Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):72–76. doi: 10.1107/S2056989019016402

Crystal structure and Hirshfeld surface analysis of (E)-3-(3-iodo­phen­yl)-1-(4-iodo­phen­yl)prop-2-en-1-one

Kieran J Spruce a, Charlie L Hall a,*, Jason Potticary a, Natalie E Pridmore a, Matthew E Cremeens b, Gemma D D’ambruoso b, Masaomi Matsumoto b, Gabrielle I Warren b, Stephen D Warren b, Simon R Hall a
PMCID: PMC6944092  PMID: 31921455

The title compound, C15H10I2O, is a halogenated chalcone formed from two iodine substituted rings, one para-substituted and the other meta-substituted, linked through a prop-2-en-1-one spacer. The crystal structure shows the mol­ecules contain halogen bonds which are always between equivalent iodine atoms, either parapara or metameta.

Keywords: crystal structure, E configuration, iodo­phenyl ring, chalcone, (E)-3-(3-iodo­phen­yl)-1-(4-iodo­phen­yl)prop-2-en-1-one

Abstract

The title compound, C15H10I2O, is a halogenated chalcone formed from two iodine substituted rings, one para-substituted and the other meta-substituted, linked through a prop-2-en-1-one spacer. In the mol­ecule, the mean planes of the 3-iodo­phenyl and the 4-iodo­phenyl groups are twisted by 46.51 (15)°. The calculated electrostatic potential surfaces show the presence of σ-holes on both substituted iodines. In the crystal, the mol­ecules are linked through type II halogen bonds, forming a sheet structure parallel to the bc plane. Between the sheets, weak inter­molecular C—H⋯π inter­actions are observed. Hirshfeld surface analysis showed that the most significant contacts in the structure are C⋯H/H⋯C (31.9%), followed by H⋯H (21.4%), I⋯H/H⋯I (18.4%). I⋯I (14.5%) and O⋯H/H⋯O (8.1%).

Chemical context  

Chalcones are aromatic ketones which have shown potential as anti­bacterial, anti­fungal and anti-inflammatory agents (D’silva et al., 2011). These mol­ecules are essential to the biosynthesis of flavonoids through a conjugate ring-closure to form flavone and have also attracted attention for their potential use in opto- and organic electronics (Shetty et al., 2016, 2017). As a family of mol­ecules, substituted chalcones can be readily synthesized via a Claisen–Schmidt condensation reaction between an appropriately functionalized aceto­phenone and benzaldehyde. Substitutions on each of the benzene rings are currently being investigated in order to inter­rogate how the electronic properties of the crystal are altered. The iodo-substituted rings present in the title compound allows for the formation of iodine channels in the crystal, a conformation which may afford a change in the crystal’s electrical properties.graphic file with name e-76-00072-scheme1.jpg

Structural commentary  

The title compound comprises two aromatic rings, 4-iodo­phenyl (1-Ring) and 3-iodo­phenyl (3-Ring), which are connected, respectively, to atoms C1 and C3 of the –CO—CH=CH– enone bridge (Fig. 1). The backbone torsion angles are C5—C4—C1—C2 = 151.6 (4)°, C4—C1—C2—C3 = 171.9 (4)°, C1—C2—C3—C10 = 176.4 (4)° and C2—C3—C10—C11 = 170.4 (5)°. The mean planes of the 3-iodo­phenyl and 4-iodo­phenyl groups are twisted by 46.51 (15)° relative to each other. The H atoms of the propenone group are trans-configured.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

Electrostatic potential surfaces [Fig. 2(a)–(c)] show the presence of σ-holes on both substituted iodines, I1 and I2, which allow for halogen bonding of a bifurcated type II. Partial packing diagrams are shown in Fig. 3(a)–(c). Inter­estingly, these halogen bonds form exclusively between equivalent iodine atoms, either parapara or metameta. The geometries of the halogen bonds are I1⋯I1iv = 4.0980 (9) Å, C7—I1⋯I1iv = 113.85 (13)°, I1⋯I1v =4.0980 (9) Å and C7—I⋯I1v = 154.47 (13)° for the parapara I⋯I bonds, and I2⋯I2vi = 3.9805 (8) Å, C12—I2⋯I2vi = 108.20 (13)°, I2⋯I2vii = 3.9805 (8) Å and C12—I2⋯I2vii = 157.30 (13)° for the metameta I⋯I bonds [symmetry codes: (iv) x, Inline graphic − y, −Inline graphic + z; (v) x, Inline graphic − y, Inline graphic + z; (vi) x, Inline graphic − y, Inline graphic + z; (vii) x, Inline graphic − y, −Inline graphic + z]. A sheet structure is formed parallel to the bc plane. There are also three weak C—H⋯π inter­actions (Table 1) between the sheets.

Figure 2.

Figure 2

Electrostatic potential mapped onto an electron density isosurface with isovalue 0.02 e Å−3, calculated using B3LYP at the LANL2DZ level. Red and blue regions show negative and positive electric potentials, respectively. (a) shows the potential of the substituted chalcone mol­ecule. (b) and (c) show the σ-holes on 1-Ring and 3-Ring, respectively.

Figure 3.

Figure 3

(a) A packing diagram of the title compound in the unit cell. Red, green and blue axes indicate a, b and c, respectively. (b) Metameta and parapara halogen bonds indicated by dashed lines. (c) Three weak C—H⋯π inter­actions (dashed lines; C5—H5⋯Cg1i, C8—H8⋯Cg1ii and C14—H14⋯Cg2iii). Cg1 and Cg2 are the centroids of the C10–C15 and C4–C9 rings, respectively. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 2 − z; (iii) 1 − x, 1 − y, 2 − z; (iv) x, Inline graphic − y, −Inline graphic + z; (v) x, Inline graphic − y, Inline graphic + z; (vi) x, Inline graphic − y, Inline graphic + z; (vii) x, Inline graphic − y, −Inline graphic + z..]

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C10–C15 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.95 2.78 3.406 (5) 124
C8—H8⋯Cg1ii 0.95 2.85 3.491 (5) 126
C14—H14⋯Cg2iii 0.95 2.77 3.440 (5) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Hirshfeld surfaces, mapped over d norm, shape-index and d e, and two-dimensional fingerprint plots of the title compound were calculated using CrystalExplorer17.5 (Turner et al., 2017). Hirshfeld surfaces [Fig. 4(a) and (c)] highlight the relationship between the contact distance and the van der Waals radii (Venkatesan et al., 2016). The Hirshfeld surface mapped over the shape-index [Fig. 4(b)] shows depressions on both 1-Ring and 3-Ring, which is indicative of C—H⋯π inter­actions. Two-dimensional fingerprint plots are used to illustrate the inter­molecular contacts between mol­ecules within the crystal structure. The fingerprint plots of all significant inter­actions are shown in Fig. 5(a)–(f). C⋯H/H⋯C contacts [Fig. 5(b)] make the largest contribution (31.9%) and show a pair of spikes at d e + d i = ∼2.8 Å, representative of inter­molecular C—H⋯π inter­actions. The O⋯H/H⋯O plot also contains a pair of spikes at d e + d i = ∼2.7 Å [Fig. 5(f)]. The negligible contributions from other contacts, not included in Fig. 5, are as follows: C⋯C (3.1%), C⋯O/O⋯C (2.1%) and C⋯I/I⋯C (0.5%).

Figure 4.

Figure 4

Hirshfeld surfaces of the title compound, mapped with (a) d norm, where white regions represent inter­actions equal to, and blue regions represent inter­actions shorter than the sum of their van der Waals radii, (b) the shape-index, and (c) d e, where the circled areas indicate the C—H⋯π inter­actions.

Figure 5.

Figure 5

Hirshfeld surfaces and fingerprint plots showing percentage of contacts of (a) all inter­actions, (b) C⋯H/H⋯C, (c) H⋯H, (d) I⋯H/H⋯I, (e) I⋯I and (f) O⋯H/H⋯O. inter­actions.

Database survey  

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016) showed that existing similar structures include (2E)-1-(4-bromo­phen­yl)-3-(4-fluoro­phen­yl)prop-2-en-1-one (refcode NURCIN; Dutkiewicz et al., 2010), 1-(4-bromo­phen­yl)-3-(4-chloro­phen­yl)prop-2-en-1-one (LEPYIP; Yang et al., 2006), 1,3-bis­(4-bromo­phen­yl)prop-2-en-1-one (LEHROG; Ng et al., 2006), (E)-1-(4-bromo­phen­yl)-3-(4-iodo­phen­yl)prop-2-en-1-one (IWALAV; Zainuri et al., 2017) and 3-(3-bromo­phen­yl)-1-(4-bromo­phen­yl)prop-2-en-1-one (ODEDEH; Teh et al., 2006). Four compounds (NURCIN, LEPYIP, LEHROG and IWALAV) contain only para-substituted rings. Within these structures, halogen bonds exist only between bromine and iodine species, and never between equivalent halogens. 3-(3-Bromo­phen­yl)-1-(4-bromo­phen­yl)prop-2-en-1-one contains one meta-substituted ring and one para-substituted ring: each halogen bond exists between rings with the same substitution, either parapara or metameta, as seen in the title compound.

Synthesis and crystallization  

4′-Iodo­aceto­phenone (0.773 g, 3.14 mmol), 3-iodo­benzaldehyde (0.697 g, 3.00), anhydrous zinc chloride (0.615 g, 4.51 mmol) and absolute ethanol (1.5 ml) were added to a microwave vessel with a stir bar. Using a microwave reactor, the reaction mixture was heated to 468 K for 15 minutes. Upon cooling the reaction, yellowish solids were collected by vacuum filtration and washed with 95% ethanol. The resulting solid was recrystallized from 95% ethanol (0.603 g, 44% yield, yellow crystals, m.p. 442.5–443.7 K). 1H NMR (400 MHz, DMSO-d 6, referenced to TMS): δ (ppm) 8.37 (1H, s), 8.0–7.94 (5H, m), 7.88 (1H, d, J = 8 Hz), 7.81 (1H, d, J = 8 Hz), 7.68 (1H, d, J = 16 Hz), 7.26 (1H, t, J = 8 Hz). 13C NMR (100 MHz, DMSO-d 6, referenced to solvent, 39.52 ppm): δ (ppm) 188.44, 142.75, 139.04, 137.72, 136.95, 136.66, 136.61, 130.89, 130.38, 128.73, 122.81, 102.14, 95.57. Single crystals suitable for X-ray diffraction were obtained by the slow evaporation technique from an acetone solution at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C15H10I2O
M r 460.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 7.2650 (7), 32.864 (3), 5.8446 (6)
β (°) 92.277 (2)
V3) 1394.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.50
Crystal size (mm) 0.57 × 0.29 × 0.08
 
Data collection
Diffractometer Bruker APEXII kappa CCD area detector
Absorption correction Numerical (SADABS; Bruker, 2016)
T min, T max 0.065, 0.189
No. of measured, independent and observed [I > 2σ(I)] reflections 18346, 3215, 2960
R int 0.021
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.073, 1.27
No. of reflections 3215
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −1.31

Computer programs: SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016402/is5526sup1.cif

e-76-00072-sup1.cif (547.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016402/is5526Isup2.hkl

e-76-00072-Isup2.hkl (256.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016402/is5526Isup5.mol

13C NMR of the synthesised product. DOI: 10.1107/S2056989019016402/is5526sup3.pdf

e-76-00072-sup3.pdf (151.8KB, pdf)

1H NMR of the synthesised product. DOI: 10.1107/S2056989019016402/is5526sup4.pdf

e-76-00072-sup4.pdf (130.3KB, pdf)

Supporting information file. DOI: 10.1107/S2056989019016402/is5526Isup6.cml

CCDC reference: 1970266

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

GU co-authors thank E. Mermann-Jozwiak, J. Hazen, S. Economu, M. Fellin, B. Hendricks, R. Meehan, & G. Warren for their assistance, as well as the Howard Hughes Medical Institute through its Undergraduate Science Education Program for supporting equipment acquisition.

supplementary crystallographic information

Crystal data

C15H10I2O F(000) = 856
Mr = 460.03 Dx = 2.191 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.2650 (7) Å Cell parameters from 8513 reflections
b = 32.864 (3) Å θ = 2.5–27.5°
c = 5.8446 (6) Å µ = 4.50 mm1
β = 92.277 (2)° T = 200 K
V = 1394.3 (2) Å3 Plate, clear colourless
Z = 4 0.57 × 0.29 × 0.08 mm

Data collection

Bruker APEXII kappa CCD area detector diffractometer 3215 independent reflections
Radiation source: fine-focus sealed tube 2960 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
φ and ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: numerical (SADABS; Bruker, 2016) h = −9→9
Tmin = 0.065, Tmax = 0.189 k = −42→37
18346 measured reflections l = −7→7

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0034P)2 + 6.4729P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073 (Δ/σ)max = 0.001
S = 1.27 Δρmax = 1.14 e Å3
3215 reflections Δρmin = −1.30 e Å3
164 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00062 (7)
Primary atom site location: iterative

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C4 0.8336 (6) 0.43230 (13) 0.5707 (7) 0.0250 (9)
C9 0.9114 (6) 0.42521 (14) 0.7892 (8) 0.0278 (9)
H9 0.939830 0.447424 0.888449 0.033*
C8 0.9474 (6) 0.38548 (14) 0.8617 (8) 0.0289 (9)
H8 1.003866 0.380553 1.008533 0.035*
C7 0.9004 (6) 0.35322 (14) 0.7183 (8) 0.0292 (9)
C6 0.8265 (6) 0.35974 (14) 0.4992 (8) 0.0298 (10)
H6 0.797488 0.337429 0.400879 0.036*
C5 0.7955 (6) 0.39954 (14) 0.4252 (8) 0.0285 (9)
H5 0.747935 0.404397 0.273958 0.034*
C1 0.7892 (6) 0.47421 (14) 0.4874 (8) 0.0284 (9)
C2 0.7447 (6) 0.50560 (14) 0.6605 (8) 0.0294 (9)
H2 0.729579 0.497837 0.815221 0.035*
C3 0.7258 (6) 0.54438 (13) 0.5999 (8) 0.0268 (9)
H3 0.749373 0.550781 0.445302 0.032*
C10 0.6729 (6) 0.57825 (13) 0.7450 (7) 0.0251 (9)
C11 0.6878 (6) 0.61791 (13) 0.6589 (8) 0.0273 (9)
H11 0.740192 0.622248 0.514565 0.033*
C12 0.6264 (6) 0.65086 (13) 0.7836 (8) 0.0289 (9)
C13 0.5540 (6) 0.64548 (15) 0.9989 (8) 0.0322 (10)
H13 0.513741 0.668101 1.084900 0.039*
C14 0.5424 (6) 0.60607 (15) 1.0845 (8) 0.0311 (10)
H14 0.493446 0.601952 1.230991 0.037*
C15 0.6003 (6) 0.57271 (14) 0.9618 (8) 0.0280 (9)
H15 0.590951 0.546131 1.024224 0.034*
I1 0.92866 (6) 0.29371 (2) 0.84509 (7) 0.04484 (12)
I2 0.63173 (6) 0.70888 (2) 0.63477 (6) 0.04434 (12)
O1 0.7830 (5) 0.48192 (10) 0.2821 (6) 0.0376 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C4 0.022 (2) 0.027 (2) 0.026 (2) 0.0011 (17) 0.0023 (16) 0.0009 (17)
C9 0.027 (2) 0.028 (2) 0.028 (2) −0.0020 (18) −0.0031 (18) −0.0029 (17)
C8 0.028 (2) 0.034 (2) 0.024 (2) 0.0032 (19) −0.0031 (17) 0.0017 (18)
C7 0.027 (2) 0.026 (2) 0.034 (2) 0.0048 (18) 0.0022 (18) 0.0026 (18)
C6 0.029 (2) 0.029 (2) 0.031 (2) 0.0003 (18) −0.0001 (18) −0.0077 (18)
C5 0.028 (2) 0.033 (2) 0.024 (2) 0.0036 (18) −0.0010 (17) −0.0009 (17)
C1 0.023 (2) 0.031 (2) 0.031 (2) 0.0005 (17) 0.0008 (18) 0.0024 (18)
C2 0.033 (2) 0.028 (2) 0.027 (2) −0.0004 (18) 0.0022 (18) 0.0019 (17)
C3 0.026 (2) 0.029 (2) 0.026 (2) −0.0005 (18) 0.0003 (17) 0.0016 (17)
C10 0.021 (2) 0.030 (2) 0.025 (2) −0.0016 (17) −0.0045 (16) 0.0015 (17)
C11 0.027 (2) 0.029 (2) 0.026 (2) −0.0048 (18) −0.0012 (17) 0.0022 (17)
C12 0.031 (2) 0.024 (2) 0.031 (2) −0.0037 (18) −0.0077 (18) 0.0016 (17)
C13 0.028 (2) 0.035 (2) 0.033 (2) 0.0014 (19) −0.0018 (19) −0.0073 (19)
C14 0.028 (2) 0.041 (3) 0.024 (2) −0.002 (2) −0.0003 (18) −0.0015 (19)
C15 0.025 (2) 0.030 (2) 0.028 (2) 0.0001 (18) −0.0048 (17) 0.0043 (18)
I1 0.0555 (2) 0.02652 (17) 0.0520 (2) 0.00766 (15) −0.00426 (16) 0.00411 (14)
I2 0.0618 (3) 0.02421 (16) 0.0466 (2) −0.00405 (15) −0.00256 (16) 0.00229 (14)
O1 0.051 (2) 0.0340 (18) 0.0278 (17) 0.0045 (16) 0.0029 (15) 0.0051 (14)

Geometric parameters (Å, º)

C4—C9 1.395 (6) C2—C3 1.328 (6)
C4—C5 1.393 (6) C3—H3 0.9500
C4—C1 1.492 (6) C3—C10 1.460 (6)
C9—H9 0.9500 C10—C11 1.403 (6)
C9—C8 1.394 (6) C10—C15 1.403 (6)
C8—H8 0.9500 C11—H11 0.9500
C8—C7 1.386 (6) C11—C12 1.388 (6)
C7—C6 1.386 (6) C12—C13 1.394 (7)
C7—I1 2.099 (4) C12—I2 2.097 (4)
C6—H6 0.9500 C13—H13 0.9500
C6—C5 1.393 (6) C13—C14 1.392 (7)
C5—H5 0.9500 C14—H14 0.9500
C1—C2 1.490 (6) C14—C15 1.385 (7)
C1—O1 1.225 (5) C15—H15 0.9500
C2—H2 0.9500
C9—C4—C1 121.8 (4) C3—C2—H2 119.8
C5—C4—C9 119.5 (4) C2—C3—H3 116.4
C5—C4—C1 118.6 (4) C2—C3—C10 127.1 (4)
C4—C9—H9 120.0 C10—C3—H3 116.4
C8—C9—C4 119.9 (4) C11—C10—C3 118.3 (4)
C8—C9—H9 120.0 C11—C10—C15 118.8 (4)
C9—C8—H8 120.2 C15—C10—C3 122.8 (4)
C7—C8—C9 119.6 (4) C10—C11—H11 119.8
C7—C8—H8 120.2 C12—C11—C10 120.4 (4)
C8—C7—I1 118.8 (3) C12—C11—H11 119.8
C6—C7—C8 121.2 (4) C11—C12—C13 121.0 (4)
C6—C7—I1 120.0 (3) C11—C12—I2 118.7 (3)
C7—C6—H6 120.5 C13—C12—I2 120.2 (3)
C7—C6—C5 118.9 (4) C12—C13—H13 120.9
C5—C6—H6 120.5 C14—C13—C12 118.2 (4)
C4—C5—C6 120.7 (4) C14—C13—H13 120.9
C4—C5—H5 119.6 C13—C14—H14 119.1
C6—C5—H5 119.6 C15—C14—C13 121.8 (4)
C2—C1—C4 117.9 (4) C15—C14—H14 119.1
O1—C1—C4 120.6 (4) C10—C15—H15 120.1
O1—C1—C2 121.4 (4) C14—C15—C10 119.8 (4)
C1—C2—H2 119.8 C14—C15—H15 120.1
C3—C2—C1 120.4 (4)
C4—C9—C8—C7 −1.9 (7) C2—C3—C10—C11 170.4 (5)
C4—C1—C2—C3 171.9 (4) C2—C3—C10—C15 −12.5 (7)
C9—C4—C5—C6 2.9 (7) C3—C10—C11—C12 175.2 (4)
C9—C4—C1—C2 −28.3 (6) C3—C10—C15—C14 −176.0 (4)
C9—C4—C1—O1 154.5 (5) C10—C11—C12—C13 1.9 (7)
C9—C8—C7—C6 3.3 (7) C10—C11—C12—I2 −175.0 (3)
C9—C8—C7—I1 −173.2 (3) C11—C10—C15—C14 1.0 (6)
C8—C7—C6—C5 −1.5 (7) C11—C12—C13—C14 −0.9 (7)
C7—C6—C5—C4 −1.6 (7) C12—C13—C14—C15 0.0 (7)
C5—C4—C9—C8 −1.1 (7) C13—C14—C15—C10 0.0 (7)
C5—C4—C1—C2 151.6 (4) C15—C10—C11—C12 −1.9 (6)
C5—C4—C1—O1 −25.6 (7) I1—C7—C6—C5 175.0 (3)
C1—C4—C9—C8 178.8 (4) I2—C12—C13—C14 175.9 (3)
C1—C4—C5—C6 −177.0 (4) O1—C1—C2—C3 −10.9 (7)
C1—C2—C3—C10 176.4 (4)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C10–C15 and C4–C9 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C5—H5···Cg1i 0.95 2.78 3.406 (5) 124
C8—H8···Cg1ii 0.95 2.85 3.491 (5) 126
C14—H14···Cg2iii 0.95 2.77 3.440 (5) 129

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+1, −z+2.

Funding Statement

This work was funded by Engineering and Physical Sciences Research Council UK grant EP/L015544/1 to Charlie L. Hall. MagnaPharm grant 736899 to Simon R. Hall and Jason Potticary.

References

  1. Bruker (2016). SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, WI, USA.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. D’silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326–5369.
  4. Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243–o1244. [DOI] [PMC free article] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421–o1423.
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Shetty, T. C. S., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct 1143, 306–317.
  10. Shetty, T. C. S., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.
  11. Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399–o2400.
  12. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia.
  13. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  14. Yang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195–198.
  15. Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, I. A., Pillai, R. R., Sulaiman, S. F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, C. Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019016402/is5526sup1.cif

e-76-00072-sup1.cif (547.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016402/is5526Isup2.hkl

e-76-00072-Isup2.hkl (256.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019016402/is5526Isup5.mol

13C NMR of the synthesised product. DOI: 10.1107/S2056989019016402/is5526sup3.pdf

e-76-00072-sup3.pdf (151.8KB, pdf)

1H NMR of the synthesised product. DOI: 10.1107/S2056989019016402/is5526sup4.pdf

e-76-00072-sup4.pdf (130.3KB, pdf)

Supporting information file. DOI: 10.1107/S2056989019016402/is5526Isup6.cml

CCDC reference: 1970266

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES