al., 1996).

Supra­molecular features  

The supra­molecular assembly of compound (I) depends upon just two hydrogen bonds, one each of C—H⋯N and C—H⋯O types (Table 1). The C—H⋯O hydrogen bonds links mol­ecules which are related by translation to form a C(12) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) chain running parallel to the [101] direction (Fig. 3). The C—H⋯N hydrogen bond links mol­ecules which are related by the 21 screw axis along (0.5, y, 0.25) to form a C(10) chain running parallel to the [010] direction (Fig. 3). The chain formation along [010] is independent of the disorder, since both atom C14 in the major disorder component and atom C25 in the minor component (cf. Fig. 1) form similar C—H⋯N hydrogen bonds. The combination of these two chain motifs generates a sheet in the form of a (4,4) net (Batten & Robson, 1998) built from Inline graphic(35) rings and lying parallel to (10Inline graphic). The supra­molecular assembly of compound (II) is entirely similar to that in (I), although the C—H⋯N hydrogen bond formed by the minor disorder component is rather long (Table 2).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N32i 0.93 2.62 3.462 (9) 151
C25—H25⋯N32i 0.93 2.51 3.33 (5) 148
C314—H314⋯O1ii 0.93 2.38 3.305 (3) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded sheet lying parallel to (10Inline graphic). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms which are not involved in the motifs shown have been omitted.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N32i 0.93 2.55 3.483 (4) 177
C25—H25⋯N32i 0.93 2.69 3.47 (2) 142
C314—H314⋯O1ii 0.93 2.51 3.432 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In view of the similarities in the hydrogen bonds formed by (I) and (II), and their similar mol­ecular conformations (see Section 2), these isomorphous compounds can be described as isostructural, although it is not always the case that isomorphous pairs are strictly isostructural (Bowes et al., 2003; Acosta et al., 2009; Blanco et al., 2012).

Database survey  

It is of inter­est to briefly compare the structures of compounds (I) and (II) reported here with those of some related compounds. 2,5-Bis[(3,5-di­methyl­pyrazol-1-yl)carbon­yl]thio­phene (III) crystallizes with Z′ = 2 in space group P21/m (Guzei et al., 2009): the two independent mol­ecules are weakly linked by a C—H⋯O hydrogen bond but the only other direction-specific inter­actions between the mol­ecules are π–π inter­actions involving inversion-related pairs of pyrazole rings. In contrast to the simplicity of the mol­ecular constitution of (III) above, in most other structures containing both pyrazole and thio­phene units, at least one of the rings is fused. In 3,6-dimethyl-1-phenyl-4-(thio­phen-2-yl)-8-(thio­phen-2-yl­methyl­ene)-5,6,7,8- tetra­hydro-1H-pyrazolo­[3,4-b][1,6]naphthyridine (IV) (Peng et al., 2009), the mol­ecules are linked into C(11) chains by means of C—H⋯N hydrogen bonds. The mol­ecules of 2-(3,4-dimethyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)-N′-(thio­phen-2-yl­methyl­idene)acetohydrazide (V) (Ahmad et al., 2010) are linked by a combination of N—H⋯O and C—H⋯N hydrogen bonds: although the resulting aggregation was described as consisting of dimers, the mol­ecules are, in fact, linked into chains of rings, as clearly illus­trated in the original report. A chain of rings, built from a combination of N—H⋯N and C—H⋯N hydrogen bonds is also found in the structure of (Z)-ethyl 2-cyano-2-{2-[5,6-dimethyl-4-(thio­phen-2-yl)-1H-pyrazolo­[3,4-b]pyridin-3-yl]hydrazinyl­idene}acetate (VI) (Fun et al., 2011).

In 9-(thio­phen-2-yl)-8,9-di­hydro-3H-pyrazolo­[4,3-f]quinolin-7(6H)-one ethanol monosolvate (VII) (Peng & Jia, 2012), the thio­phene ring is disordered over two sets of atomic sites having unequal occupancies, 0.692 (7) and 0.308 (7), much as found here for compounds (I) and (II). The mol­ecular components in (VII) are linked by N—H⋯O and O—H⋯N hydrogen bonds to form a complex chain of rings. The thio­phene ring in 5,6-dimethyl-4-(thio­phen-2-yl)-1–pyrazolo­[3,4-b]pyridin-3-amine (VIII) (Abdel-Aziz et al., 2012) is also disordered, with occupancies of 0.777 (4) and 0.223 (4), and the mol­ecules are again linked into a chain of rings, this time by two independent N—H⋯N hydrogen bonds. Finally, we note that in [4-(2-meth­oxy­phen­yl)-3-methyl-1-phenyl-6-tri­fluoro­methyl-1H-pyrazolo­[3,4-b]pyridin-5-yl](thio­phen-2-yl)methanone (IX) (Rajni Swamy et al., 2014), where the thio­phene ring is fully ordered, there are no significant hydrogen bonds of any kind.

Synthesis and crystallization  

Compounds (I) and (II) were prepared using a three-step procedure, starting from the readily accessible 3-methyl-1-phenyl-1H-pyrazole (A) (see Fig. 4), which was converted to the corresponding 5-chloro-4-carbaldehyde (B) under Vilsmeier–Haack conditions, followed by nucleophilic substitution (Asma et al., 2017) to provide the 5-ar­yloxy inter­mediates (C). Condensation with 2-acetyl­ethio­phene then gave the products (I) and (II) in yields of 86% and 84%, respectively. Thus the appropriate 3-methyl-5-ar­yloxy-1-phenyl-1H-pyrazole 4-carb­aldehydes (Asma et al., 2017) [1.7 mmol; 445 mg for (I), or 469 mg for (II)] and 2-acetyl thio­phene (1.7 mmol, 214 mg) were dissolved in ethanol (20 ml) at 273 K; a solution of potassium hydroxide (2.1 mmol, 112 mg) in ethanol (5 ml) was then added dropwise, and the resulting mixtures were then stirred for 4 h. When the reactions were complete, as judged by thin-layer chromatography, the resulting solid products were collected by filtration, washed with water, dried in air and then recrystallized from ethanol–di­methyl­formamide (9:1, v/v), to give crystals suitable for single-crystal X-ray diffraction. Compound (I). Yield 86%, m.p. 425–427 K. IR (cm−1) 1667 (C=O), 1591 (C=N). Analysis: found C 71.5, H 4.7, N 7.2%: C23H18N2O2S requires C 71.5, H 4.7, N 7.3%. Compound (II). Yield 84%, m.p. 401–405 K. IR (cm−1) 1671 (C=O), 1564 (C=N). Analysis: found C 72.0, H 5.1, N 7.1%: C24H20N2O2S requires C 72.0, H 5.0, N 7.0%.

Figure 4.

Figure 4

The synthetic route to compounds (I) and (II).

Refinement  

Crystal data, data collection and structure refinement details are summarized In Table 3. In both compounds, the thienyl unit was disordered over two sets of atomic sites having unequal occupancies. In each case, the bonded distances and the 1,3 non-bonded distances in the minor disorder component were restrained to be the similar to the equivalent distances in the major disorder component, subject to s.u. values of 0.01 Å and 0.02° for bonds and angles, respectively, and the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be equal. All H atoms, apart from those in the minor disorder components were located in difference maps, and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 Å (alkenyl, aromatic and thien­yl) or 0.96 Å (meth­yl), and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The H atoms in the minor disorder components were included on the same basis. Subject to these conditions, the occupancies of the disorder components refined to 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and to 0.117 (2) in (II).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C23H18N2O2S C24H20N2O2S
M r 386.45 400.48
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 9.6158 (5), 19.8846 (11), 10.3773 (6) 9.4336 (4), 20.6071 (9), 10.5866 (4)
β (°) 93.712 (2) 93.106 (2)
V3) 1980.04 (19) 2055.00 (15)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.18 0.18
Crystal size (mm) 0.20 × 0.20 × 0.15 0.30 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012) Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.941, 0.973 0.926, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 31970, 3725, 2446 35938, 4735, 2877
R int 0.043 0.040
(sin θ/λ)max−1) 0.608 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.117, 1.06 0.045, 0.142, 1.02
No. of reflections 3725 4735
No. of parameters 268 277
No. of restraints 10 10
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.14 0.19, −0.23

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S205698901901658X/zl2765sup1.cif

e-76-00048-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901901658X/zl2765Isup2.hkl

e-76-00048-Isup2.hkl (297.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901901658X/zl2765IIsup3.hkl

e-76-00048-IIsup3.hkl (377.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901901658X/zl2765Isup4.cml

Supporting information file. DOI: 10.1107/S205698901901658X/zl2765IIsup5.cml

CCDC references: 1970925, 1970924

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MAES thanks the University of Mysore for research facilities.

supplementary crystallographic information

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Crystal data

C23H18N2O2S F(000) = 808
Mr = 386.45 Dx = 1.296 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.6158 (5) Å Cell parameters from 3725 reflections
b = 19.8846 (11) Å θ = 2.1–25.6°
c = 10.3773 (6) Å µ = 0.18 mm1
β = 93.712 (2)° T = 296 K
V = 1980.04 (19) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.15 mm

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Data collection

Bruker Kappa APEXII CCD diffractometer 3725 independent reflections
Radiation source: fine-focus sealed tube 2446 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
Detector resolution: 7.3910 pixels mm-1 θmax = 25.6°, θmin = 2.1°
φ and ω scans h = −10→11
Absorption correction: multi-scan (SADABS; Bruker, 2012) k = −24→24
Tmin = 0.941, Tmax = 0.973 l = −12→12
31970 measured reflections

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.573P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.20 e Å3
3725 reflections Δρmin = −0.14 e Å3
268 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 restraints Extinction coefficient: 0.0059 (9)
Primary atom site location: difference Fourier map

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6952 (2) 0.38677 (11) 0.5021 (2) 0.0485 (5)
O1 0.76942 (19) 0.43097 (8) 0.55125 (17) 0.0798 (6)
C2 0.5895 (2) 0.40140 (11) 0.3982 (2) 0.0480 (5)
H2 0.5376 0.3663 0.3604 0.058*
C3 0.5660 (2) 0.46399 (10) 0.35662 (19) 0.0451 (5)
H3 0.6175 0.4976 0.4000 0.054*
S11 0.82626 (11) 0.29817 (5) 0.67269 (8) 0.0664 (3) 0.844 (3)
C12 0.7111 (2) 0.31696 (10) 0.5460 (2) 0.0484 (5) 0.844 (3)
C13 0.6491 (14) 0.2615 (5) 0.5017 (13) 0.0930 (17) 0.844 (3)
H13 0.5837 0.2612 0.4316 0.112* 0.844 (3)
C14 0.6904 (13) 0.2030 (2) 0.5695 (15) 0.106 (3) 0.844 (3)
H14 0.6547 0.1605 0.5506 0.128* 0.844 (3)
C15 0.7865 (9) 0.2158 (3) 0.6639 (9) 0.080 (2) 0.844 (3)
H15 0.8270 0.1831 0.7185 0.096* 0.844 (3)
S21 0.614 (2) 0.2534 (7) 0.484 (2) 0.0930 (17) 0.156 (3)
C22 0.7111 (2) 0.31696 (10) 0.5460 (2) 0.0484 (5) 0.156 (3)
C23 0.813 (2) 0.2935 (10) 0.626 (2) 0.0664 (3) 0.156 (3)
H23 0.8837 0.3205 0.6635 0.080* 0.156 (3)
C24 0.805 (6) 0.2239 (12) 0.647 (6) 0.080 (2) 0.156 (3)
H24 0.8581 0.2009 0.7111 0.096* 0.156 (3)
C25 0.713 (8) 0.1950 (8) 0.564 (9) 0.106 (3) 0.156 (3)
H25 0.7042 0.1488 0.5511 0.128* 0.156 (3)
N31 0.31385 (16) 0.49026 (8) 0.08717 (15) 0.0417 (4)
N32 0.36763 (17) 0.55440 (8) 0.09923 (17) 0.0474 (4)
C33 0.4603 (2) 0.55130 (10) 0.1990 (2) 0.0444 (5)
C34 0.4706 (2) 0.48590 (10) 0.25279 (19) 0.0412 (5)
C35 0.3759 (2) 0.44920 (9) 0.17696 (18) 0.0397 (5)
C311 0.2118 (2) 0.47606 (10) −0.01477 (19) 0.0400 (5)
C312 0.1122 (2) 0.42704 (10) −0.0019 (2) 0.0480 (5)
H312 0.1113 0.4020 0.0737 0.058*
C313 0.0143 (2) 0.41552 (11) −0.1021 (2) 0.0555 (6)
H313 −0.0532 0.3826 −0.0937 0.067*
C314 0.0151 (2) 0.45223 (12) −0.2146 (2) 0.0609 (7)
H314 −0.0508 0.4439 −0.2822 0.073*
C315 0.1141 (3) 0.50138 (13) −0.2260 (2) 0.0596 (6)
H315 0.1146 0.5266 −0.3015 0.071*
C316 0.2127 (2) 0.51353 (11) −0.1264 (2) 0.0499 (5)
H316 0.2794 0.5468 −0.1345 0.060*
C331 0.5426 (2) 0.61231 (11) 0.2386 (2) 0.0609 (6)
H31A 0.6353 0.6082 0.2102 0.091*
H31B 0.5468 0.6165 0.3309 0.091*
H31C 0.4987 0.6514 0.2001 0.091*
O35 0.35064 (14) 0.38210 (6) 0.17345 (13) 0.0458 (4)
C351 0.2722 (2) 0.35338 (10) 0.2680 (2) 0.0445 (5)
C352 0.2634 (3) 0.28476 (12) 0.2623 (3) 0.0687 (7)
H352 0.3095 0.2609 0.2009 0.082*
C353 0.1856 (3) 0.25194 (15) 0.3483 (4) 0.0947 (10)
H353 0.1786 0.2053 0.3453 0.114*
C354 0.1183 (3) 0.28709 (17) 0.4383 (4) 0.0972 (11)
H354 0.0656 0.2644 0.4965 0.117*
C355 0.1281 (3) 0.35565 (16) 0.4432 (3) 0.0854 (9)
H355 0.0820 0.3793 0.5049 0.102*
C356 0.2065 (2) 0.39028 (12) 0.3568 (2) 0.0603 (6)
H356 0.2138 0.4369 0.3594 0.072*

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0522 (13) 0.0469 (13) 0.0450 (12) −0.0042 (10) −0.0060 (10) 0.0003 (10)
O1 0.0919 (13) 0.0535 (10) 0.0872 (13) −0.0176 (9) −0.0475 (10) 0.0094 (9)
C2 0.0493 (12) 0.0441 (12) 0.0491 (12) −0.0035 (10) −0.0085 (10) −0.0002 (10)
C3 0.0465 (12) 0.0443 (12) 0.0437 (12) −0.0051 (9) −0.0022 (10) −0.0015 (9)
S11 0.0811 (6) 0.0537 (5) 0.0608 (6) −0.0027 (4) −0.0243 (5) 0.0092 (4)
C12 0.0550 (13) 0.0451 (13) 0.0442 (12) 0.0012 (10) −0.0038 (10) −0.0002 (10)
C13 0.138 (7) 0.048 (2) 0.086 (4) −0.017 (2) −0.050 (3) −0.004 (2)
C14 0.167 (6) 0.0398 (17) 0.104 (3) −0.009 (3) −0.050 (5) 0.002 (3)
C15 0.113 (4) 0.055 (2) 0.070 (4) 0.007 (2) −0.016 (3) 0.0186 (17)
S21 0.138 (7) 0.048 (2) 0.086 (4) −0.017 (2) −0.050 (3) −0.004 (2)
C22 0.0550 (13) 0.0451 (13) 0.0442 (12) 0.0012 (10) −0.0038 (10) −0.0002 (10)
C23 0.0811 (6) 0.0537 (5) 0.0608 (6) −0.0027 (4) −0.0243 (5) 0.0092 (4)
C24 0.113 (4) 0.055 (2) 0.070 (4) 0.007 (2) −0.016 (3) 0.0186 (17)
C25 0.167 (6) 0.0398 (17) 0.104 (3) −0.009 (3) −0.050 (5) 0.002 (3)
N31 0.0402 (9) 0.0369 (9) 0.0473 (10) 0.0007 (7) −0.0034 (8) 0.0033 (8)
N32 0.0489 (10) 0.0350 (10) 0.0571 (11) −0.0031 (8) −0.0054 (9) 0.0051 (8)
C33 0.0428 (11) 0.0390 (12) 0.0509 (13) −0.0024 (9) −0.0002 (10) 0.0011 (10)
C34 0.0393 (11) 0.0401 (11) 0.0437 (11) −0.0002 (9) −0.0002 (9) 0.0016 (9)
C35 0.0393 (11) 0.0345 (11) 0.0450 (11) 0.0012 (9) 0.0016 (9) 0.0022 (9)
C311 0.0372 (11) 0.0397 (11) 0.0425 (11) 0.0050 (9) −0.0028 (9) −0.0025 (9)
C312 0.0471 (12) 0.0425 (12) 0.0534 (13) 0.0040 (10) −0.0045 (10) −0.0020 (10)
C313 0.0485 (13) 0.0508 (14) 0.0655 (15) 0.0010 (11) −0.0082 (11) −0.0108 (12)
C314 0.0554 (14) 0.0677 (16) 0.0570 (15) 0.0127 (13) −0.0149 (11) −0.0184 (13)
C315 0.0631 (15) 0.0706 (16) 0.0441 (13) 0.0090 (13) −0.0037 (12) 0.0026 (11)
C316 0.0473 (12) 0.0552 (14) 0.0470 (13) 0.0025 (10) 0.0016 (10) 0.0025 (10)
C331 0.0622 (15) 0.0451 (13) 0.0738 (16) −0.0077 (11) −0.0082 (12) 0.0016 (12)
O35 0.0525 (9) 0.0332 (8) 0.0515 (9) −0.0010 (6) 0.0036 (7) 0.0004 (6)
C351 0.0411 (11) 0.0398 (12) 0.0515 (13) −0.0025 (9) −0.0047 (10) 0.0105 (10)
C352 0.0714 (16) 0.0420 (14) 0.093 (2) −0.0053 (12) 0.0095 (15) 0.0076 (13)
C353 0.094 (2) 0.0543 (17) 0.138 (3) −0.0114 (16) 0.023 (2) 0.0266 (19)
C354 0.093 (2) 0.087 (2) 0.115 (3) −0.0112 (18) 0.027 (2) 0.046 (2)
C355 0.086 (2) 0.095 (2) 0.0777 (19) −0.0017 (17) 0.0287 (16) 0.0142 (17)
C356 0.0628 (15) 0.0546 (14) 0.0640 (15) −0.0025 (12) 0.0093 (12) 0.0034 (12)

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Geometric parameters (Å, º)

C1—O1 1.223 (2) C35—O35 1.356 (2)
C1—C2 1.462 (3) C311—C316 1.378 (3)
C1—C12 1.466 (3) C311—C312 1.379 (3)
C2—C3 1.332 (3) C312—C313 1.376 (3)
C2—H2 0.9300 C312—H312 0.9300
C3—C34 1.437 (3) C313—C314 1.377 (3)
C3—H3 0.9300 C313—H313 0.9300
S11—C15 1.684 (5) C314—C315 1.375 (3)
S11—C12 1.705 (2) C314—H314 0.9300
C12—C13 1.322 (7) C315—C316 1.378 (3)
C13—C14 1.402 (10) C315—H315 0.9300
C13—H13 0.9300 C316—H316 0.9300
C14—C15 1.327 (5) C331—H31A 0.9600
C14—H14 0.9300 C331—H31B 0.9600
C15—H15 0.9300 C331—H31C 0.9600
S21—C25 1.685 (12) O35—C351 1.398 (2)
C23—C24 1.404 (14) C351—C356 1.365 (3)
C23—H23 0.9300 C351—C352 1.368 (3)
C24—C25 1.329 (9) C352—C353 1.366 (4)
C24—H24 0.9300 C352—H352 0.9300
C25—H25 0.9300 C353—C354 1.364 (4)
N31—C35 1.349 (2) C353—H353 0.9300
N31—N32 1.379 (2) C354—C355 1.367 (4)
N31—C311 1.424 (2) C354—H354 0.9300
N32—C33 1.323 (3) C355—C356 1.391 (3)
C33—C34 1.416 (3) C355—H355 0.9300
C33—C331 1.492 (3) C356—H356 0.9300
C34—C35 1.374 (3)
O1—C1—C2 121.57 (19) C316—C311—N31 118.45 (18)
O1—C1—C12 120.34 (19) C312—C311—N31 121.18 (18)
C2—C1—C12 118.09 (18) C313—C312—C311 119.4 (2)
C3—C2—C1 121.35 (19) C313—C312—H312 120.3
C3—C2—H2 119.3 C311—C312—H312 120.3
C1—C2—H2 119.3 C312—C313—C314 120.7 (2)
C2—C3—C34 127.83 (19) C312—C313—H313 119.6
C2—C3—H3 116.1 C314—C313—H313 119.6
C34—C3—H3 116.1 C315—C314—C313 119.5 (2)
C15—S11—C12 92.15 (19) C315—C314—H314 120.3
C13—C12—C1 130.3 (5) C313—C314—H314 120.3
C13—C12—S11 110.0 (5) C314—C315—C316 120.4 (2)
C1—C12—S11 119.77 (15) C314—C315—H315 119.8
C12—C13—C14 114.2 (6) C316—C315—H315 119.8
C12—C13—H13 122.9 C315—C316—C311 119.7 (2)
C14—C13—H13 122.9 C315—C316—H316 120.2
C15—C14—C13 111.9 (4) C311—C316—H316 120.2
C15—C14—H14 124.0 C33—C331—H31A 109.5
C13—C14—H14 124.0 C33—C331—H31B 109.5
C14—C15—S11 111.7 (4) H31A—C331—H31B 109.5
C14—C15—H15 124.1 C33—C331—H31C 109.5
S11—C15—H15 124.1 H31A—C331—H31C 109.5
C24—C23—H23 123.3 H31B—C331—H31C 109.5
C25—C24—C23 111.4 (14) C35—O35—C351 119.13 (15)
C25—C24—H24 124.3 C356—C351—C352 122.3 (2)
C23—C24—H24 124.3 C356—C351—O35 123.30 (19)
C24—C25—S21 110.8 (12) C352—C351—O35 114.3 (2)
C24—C25—H25 124.6 C353—C352—C351 118.9 (3)
S21—C25—H25 124.6 C353—C352—H352 120.5
C35—N31—N32 110.54 (15) C351—C352—H352 120.5
C35—N31—C311 130.24 (16) C354—C353—C352 120.4 (3)
N32—N31—C311 119.16 (15) C354—C353—H353 119.8
C33—N32—N31 104.92 (15) C352—C353—H353 119.8
N32—C33—C34 112.18 (17) C353—C354—C355 120.1 (3)
N32—C33—C331 119.74 (18) C353—C354—H354 119.9
C34—C33—C331 128.03 (19) C355—C354—H354 119.9
C35—C34—C33 103.60 (17) C354—C355—C356 120.6 (3)
C35—C34—C3 129.46 (18) C354—C355—H355 119.7
C33—C34—C3 126.81 (18) C356—C355—H355 119.7
N31—C35—O35 120.45 (17) C351—C356—C355 117.6 (2)
N31—C35—C34 108.73 (17) C351—C356—H356 121.2
O35—C35—C34 130.44 (17) C355—C356—H356 121.2
C316—C311—C312 120.35 (19)
O1—C1—C2—C3 −2.8 (3) C33—C34—C35—N31 −0.8 (2)
C12—C1—C2—C3 177.6 (2) C3—C34—C35—N31 −176.83 (19)
C1—C2—C3—C34 177.2 (2) C33—C34—C35—O35 172.0 (2)
O1—C1—C12—C13 −175.3 (10) C3—C34—C35—O35 −4.1 (4)
C2—C1—C12—C13 4.3 (11) C35—N31—C311—C316 −148.8 (2)
O1—C1—C12—S11 4.0 (3) N32—N31—C311—C316 27.9 (3)
C2—C1—C12—S11 −176.40 (16) C35—N31—C311—C312 32.6 (3)
C15—S11—C12—C13 −0.6 (9) N32—N31—C311—C312 −150.69 (18)
C15—S11—C12—C1 180.0 (4) C316—C311—C312—C313 0.5 (3)
C1—C12—C13—C14 −179.5 (10) N31—C311—C312—C313 179.09 (18)
S11—C12—C13—C14 1.1 (17) C311—C312—C313—C314 0.2 (3)
C12—C13—C14—C15 −1 (2) C312—C313—C314—C315 −0.7 (3)
C13—C14—C15—S11 0.7 (17) C313—C314—C315—C316 0.6 (3)
C12—S11—C15—C14 −0.1 (11) C314—C315—C316—C311 0.1 (3)
C23—C24—C25—S21 −12 (9) C312—C311—C316—C315 −0.6 (3)
C35—N31—N32—C33 −1.3 (2) N31—C311—C316—C315 −179.25 (18)
C311—N31—N32—C33 −178.64 (17) N31—C35—O35—C351 −109.5 (2)
N31—N32—C33—C34 0.8 (2) C34—C35—O35—C351 78.5 (3)
N31—N32—C33—C331 178.55 (18) C35—O35—C351—C356 7.1 (3)
N32—C33—C34—C35 0.0 (2) C35—O35—C351—C352 −174.51 (18)
C331—C33—C34—C35 −177.6 (2) C356—C351—C352—C353 0.2 (4)
N32—C33—C34—C3 176.16 (19) O35—C351—C352—C353 −178.2 (2)
C331—C33—C34—C3 −1.4 (4) C351—C352—C353—C354 −0.1 (5)
C2—C3—C34—C35 4.2 (4) C352—C353—C354—C355 0.0 (5)
C2—C3—C34—C33 −171.0 (2) C353—C354—C355—C356 0.0 (5)
N32—N31—C35—O35 −172.30 (16) C352—C351—C356—C355 −0.2 (4)
C311—N31—C35—O35 4.7 (3) O35—C351—C356—C355 178.1 (2)
N32—N31—C35—C34 1.3 (2) C354—C355—C356—C351 0.0 (4)
C311—N31—C35—C34 178.29 (18)

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···N32i 0.93 2.62 3.462 (9) 151
C25—H25···N32i 0.93 2.51 3.33 (5) 148
C314—H314···O1ii 0.93 2.38 3.305 (3) 175

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x−1, y, z−1.

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Crystal data

C24H20N2O2S F(000) = 840
Mr = 400.48 Dx = 1.294 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.4336 (4) Å Cell parameters from 5216 reflections
b = 20.6071 (9) Å θ = 2.0–28.6°
c = 10.5866 (4) Å µ = 0.18 mm1
β = 93.106 (2)° T = 296 K
V = 2055.00 (15) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.15 mm

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Data collection

Bruker Kappa APEXII CCD diffractometer 4735 independent reflections
Radiation source: fine-focus sealed tube 2877 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 7.3910 pixels mm-1 θmax = 27.6°, θmin = 2.0°
φ and ω scans h = −12→11
Absorption correction: multi-scan (SADABS; Bruker, 2012) k = −26→26
Tmin = 0.926, Tmax = 0.973 l = −13→11
35938 measured reflections

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.5761P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4735 reflections Δρmax = 0.19 e Å3
277 parameters Δρmin = −0.23 e Å3
10 restraints

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6834 (2) 0.38495 (10) 0.49061 (18) 0.0484 (5)
O1 0.75006 (19) 0.42752 (8) 0.54834 (16) 0.0747 (5)
C2 0.5798 (2) 0.39981 (10) 0.38620 (18) 0.0484 (5)
H2 0.5302 0.3661 0.3455 0.058*
C3 0.5555 (2) 0.46061 (10) 0.34871 (18) 0.0464 (5)
H3 0.6047 0.4926 0.3949 0.056*
S11 0.81442 (11) 0.29803 (4) 0.65506 (8) 0.0669 (3) 0.883 (2)
C12 0.7062 (2) 0.31666 (10) 0.52477 (17) 0.0456 (5) 0.883 (2)
C13 0.6609 (8) 0.2617 (3) 0.4682 (5) 0.0603 (9) 0.883 (2)
H13 0.6001 0.2616 0.3961 0.072* 0.883 (2)
C14 0.7118 (5) 0.20428 (17) 0.5259 (4) 0.0643 (12) 0.883 (2)
H14 0.6912 0.1627 0.4961 0.077* 0.883 (2)
C15 0.7941 (9) 0.21758 (17) 0.6295 (6) 0.0671 (16) 0.883 (2)
H15 0.8357 0.1859 0.6819 0.080* 0.883 (2)
S21 0.6339 (18) 0.2553 (6) 0.4380 (13) 0.0603 (9) 0.117 (2)
C22 0.7062 (2) 0.31666 (10) 0.52477 (17) 0.0456 (5) 0.117 (2)
C23 0.784 (3) 0.2933 (10) 0.623 (2) 0.0669 (3) 0.117 (2)
H23 0.8396 0.3195 0.6777 0.080* 0.117 (2)
C24 0.775 (8) 0.2255 (11) 0.638 (5) 0.0671 (16) 0.117 (2)
H24 0.8252 0.2018 0.7011 0.080* 0.117 (2)
C25 0.685 (5) 0.2001 (8) 0.550 (3) 0.0643 (12) 0.117 (2)
H25 0.6544 0.1573 0.5494 0.077* 0.117 (2)
N31 0.30777 (16) 0.48865 (7) 0.08120 (15) 0.0431 (4)
N32 0.36119 (18) 0.55036 (8) 0.09699 (16) 0.0492 (4)
C33 0.4529 (2) 0.54660 (9) 0.19571 (19) 0.0469 (5)
C34 0.4627 (2) 0.48304 (9) 0.24567 (18) 0.0430 (4)
C35 0.36867 (19) 0.44824 (9) 0.16871 (17) 0.0405 (4)
C311 0.20793 (19) 0.47603 (9) −0.02174 (18) 0.0419 (4)
C312 0.1090 (2) 0.42664 (10) −0.0158 (2) 0.0495 (5)
H312 0.1062 0.4009 0.0562 0.059*
C313 0.0145 (2) 0.41597 (11) −0.1180 (2) 0.0580 (6)
H313 −0.0515 0.3826 −0.1147 0.070*
C314 0.0169 (2) 0.45393 (12) −0.2241 (2) 0.0624 (6)
H314 −0.0469 0.4462 −0.2926 0.075*
C315 0.1140 (2) 0.50340 (13) −0.2289 (2) 0.0621 (6)
H315 0.1154 0.5294 −0.3006 0.075*
C316 0.2098 (2) 0.51483 (11) −0.12766 (19) 0.0506 (5)
H316 0.2751 0.5485 −0.1311 0.061*
C331 0.5357 (3) 0.60493 (10) 0.2386 (2) 0.0625 (6)
H31A 0.6318 0.6008 0.2142 0.094*
H31B 0.5349 0.6085 0.3290 0.094*
H31C 0.4936 0.6430 0.2003 0.094*
O35 0.34553 (14) 0.38351 (6) 0.16246 (12) 0.0470 (3)
C351 0.2552 (2) 0.35450 (10) 0.24627 (19) 0.0488 (5)
C352 0.2429 (2) 0.28766 (11) 0.2301 (2) 0.0614 (6)
C353 0.1516 (3) 0.25613 (15) 0.3056 (3) 0.0874 (10)
H353 0.1404 0.2114 0.2977 0.105*
C354 0.0766 (3) 0.28876 (19) 0.3921 (3) 0.0949 (11)
H354 0.0143 0.2661 0.4410 0.114*
C355 0.0918 (3) 0.35466 (17) 0.4081 (3) 0.0862 (9)
H355 0.0411 0.3763 0.4681 0.103*
C356 0.1842 (2) 0.38895 (13) 0.3332 (2) 0.0656 (6)
H356 0.1968 0.4335 0.3424 0.079*
C357 0.3278 (3) 0.25326 (12) 0.1355 (3) 0.0832 (9)
H35A 0.4265 0.2546 0.1625 0.125*
H35B 0.3141 0.2742 0.0547 0.125*
H35C 0.2971 0.2089 0.1285 0.125*

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0519 (12) 0.0483 (12) 0.0442 (11) −0.0032 (10) −0.0045 (9) 0.0023 (9)
O1 0.0920 (12) 0.0541 (9) 0.0734 (10) −0.0092 (9) −0.0381 (9) 0.0023 (8)
C2 0.0481 (11) 0.0482 (12) 0.0476 (11) −0.0023 (9) −0.0087 (9) 0.0021 (9)
C3 0.0468 (11) 0.0481 (12) 0.0437 (11) −0.0023 (9) −0.0039 (9) −0.0007 (9)
S11 0.0885 (6) 0.0555 (4) 0.0533 (5) 0.0004 (4) −0.0283 (3) 0.0057 (3)
C12 0.0471 (11) 0.0492 (11) 0.0399 (10) 0.0002 (9) −0.0036 (8) 0.0023 (9)
C13 0.071 (3) 0.0556 (17) 0.051 (3) −0.0026 (16) −0.0199 (18) −0.0051 (17)
C14 0.079 (3) 0.0449 (13) 0.068 (2) −0.0014 (13) −0.004 (2) −0.0002 (12)
C15 0.081 (3) 0.0560 (16) 0.0624 (19) 0.0084 (19) −0.008 (2) 0.0112 (16)
S21 0.071 (3) 0.0556 (17) 0.051 (3) −0.0026 (16) −0.0199 (18) −0.0051 (17)
C22 0.0471 (11) 0.0492 (11) 0.0399 (10) 0.0002 (9) −0.0036 (8) 0.0023 (9)
C23 0.0885 (6) 0.0555 (4) 0.0533 (5) 0.0004 (4) −0.0283 (3) 0.0057 (3)
C24 0.081 (3) 0.0560 (16) 0.0624 (19) 0.0084 (19) −0.008 (2) 0.0112 (16)
C25 0.079 (3) 0.0449 (13) 0.068 (2) −0.0014 (13) −0.004 (2) −0.0002 (12)
N31 0.0448 (9) 0.0350 (8) 0.0485 (9) −0.0001 (7) −0.0054 (7) 0.0033 (7)
N32 0.0528 (10) 0.0345 (9) 0.0591 (10) −0.0033 (7) −0.0083 (8) 0.0040 (8)
C33 0.0475 (11) 0.0377 (10) 0.0548 (12) −0.0009 (9) −0.0022 (9) 0.0005 (9)
C34 0.0422 (10) 0.0387 (10) 0.0477 (11) 0.0013 (8) −0.0024 (8) 0.0012 (8)
C35 0.0413 (10) 0.0335 (10) 0.0467 (11) 0.0003 (8) 0.0008 (8) 0.0030 (8)
C311 0.0391 (10) 0.0402 (10) 0.0458 (11) 0.0067 (8) −0.0027 (8) −0.0022 (8)
C312 0.0479 (11) 0.0452 (11) 0.0546 (12) 0.0027 (9) −0.0042 (9) 0.0008 (9)
C313 0.0506 (12) 0.0577 (13) 0.0643 (14) 0.0000 (11) −0.0091 (10) −0.0109 (11)
C314 0.0555 (13) 0.0760 (16) 0.0541 (14) 0.0087 (12) −0.0130 (10) −0.0127 (12)
C315 0.0601 (14) 0.0776 (16) 0.0479 (12) 0.0094 (12) −0.0039 (10) 0.0072 (11)
C316 0.0470 (11) 0.0542 (13) 0.0505 (12) 0.0032 (10) 0.0008 (9) 0.0051 (10)
C331 0.0679 (15) 0.0413 (12) 0.0766 (15) −0.0052 (10) −0.0124 (12) −0.0050 (11)
O35 0.0492 (8) 0.0340 (7) 0.0575 (8) −0.0018 (6) 0.0006 (6) 0.0031 (6)
C351 0.0394 (10) 0.0485 (12) 0.0570 (12) −0.0034 (9) −0.0099 (9) 0.0174 (10)
C352 0.0555 (13) 0.0484 (13) 0.0770 (15) −0.0111 (11) −0.0283 (12) 0.0223 (12)
C353 0.0746 (18) 0.0729 (19) 0.111 (2) −0.0286 (15) −0.0290 (18) 0.0405 (18)
C354 0.0654 (18) 0.108 (3) 0.111 (3) −0.0234 (18) −0.0064 (17) 0.059 (2)
C355 0.0606 (16) 0.116 (3) 0.0831 (19) 0.0065 (16) 0.0130 (14) 0.0311 (18)
C356 0.0562 (14) 0.0687 (16) 0.0725 (15) 0.0046 (12) 0.0073 (12) 0.0193 (13)
C357 0.108 (2) 0.0412 (13) 0.097 (2) −0.0010 (14) −0.0277 (18) −0.0037 (13)

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Geometric parameters (Å, º)

C1—O1 1.223 (2) C311—C316 1.378 (3)
C1—C12 1.466 (3) C311—C312 1.385 (3)
C1—C2 1.468 (3) C312—C313 1.382 (3)
C2—C3 1.330 (3) C312—H312 0.9300
C2—H2 0.9300 C313—C314 1.371 (3)
C3—C34 1.437 (3) C313—H313 0.9300
C3—H3 0.9300 C314—C315 1.373 (3)
S11—C15 1.689 (4) C314—H314 0.9300
S11—C12 1.7146 (19) C315—C316 1.384 (3)
C12—C13 1.340 (5) C315—H315 0.9300
C13—C14 1.404 (6) C316—H316 0.9300
C13—H13 0.9300 C331—H31A 0.9600
C14—C15 1.337 (3) C331—H31B 0.9600
C14—H14 0.9300 C331—H31C 0.9600
C15—H15 0.9300 O35—C351 1.397 (2)
S21—C25 1.692 (11) C351—C356 1.367 (3)
C23—C24 1.408 (11) C351—C352 1.392 (3)
C23—H23 0.9300 C352—C353 1.370 (4)
C24—C25 1.340 (9) C352—C357 1.495 (4)
C24—H24 0.9300 C353—C354 1.364 (5)
C25—H25 0.9300 C353—H353 0.9300
N31—C35 1.351 (2) C354—C355 1.375 (4)
N31—N32 1.375 (2) C354—H354 0.9300
N31—C311 1.425 (2) C355—C356 1.400 (3)
N32—C33 1.322 (2) C355—H355 0.9300
C33—C34 1.414 (3) C356—H356 0.9300
C33—C331 1.491 (3) C357—H35A 0.9600
C34—C35 1.373 (3) C357—H35B 0.9600
C35—O35 1.353 (2) C357—H35C 0.9600
O1—C1—C12 120.05 (18) C313—C312—H312 120.4
O1—C1—C2 121.99 (19) C311—C312—H312 120.4
C12—C1—C2 117.96 (17) C314—C313—C312 120.9 (2)
C3—C2—C1 121.21 (18) C314—C313—H313 119.6
C3—C2—H2 119.4 C312—C313—H313 119.6
C1—C2—H2 119.4 C313—C314—C315 119.6 (2)
C2—C3—C34 128.12 (19) C313—C314—H314 120.2
C2—C3—H3 115.9 C315—C314—H314 120.2
C34—C3—H3 115.9 C314—C315—C316 120.4 (2)
C15—S11—C12 91.91 (14) C314—C315—H315 119.8
C13—C12—C1 131.5 (3) C316—C315—H315 119.8
C13—C12—S11 109.4 (3) C311—C316—C315 119.7 (2)
C1—C12—S11 119.10 (15) C311—C316—H316 120.2
C12—C13—C14 115.1 (3) C315—C316—H316 120.2
C12—C13—H13 122.4 C33—C331—H31A 109.5
C14—C13—H13 122.4 C33—C331—H31B 109.5
C15—C14—C13 110.7 (3) H31A—C331—H31B 109.5
C15—C14—H14 124.6 C33—C331—H31C 109.5
C13—C14—H14 124.6 H31A—C331—H31C 109.5
C14—C15—S11 112.9 (3) H31B—C331—H31C 109.5
C14—C15—H15 123.6 C35—O35—C351 119.55 (16)
S11—C15—H15 123.6 C356—C351—C352 123.8 (2)
C24—C23—H23 122.8 C356—C351—O35 122.94 (19)
C25—C24—C23 110.3 (12) C352—C351—O35 113.3 (2)
C25—C24—H24 124.9 C353—C352—C351 116.7 (3)
C23—C24—H24 124.9 C353—C352—C357 122.8 (3)
C24—C25—S21 112.0 (11) C351—C352—C357 120.5 (2)
C24—C25—H25 124.0 C354—C353—C352 121.5 (3)
S21—C25—H25 124.0 C354—C353—H353 119.2
C35—N31—N32 110.33 (15) C352—C353—H353 119.2
C35—N31—C311 130.62 (16) C353—C354—C355 121.0 (3)
N32—N31—C311 118.98 (15) C353—C354—H354 119.5
C33—N32—N31 105.17 (15) C355—C354—H354 119.5
N32—C33—C34 112.14 (17) C354—C355—C356 119.5 (3)
N32—C33—C331 120.20 (18) C354—C355—H355 120.2
C34—C33—C331 127.61 (18) C356—C355—H355 120.2
C35—C34—C33 103.57 (16) C351—C356—C355 117.5 (3)
C35—C34—C3 129.00 (18) C351—C356—H356 121.2
C33—C34—C3 127.36 (18) C355—C356—H356 121.2
N31—C35—O35 120.86 (16) C352—C357—H35A 109.5
N31—C35—C34 108.79 (16) C352—C357—H35B 109.5
O35—C35—C34 129.88 (17) H35A—C357—H35B 109.5
C316—C311—C312 120.13 (18) C352—C357—H35C 109.5
C316—C311—N31 118.65 (18) H35A—C357—H35C 109.5
C312—C311—N31 121.21 (17) H35B—C357—H35C 109.5
C313—C312—C311 119.3 (2)
O1—C1—C2—C3 1.0 (3) C3—C34—C35—N31 −177.55 (18)
C12—C1—C2—C3 −178.86 (19) C33—C34—C35—O35 171.48 (19)
C1—C2—C3—C34 177.23 (19) C3—C34—C35—O35 −5.6 (3)
O1—C1—C12—C13 −170.9 (5) C35—N31—C311—C316 −150.6 (2)
C2—C1—C12—C13 9.0 (6) N32—N31—C311—C316 25.9 (3)
O1—C1—C12—S11 6.0 (3) C35—N31—C311—C312 30.5 (3)
C2—C1—C12—S11 −174.22 (15) N32—N31—C311—C312 −153.05 (18)
C15—S11—C12—C13 −0.3 (5) C316—C311—C312—C313 1.3 (3)
C15—S11—C12—C1 −177.8 (4) N31—C311—C312—C313 −179.78 (18)
C1—C12—C13—C14 176.4 (4) C311—C312—C313—C314 −0.6 (3)
S11—C12—C13—C14 −0.6 (7) C312—C313—C314—C315 −0.3 (3)
C12—C13—C14—C15 1.6 (9) C313—C314—C315—C316 0.4 (3)
C13—C14—C15—S11 −1.8 (9) C312—C311—C316—C315 −1.2 (3)
C12—S11—C15—C14 1.3 (7) N31—C311—C316—C315 179.88 (18)
C23—C24—C25—S21 9 (8) C314—C315—C316—C311 0.3 (3)
C35—N31—N32—C33 −0.9 (2) N31—C35—O35—C351 −105.1 (2)
C311—N31—N32—C33 −178.00 (16) C34—C35—O35—C351 83.7 (2)
N31—N32—C33—C34 0.6 (2) C35—O35—C351—C356 2.2 (3)
N31—N32—C33—C331 178.19 (19) C35—O35—C351—C352 −179.18 (16)
N32—C33—C34—C35 0.0 (2) C356—C351—C352—C353 1.2 (3)
C331—C33—C34—C35 −177.5 (2) O35—C351—C352—C353 −177.45 (18)
N32—C33—C34—C3 177.07 (18) C356—C351—C352—C357 −178.1 (2)
C331—C33—C34—C3 −0.4 (4) O35—C351—C352—C357 3.3 (3)
C2—C3—C34—C35 6.2 (4) C351—C352—C353—C354 0.0 (4)
C2—C3—C34—C33 −170.2 (2) C357—C352—C353—C354 179.3 (2)
N32—N31—C35—O35 −171.96 (16) C352—C353—C354—C355 −1.0 (4)
C311—N31—C35—O35 4.7 (3) C353—C354—C355—C356 0.9 (4)
N32—N31—C35—C34 0.9 (2) C352—C351—C356—C355 −1.3 (3)
C311—N31—C35—C34 177.56 (18) O35—C351—C356—C355 177.17 (19)
C33—C34—C35—N31 −0.5 (2) C354—C355—C356—C351 0.3 (4)

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···N32i 0.93 2.55 3.483 (4) 177
C25—H25···N32i 0.93 2.69 3.47 (2) 142
C314—H314···O1ii 0.93 2.51 3.432 (3) 171

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x−1, y, z−1.

Funding Statement

This work was funded by University Grants Commission grant BSR Faculty Fellowship to H. S. Yathirajan.

References

  1. Abdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o612–o613. [DOI] [PMC free article] [PubMed]
  2. Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96. [DOI] [PubMed]
  3. Ahmad, M., Siddiqui, H. L., Khan, A. H. & Parvez, M. (2010). Acta Cryst. E66, o1265–o1266. [DOI] [PMC free article] [PubMed]
  4. Asma, Kalluraya, B. & Manju, N. (2017). Pharma Chem 9, 50–54.
  5. Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361.
  6. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. [DOI] [PubMed]
  7. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  8. Blanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o195–o198. [DOI] [PubMed]
  9. Bowes, K. F., Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o4–o8. [DOI] [PubMed]
  10. Bruker (2012). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  12. Dawood, K. M., Eldebss, T. M. A., El-Zahabi, H. S. A., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740–749. [DOI] [PubMed]
  13. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  14. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  15. Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
  16. Fun, H.-K., Hemamalini, M., Abdel-Aziz, H. A. & Aboul-Fadl, T. (2011). Acta Cryst. E67, o2145–o2146. [DOI] [PMC free article] [PubMed]
  17. Guzei, I. A., Spencer, L. C., Tshivashe, M. G. & Darkwa, J. (2009). Acta Cryst. E65, o2743. [DOI] [PMC free article] [PubMed]
  18. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134. doi: 10.3390/molecules23010134. [DOI] [PMC free article] [PubMed]
  19. Koca, I., Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). Bioorg. Med. Chem. 21, 3859–3865. [DOI] [PubMed]
  20. Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036. doi: 10.3390/molecules21081036. [DOI] [PMC free article] [PubMed]
  21. Mathew, B., Suresh, J. & Anbazhagan, S. (2014). EXCLI J, 13, 437–445. [PMC free article] [PubMed]
  22. Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109–o1110. [DOI] [PMC free article] [PubMed]
  23. Peng, J. & Jia, R. (2012). Acta Cryst. E68, o2608. [DOI] [PMC free article] [PubMed]
  24. Rajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. & Müller, P. (2014). Acta Cryst. E70, o974–o975. [DOI] [PMC free article] [PubMed]
  25. Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  29. Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410–415. [DOI] [PubMed]
  30. Zhang, J., Tan, D.-J., Wang, T., Jing, S.-S., Kang, Y. & Zhang, Z.-T. (2017). J. Mol. Struct. 1149, 235–242.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S205698901901658X/zl2765sup1.cif

e-76-00048-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901901658X/zl2765Isup2.hkl

e-76-00048-Isup2.hkl (297.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901901658X/zl2765IIsup3.hkl

e-76-00048-IIsup3.hkl (377.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901901658X/zl2765Isup4.cml

Supporting information file. DOI: 10.1107/S205698901901658X/zl2765IIsup5.cml

CCDC references: 1970925, 1970924

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES