Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 1;76(Pt 1):86–90. doi: 10.1107/S2056989019016670

Syntheses and crystal structures of 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic acid and 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride

Joseph A Giesen a, Scott M Grayson a, Joel T Mague a,*
PMCID: PMC6944095  PMID: 31921458

The title compounds, C8H14O4 and C16H26O7, are precursors to dendrimers. The strong and weak hydrogen bonds in their extended structures are described.

Keywords: crystal structure, anhydride, hydrogen bond, dioxane, carb­oxy­lic acid

Abstract

In 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic acid, C8H14O4, the carboxyl group occupies an equatorial position on the 1,3-dioxane ring. In the crystal, O—H⋯O hydrogen bonds form chains of mol­ecules, which are linked into a three-dimensional network by C—H⋯O hydrogen bonds. The asymmetric unit of 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride, C16H26O7, consists of two independent mol­ecules, which are linked by C—H⋯O hydrogen bonds. In the crystal, these units are connected into corrugated layers two mol­ecules thick and parallel to the ab plane by additional C—H⋯O hydrogen bonds.

Chemical context  

Dendrimers are perfectly branched, monodisperse, multivalent polymeric structures that exhibit enhanced solubility, increased reactivity and reduced dispersity compared to linear polymer analogs (Ihre et al., 1996a ). While there are several varieties of dendrimers, a protected monomer has been used to make most dendrimers (Buhleier et al., 1978; Tomalia et al. 1985; Hawker & Fréchet, 1992). 2,2-Bis(hy­droxy­meth­yl)propionic acid (bis-MPA) is one of the most popular (Ihre et al., 1996b ), useful and well-studied because of its low cost and relative ease of synthesis yielding extremely precise structures (Grayson et al., 2014), while also being biocomp­atible, biodegradable and extremely modular. The synthesis of these polyester-based dendrimers relies on first protecting the hydroxyl groups of the monomer and then, after an exhaustive protection of the core, complete removal of the protecting group exposing the hydroxyl groups of the next generation. To that end, the isopropyl acetal (iso­propyl­idene/acetonide) has become one of the most commonly compounds used in the production of the monomeric unit (Stenström et al., 2016; García-Gallego et al., 2015). Anhydride-catalyzed esterification has become the preferred route of synthesis to produce these highly precise, bis-functional structures by decreasing the steps of purification and improving the efficiency of deprotection to the final poly-ol. The scope and diversity of these types of structures can be seen in the increase in publications on dendrimers and the numerous reviews published in recent years. We report here the syntheses and crystal structures of two important inter­mediates in our work on dendrimer syntheses, viz. 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic acid (C8H14O4) and 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride (C16H26O7).graphic file with name e-76-00086-scheme1.jpg

Structural commentary  

2,2,5-Trimethyl-1,3-dioxane-5-carb­oxy­lic acid, I, (Fig. 1) has the methyl groups containing C6 and C8 in trans axial positions while the C7 methyl group and the carboxyl group are equatorial on the 1,3-dioxane ring, which adopts an approximate chair conformation. A puckering analysis of this conformation gave the parameters Q = 0.5540 (9) Å, θ = 176.65 (9)° and φ = 301.8 (17)°. The O2—C1—C2—C5 torsion angle of −159.88 (8)° indicates that the carboxyl group is approximately aligned with the mean plane through the 1,3-dioxane ring.

Figure 1.

Figure 1

Perspective view of I with 50% probability displacement ellipsoids.

The asymmetric unit of 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride, II, consists of two independent mol­ecules each having an overall ‘U′ shape (Fig. 2) but differing in part by having opposite conformations in the anhydride portions. Thus, the O5—C9—O1—C1 and O2—C1—O1—C9 torsion angles are, respectively, 57.23 (13) and 3.46 (14)° while the O9—C17—O8—C25 and O12—C25—O8—C17 torsion angles are, respectively, −55.71 (13) and −5.51 (15)°. The positions of the substituents on the 1,3-dioxane rings are the same as for I and all four rings are in approximate chair forms. Puckering analyses gave Q = 0.5533 (10) Å, θ = 177.07 (10) and φ = 73.5 (19)° for the ring containing O3 with corresponding values of 0.5486 (10) Å, 177.14 (10) and 310 (2)°, respectively, for that containing O6, 0.5494 (10) Å, 5.32 (10) and 259.2 (11)°, respectively for that containing O10 and 0.5502 (10) Å, 4.03 (10) and 128.7 (15)°, respectively for that containing O13. In both mol­ecules, the puckering amplitudes are all comparable with the differences in the angular values resulting from the conventions used to define them (Evans & Boeyens, 1989).

Figure 2.

Figure 2

The asymmetric unit of II with 50% probability displacement ellipsoids. The C—H⋯O hydrogen bonds are indicated by dashed lines.

Supra­molecular features  

Unlike many carb­oxy­lic acids, compound I does not form hydrogen-bonded dimers in the crystal but rather zigzag chains along the c-axis direction through O2—H2⋯O3 hydrogen bonds (Table 1 and Fig. 3). These are connected into ‘tubes’ by C8—H8B⋯O1 hydrogen bonds (Fig. 4), with these units further linked into a three-dimensional network by C6—H6A⋯O4 hydrogen bonds on all sides of the ‘tube’ (Figs. 3 and 4).

Table 1. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.909 (17) 1.804 (17) 2.7086 (9) 172.6 (14)
C6—H6A⋯O4ii 0.979 (15) 2.527 (15) 3.4958 (13) 170.4 (12)
C8—H8B⋯O1iii 0.984 (14) 2.405 (14) 3.3864 (12) 174.8 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Packing of I viewed along the b-axis direction with O—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by red and black dashed lines.

Figure 4.

Figure 4

Packing of I viewed along the c-axis direction with C—H⋯O hydrogen bonds depicted by black dashed lines.

The independent mol­ecules in compound II are connected by C19—H19A⋯O7 and C27—H27A⋯O7 hydrogen bonds (Table 2 and Fig. 5) and these units are joined into chains extending along the b-axis direction by C3—H3B⋯O10 and C11—H11B⋯O10 hydrogen bonds. These are linked into layers parallel to the ab plane by C16—H16C⋯O3 hydrogen bonds (Fig. 5) with two such layers joined by C5—H5A⋯O9 and C14—H14A⋯O12 hydrogen bonds (Fig. 6).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O10i 0.99 2.54 3.5043 (16) 164
C5—H5A⋯O9ii 0.99 2.54 3.4723 (18) 156
C11—H11B⋯O10i 0.99 2.57 3.5152 (17) 161
C14—H14A⋯O12iii 0.98 2.56 3.531 (2) 171
C16—H16C⋯O3iv 0.98 2.53 3.4973 (16) 170
C19—H19A⋯O7 0.99 2.53 3.5095 (17) 168
C27—H27A⋯O7 0.99 2.52 3.5035 (16) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 5.

Figure 5

Plan view of one corrugated sheet in II seen along the c-axis direction with C—H⋯O hydrogen bonds shown as dashed lines.

Figure 6.

Figure 6

Elevation view of the double layer in II seen along the b-axis direction C—H⋯O hydrogen bonds shown as dashed lines.

Database survey  

A search of the Cambridge Crystallographic Database (Version 5.40, updated to September 2019; Groom et al., 2016) with fragment A yielded only the one structure which is closely related to I and II (B , WARLIN; Garmendia et al., 2017). The geometry of the substituted dioxane portion here is similar to those in I and II. In the 22 additional structures found, one, C , (AKEKOR; Simmons et al., 2011) contained a single 1,3-dioxane ring. The remaining hits were spiro­cyclic mol­ecules, e.g. D (MINPEH; Gao et al., 2018).graphic file with name e-76-00086-scheme2.jpg

Synthesis and crystallization  

Preparation of 2,2,5-trimeth­oxy-1,3-dioxane-5-carb­oxy­lic acid (I):

2,2,5-Trimeth­oxy-1,3-dioxane-5-carb­oxy­lic acid was syn­th­esized as previously reported (Ihre et al., 1998; Gillies & Fréchet, 2002; Andrén et al., 2017). 2,2-Bis(hy­droxy­meth­yl)propionic acid (bis-MPA, 30.68 g, 0.229 mol) was added to a 500 ml round-bottom flask equipped with a magnetic stir bar and suspended in acetone (200 ml) under stirring. 2,2-Di­meth­oxy­propane (50.0 ml, 42.5 g, 0.408 mol) and p-toluene­sulfonic acid monohydrate (1.17 g, 6.13 mmol) were added to the reaction flask and the residue rinsed down with acetone (50 ml). The reaction was allowed to proceed under stirring at room temperature for 8 h. Subsequently a 1:1 tri­ethyl­amine:ethanol solution (1 ml) was used to quench the reaction for 3 h. The solvent was evaporated to yield a white solid residue that was then dissolved in di­chloro­methane (DCM, 300 ml), transferred to a 500 ml separatory funnel and washed with deionized H2O (5 × 50 ml). The organic layer was collected in an Erlenmeyer flask equipped with a stir bar and dried over anhydrous sodium sulfate (Na2SO4) under stirring for 30 min. The Na2SO4 was removed via vacuum filtration, the solvent was removed by rotary evaporation, the crude product was dissolved in fresh acetone (60 ml) and recrystallized at 249 K overnight. The solid was collected by vacuum filtration via a fritted glass funnel and dried under high vacuum overnight to yield the protected acid as a colorless crystalline solid (17.815 g, 0.102 mol, 44.7%) 1H NMR (400 MHz, CDCl3): δ 1.20 (s, 3H, –CH3), 1.41 (s, 3H, –CH3), 1.44 (s, 3H, –CH3), 3.68 (d, 2H, –CH2O-, J = 12.0 Hz), 4.19 (d, 2H, –CH2O–, J = 12.0 Hz). 13C NMR (75 MHz, CDCl3): δ 18.48 (CH3), 21.89 (CH3), 25.59 (CH3), 41.82 (C), 66.11 (CH2), 98.55 (C), 179.52 (C).

Synthesis of 2,2,5-trimeth­oxy-1,3-dioxane-5-carb­oxy­lic anhydride (II):

2,2,5-Trimeth­oxy-1,3-dioxane-5-carb­oxy­lic anhydride was prepared according to the literature but with an optimized purification (Malkoch et al., 2002; Giesen et al., 2018). Iso­propyl­idene-protected acid (I, 2.334 g, 13.40 mmol) was added to a 100 ml round-bottom flask equipped with a stir bar and the solid was dissolved in di­chloro­methane (25 ml). N,N-Di­cyclo­hexyl­carbodi­imide was warmed to a liquid, transferred to a tared vial (1.349 g, 6.58 mmol) and dissolved in di­chloro­methane (10 ml). This solution was slowly added to the acid while stirring and the reaction was allowed to proceed overnight. The solid di­cyclo­hexyl­urea (DCU) that formed was removed via gravity filtration through fluted Q2 filter paper. The filtrate was collected and evaporated to dryness in vacuo affording a viscous oil that was subsequently dissolved in a minimal amount of diethyl ether under stirring and the remaining solid again removed via gravity filtration using Q2 filter paper. This filtrate was collected, the solvent removed, and the resulting residue dissolved in a minimal amount of warm hexa­nes. This solution was stirred overnight, affording a white solid that was removed via filtration and the filtrate was evaporated to yield the anhydride as a transparent viscous oil (1.956 g, 5.92 mmol, 88.4%). This was previously reported (Giesen et al., 2018) and crystals of the anhydride were grown from hexa­nes. Additional purification can be achieved with removal of additional DCU by dissolving the crude viscous product in warm hexa­nes and cooling the solution at 276 K overnight to precipitate out additional DCU. This white solid was removed by vacuum filtration and the hexane evaporated yielding a transparent, viscous oil. This precipitation procedure was repeated as needed until a pure product was obtained, as judged by NMR. 1H NMR (400 MHz, CDCl3): δ 1.21 (s, 6H, –CH3), 1.42 (s, 6H, –CH3), 1.45 (s, 6H, –CH3), 3.68 (d, 4H, –CH2O–, J = 12.0 Hz), 4.18 (d, 4H, –CH2O–, J = 12.0 Hz). 13C NMR (100 MHz, CDCl3): δ 17.80 (CH3), 21.70 (CH3), 25.70 (CH3), 43.79 (C), 65.81 (CH2), 98.53 (C), 169.63 (C). Elemental analysis: calculated for C16H26O7: C, 58.17; H, 7.93; 33.90. Found: C, 57.29; H, 8.30; O, 34.22.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms in II were included as riding contributions in idealized positions with C—H = 0.98–0.99 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C-methyl).

Table 3. Experimental details.

  I II
Crystal data
Chemical formula C8H14O4 C16H26O7
M r 174.19 330.37
Crystal system, space group Monoclinic, C2/c Triclinic, P Inline graphic
Temperature (K) 150 100
a, b, c (Å) 16.9457 (8), 9.6453 (5), 12.1052 (6) 10.355 (4), 11.928 (5), 14.496 (6)
α, β, γ (°) 90, 116.986 (1), 90 73.128 (5), 84.900 (5), 89.499 (6)
V3) 1763.12 (15) 1706.3 (11)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.10
Crystal size (mm) 0.35 × 0.32 × 0.25 0.30 × 0.30 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.91, 0.97 0.97, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 16506, 2367, 2035 30041, 8606, 7451
R int 0.026 0.044
(sin θ/λ)max−1) 0.685 0.687
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.113, 1.07 0.040, 0.109, 1.04
No. of reflections 2367 8606
No. of parameters 165 427
H-atom treatment All H-atom parameters refined H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.18 0.35, −0.32

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989019016670/hb7867sup1.cif

e-76-00086-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016670/hb7867Isup2.hkl

e-76-00086-Isup2.hkl (190.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019016670/hb7867IIsup3.hkl

e-76-00086-IIsup3.hkl (683.1KB, hkl)

13C and 1H NMR spectra. DOI: 10.1107/S2056989019016670/hb7867sup4.docx

CCDC references: 1971440, 1971439

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Crystal data

C8H14O4 F(000) = 752
Mr = 174.19 Dx = 1.312 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 16.9457 (8) Å Cell parameters from 8540 reflections
b = 9.6453 (5) Å θ = 2.5–29.1°
c = 12.1052 (6) Å µ = 0.11 mm1
β = 116.986 (1)° T = 150 K
V = 1763.12 (15) Å3 Block, colourless
Z = 8 0.35 × 0.32 × 0.25 mm

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Data collection

Bruker SMART APEX CCD diffractometer 2367 independent reflections
Radiation source: fine-focus sealed tube 2035 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 8.3333 pixels mm-1 θmax = 29.1°, θmin = 2.5°
φ and ω scans h = −23→23
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −13→13
Tmin = 0.91, Tmax = 0.97 l = −16→16
16506 measured reflections

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: difference Fourier map
wR(F2) = 0.113 All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.3458P] where P = (Fo2 + 2Fc2)/3
2367 reflections (Δ/σ)max = 0.001
165 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.18 e Å3

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.39277 (7) 0.35303 (8) 0.10104 (8) 0.0395 (2)
O2 0.35826 (5) 0.54688 (7) 0.16844 (7) 0.0280 (2)
H2 0.3661 (10) 0.5831 (16) 0.1048 (16) 0.044 (4)*
O3 0.36941 (4) 0.33124 (7) 0.47442 (6) 0.01898 (17)
O4 0.37935 (4) 0.12345 (7) 0.38268 (6) 0.01931 (17)
C1 0.36963 (6) 0.41082 (10) 0.16968 (8) 0.01841 (19)
C2 0.34712 (6) 0.33493 (9) 0.26155 (7) 0.01538 (18)
C3 0.38203 (6) 0.41384 (9) 0.38447 (8) 0.01846 (19)
H3 0.4442 (8) 0.4359 (13) 0.4139 (12) 0.025 (3)*
H3B 0.3511 (9) 0.5007 (14) 0.3792 (12) 0.028 (3)*
C4 0.41050 (6) 0.19614 (9) 0.49632 (8) 0.0176 (2)
C5 0.39283 (6) 0.19347 (9) 0.28855 (8) 0.0194 (2)
H5 0.4560 (9) 0.2045 (15) 0.3127 (13) 0.034 (3)*
H5B 0.3649 (9) 0.1329 (14) 0.2151 (13) 0.031 (3)*
C6 0.24588 (6) 0.31871 (11) 0.20277 (9) 0.0251 (2)
H6A 0.2160 (9) 0.4086 (15) 0.1885 (13) 0.031 (3)*
H6B 0.2316 (8) 0.2611 (14) 0.2616 (12) 0.028 (3)*
H6C 0.2246 (10) 0.2711 (16) 0.1240 (14) 0.042 (4)*
C7 0.37499 (7) 0.11697 (11) 0.57215 (9) 0.0252 (2)
H7A 0.3976 (10) 0.1590 (16) 0.6557 (15) 0.045 (4)*
H7B 0.3967 (10) 0.0208 (16) 0.5805 (14) 0.037 (4)*
H7C 0.3113 (10) 0.1106 (16) 0.5286 (14) 0.039 (4)*
C8 0.51093 (6) 0.20861 (11) 0.56270 (9) 0.0256 (2)
H8A 0.5272 (10) 0.2602 (16) 0.6373 (14) 0.039 (4)*
H8B 0.5353 (9) 0.2497 (15) 0.5103 (13) 0.034 (3)*
H8C 0.5394 (9) 0.1170 (16) 0.5863 (13) 0.034 (3)*

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0713 (6) 0.0306 (4) 0.0381 (5) 0.0155 (4) 0.0436 (5) 0.0086 (3)
O2 0.0493 (5) 0.0185 (3) 0.0265 (4) 0.0005 (3) 0.0263 (3) 0.0028 (3)
O3 0.0299 (3) 0.0157 (3) 0.0163 (3) 0.0032 (2) 0.0147 (3) 0.0010 (2)
O4 0.0287 (3) 0.0139 (3) 0.0173 (3) −0.0008 (2) 0.0122 (3) −0.0004 (2)
C1 0.0209 (4) 0.0207 (4) 0.0148 (4) 0.0014 (3) 0.0091 (3) 0.0013 (3)
C2 0.0189 (4) 0.0159 (4) 0.0134 (4) 0.0005 (3) 0.0091 (3) 0.0000 (3)
C3 0.0285 (4) 0.0144 (4) 0.0152 (4) −0.0004 (3) 0.0123 (3) −0.0001 (3)
C4 0.0229 (4) 0.0149 (4) 0.0158 (4) 0.0005 (3) 0.0094 (3) 0.0013 (3)
C5 0.0284 (4) 0.0163 (4) 0.0172 (4) 0.0037 (3) 0.0136 (3) 0.0003 (3)
C6 0.0195 (4) 0.0307 (5) 0.0232 (5) −0.0006 (4) 0.0081 (4) 0.0039 (4)
C7 0.0348 (5) 0.0233 (5) 0.0227 (5) −0.0022 (4) 0.0175 (4) 0.0037 (4)
C8 0.0219 (4) 0.0301 (5) 0.0207 (5) −0.0002 (4) 0.0062 (4) 0.0055 (4)

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Geometric parameters (Å, º)

O1—C1 1.2043 (11) C4—C7 1.5129 (12)
O2—C1 1.3255 (12) C4—C8 1.5216 (12)
O2—H2 0.909 (17) C5—H5 0.979 (14)
O3—C3 1.4414 (10) C5—H5B 0.986 (14)
O3—C4 1.4442 (11) C6—H6A 0.979 (14)
O4—C4 1.4155 (10) C6—H6B 1.015 (13)
O4—C5 1.4294 (10) C6—H6C 0.968 (15)
C1—C2 1.5176 (11) C7—H7A 0.991 (16)
C2—C5 1.5293 (12) C7—H7B 0.986 (15)
C2—C3 1.5312 (12) C7—H7C 0.964 (15)
C2—C6 1.5382 (12) C8—H8A 0.955 (15)
C3—H3 0.970 (13) C8—H8B 0.984 (14)
C3—H3B 0.975 (13) C8—H8C 0.985 (15)
C1—O2—H2 108.3 (10) O4—C5—C2 110.07 (7)
C3—O3—C4 114.39 (6) O4—C5—H5 111.2 (8)
C4—O4—C5 114.63 (7) C2—C5—H5 110.2 (9)
O1—C1—O2 122.79 (8) O4—C5—H5B 104.7 (8)
O1—C1—C2 123.44 (9) C2—C5—H5B 110.3 (8)
O2—C1—C2 113.72 (7) H5—C5—H5B 110.2 (11)
C1—C2—C5 108.39 (7) C2—C6—H6A 111.8 (8)
C1—C2—C3 110.95 (7) C2—C6—H6B 107.6 (7)
C5—C2—C3 107.51 (7) H6A—C6—H6B 109.9 (11)
C1—C2—C6 107.98 (7) C2—C6—H6C 110.0 (9)
C5—C2—C6 111.02 (8) H6A—C6—H6C 108.3 (13)
C3—C2—C6 110.98 (7) H6B—C6—H6C 109.3 (12)
O3—C3—C2 109.57 (7) C4—C7—H7A 109.6 (9)
O3—C3—H3 110.6 (8) C4—C7—H7B 107.7 (8)
C2—C3—H3 110.0 (7) H7A—C7—H7B 109.1 (13)
O3—C3—H3B 105.3 (8) C4—C7—H7C 110.8 (9)
C2—C3—H3B 113.8 (8) H7A—C7—H7C 113.7 (13)
H3—C3—H3B 107.3 (11) H7B—C7—H7C 105.7 (13)
O4—C4—O3 109.42 (7) C4—C8—H8A 108.3 (9)
O4—C4—C7 105.31 (7) C4—C8—H8B 112.8 (8)
O3—C4—C7 105.98 (7) H8A—C8—H8B 112.0 (13)
O4—C4—C8 112.76 (7) C4—C8—H8C 111.4 (8)
O3—C4—C8 110.86 (7) H8A—C8—H8C 107.4 (13)
C7—C4—C8 112.14 (8) H8B—C8—H8C 104.8 (12)
O1—C1—C2—C5 22.55 (12) C5—O4—C4—O3 56.51 (9)
O2—C1—C2—C5 −159.88 (8) C5—O4—C4—C7 170.04 (7)
O1—C1—C2—C3 140.38 (10) C5—O4—C4—C8 −67.36 (10)
O2—C1—C2—C3 −42.05 (10) C3—O3—C4—O4 −56.03 (9)
O1—C1—C2—C6 −97.79 (11) C3—O3—C4—C7 −169.12 (7)
O2—C1—C2—C6 79.77 (10) C3—O3—C4—C8 68.95 (9)
C4—O3—C3—C2 57.03 (9) C4—O4—C5—C2 −58.36 (10)
C1—C2—C3—O3 −172.93 (7) C1—C2—C5—O4 175.13 (7)
C5—C2—C3—O3 −54.57 (9) C3—C2—C5—O4 55.13 (9)
C6—C2—C3—O3 67.02 (9) C6—C2—C5—O4 −66.43 (9)

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3i 0.909 (17) 1.804 (17) 2.7086 (9) 172.6 (14)
C6—H6A···O4ii 0.979 (15) 2.527 (15) 3.4958 (13) 170.4 (12)
C8—H8B···O1iii 0.984 (14) 2.405 (14) 3.3864 (12) 174.8 (11)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, y, −z+1/2.

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Crystal data

C16H26O7 Z = 4
Mr = 330.37 F(000) = 712
Triclinic, P1 Dx = 1.286 Mg m3
a = 10.355 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.928 (5) Å Cell parameters from 9690 reflections
c = 14.496 (6) Å θ = 2.4–29.6°
α = 73.128 (5)° µ = 0.10 mm1
β = 84.900 (5)° T = 100 K
γ = 89.499 (6)° Block, colourless
V = 1706.3 (11) Å3 0.30 × 0.30 × 0.22 mm

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Data collection

Bruker SMART APEX CCD diffractometer 8606 independent reflections
Radiation source: fine-focus sealed tube 7451 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 8.3333 pixels mm-1 θmax = 29.3°, θmin = 2.0°
φ and ω scans h = −13→14
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −16→15
Tmin = 0.97, Tmax = 0.98 l = −19→19
30041 measured reflections

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.3868P] where P = (Fo2 + 2Fc2)/3
8606 reflections (Δ/σ)max = 0.001
427 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.32 e Å3

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.61114 (7) 0.17397 (6) 0.38614 (5) 0.01811 (15)
O2 0.50096 (8) 0.34387 (7) 0.35198 (6) 0.02453 (17)
O3 0.20648 (6) 0.19286 (6) 0.24679 (5) 0.01536 (14)
O4 0.37528 (7) 0.08851 (6) 0.19282 (5) 0.01796 (15)
O5 0.69640 (8) 0.26493 (7) 0.48443 (6) 0.02468 (17)
O6 0.77584 (7) 0.26736 (6) 0.20400 (5) 0.01762 (15)
O7 0.85266 (7) 0.41175 (6) 0.26717 (5) 0.01698 (15)
C1 0.50623 (9) 0.24255 (9) 0.35590 (7) 0.01594 (19)
C2 0.40734 (9) 0.17221 (8) 0.32402 (7) 0.01479 (19)
C3 0.47061 (9) 0.13905 (9) 0.23488 (7) 0.01764 (19)
H3A 0.509546 0.209880 0.186491 0.021*
H3B 0.540504 0.082334 0.254818 0.021*
C4 0.26705 (9) 0.16139 (9) 0.16544 (7) 0.01538 (19)
C5 0.29198 (9) 0.25081 (9) 0.29146 (7) 0.01568 (19)
H5A 0.244737 0.268096 0.348059 0.019*
H5B 0.323569 0.325907 0.244884 0.019*
C6 0.36290 (10) 0.06178 (9) 0.40559 (8) 0.0201 (2)
H6A 0.437550 0.011721 0.423812 0.030*
H6B 0.298009 0.018822 0.383227 0.030*
H6C 0.324777 0.084269 0.461837 0.030*
C7 0.16859 (10) 0.08444 (9) 0.14008 (8) 0.0197 (2)
H7A 0.137648 0.022159 0.198378 0.030*
H7B 0.209200 0.049489 0.091533 0.030*
H7C 0.095236 0.131909 0.113908 0.030*
C8 0.30637 (11) 0.26922 (9) 0.08043 (7) 0.0213 (2)
H8A 0.231143 0.319476 0.065223 0.032*
H8B 0.337824 0.244353 0.023790 0.032*
H8C 0.375355 0.312944 0.097812 0.032*
C9 0.71419 (10) 0.22328 (9) 0.41881 (7) 0.01674 (19)
C10 0.84583 (9) 0.20922 (8) 0.36723 (7) 0.01496 (18)
C11 0.83536 (10) 0.17628 (8) 0.27399 (7) 0.01655 (19)
H11A 0.923038 0.161976 0.246924 0.020*
H11B 0.783369 0.102966 0.288491 0.020*
C12 0.84132 (10) 0.37818 (9) 0.18094 (7) 0.01700 (19)
C13 0.91677 (10) 0.32801 (8) 0.33964 (7) 0.01650 (19)
H13A 0.918581 0.355697 0.397628 0.020*
H13B 1.007414 0.319629 0.314757 0.020*
C14 0.92243 (10) 0.11550 (9) 0.43651 (8) 0.0221 (2)
H14A 0.925743 0.135002 0.497449 0.033*
H14B 1.010801 0.112858 0.406871 0.033*
H14C 0.879586 0.038874 0.449389 0.033*
C15 0.75121 (12) 0.46587 (10) 0.12292 (9) 0.0268 (2)
H15A 0.667202 0.462130 0.160693 0.040*
H15B 0.739079 0.447442 0.062590 0.040*
H15C 0.788927 0.544884 0.107845 0.040*
C16 0.97334 (11) 0.37799 (9) 0.12476 (8) 0.0216 (2)
H16A 1.013381 0.456339 0.107417 0.032*
H16B 0.961933 0.356256 0.065737 0.032*
H16C 1.029383 0.321247 0.165093 0.032*
O8 0.91353 (7) 0.66447 (6) 0.36711 (5) 0.01908 (16)
O9 0.80649 (8) 0.74653 (7) 0.47388 (6) 0.02506 (17)
O10 0.69272 (7) 0.91031 (6) 0.27307 (5) 0.01648 (15)
O11 0.78656 (7) 0.78188 (6) 0.19087 (5) 0.01714 (15)
O12 1.03035 (8) 0.83256 (7) 0.34106 (6) 0.02418 (17)
O13 1.20111 (7) 0.58226 (6) 0.17388 (5) 0.01848 (15)
O14 1.35295 (7) 0.69110 (6) 0.22514 (5) 0.01777 (15)
C17 0.80283 (10) 0.71100 (9) 0.40517 (7) 0.01728 (19)
C18 0.68200 (9) 0.70215 (8) 0.35467 (7) 0.01530 (19)
C19 0.71338 (10) 0.68437 (8) 0.25503 (7) 0.01675 (19)
H19A 0.763701 0.611930 0.261691 0.020*
H19B 0.631671 0.674776 0.227257 0.020*
C20 0.72594 (10) 0.89232 (9) 0.18016 (7) 0.01614 (19)
C21 0.61304 (10) 0.81907 (9) 0.33904 (7) 0.01696 (19)
H21A 0.529030 0.814447 0.312520 0.020*
H21B 0.595578 0.836590 0.401641 0.020*
C22 0.59509 (11) 0.60097 (9) 0.41984 (8) 0.0232 (2)
H22A 0.514044 0.598390 0.390309 0.035*
H22B 0.575684 0.613336 0.483547 0.035*
H22C 0.640143 0.526714 0.427203 0.035*
C23 0.83068 (11) 0.98287 (10) 0.13041 (8) 0.0226 (2)
H23A 0.903529 0.973284 0.170656 0.034*
H23B 0.795553 1.061567 0.120902 0.034*
H23C 0.860766 0.972364 0.067464 0.034*
C24 0.60689 (10) 0.90425 (9) 0.12294 (8) 0.0196 (2)
H24A 0.633618 0.901436 0.057087 0.029*
H24B 0.565364 0.979148 0.120183 0.029*
H24C 0.545396 0.839795 0.154879 0.029*
C25 1.02532 (10) 0.73291 (9) 0.34016 (7) 0.01695 (19)
C26 1.13437 (9) 0.66492 (8) 0.30582 (7) 0.01591 (19)
C27 1.09366 (9) 0.63078 (9) 0.21756 (7) 0.0179 (2)
H27A 1.021396 0.572587 0.238381 0.022*
H27B 1.062981 0.700902 0.169665 0.022*
C28 1.31372 (10) 0.65704 (9) 0.14491 (7) 0.0171 (2)
C29 1.25393 (10) 0.74666 (9) 0.27107 (8) 0.0182 (2)
H29A 1.229428 0.820862 0.224740 0.022*
H29B 1.287269 0.765368 0.326907 0.022*
C30 1.16462 (10) 0.55598 (9) 0.38751 (8) 0.0207 (2)
H30A 1.190672 0.580001 0.442426 0.031*
H30B 1.235311 0.513214 0.364143 0.031*
H30C 1.087204 0.505140 0.408148 0.031*
C31 1.29214 (11) 0.76289 (10) 0.05887 (8) 0.0236 (2)
H31A 1.221283 0.809470 0.077099 0.035*
H31B 1.269615 0.736065 0.004421 0.035*
H31C 1.371653 0.811087 0.039866 0.035*
C32 1.42178 (10) 0.58090 (9) 0.12077 (8) 0.0211 (2)
H32A 1.501898 0.627907 0.099325 0.032*
H32B 1.398129 0.549594 0.068966 0.032*
H32C 1.435184 0.515969 0.178409 0.032*

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0127 (3) 0.0173 (3) 0.0257 (4) 0.0006 (3) −0.0049 (3) −0.0074 (3)
O2 0.0246 (4) 0.0174 (4) 0.0347 (4) 0.0021 (3) −0.0099 (3) −0.0105 (3)
O3 0.0121 (3) 0.0186 (3) 0.0166 (3) 0.0000 (3) −0.0012 (2) −0.0071 (3)
O4 0.0146 (3) 0.0178 (3) 0.0248 (4) 0.0030 (3) −0.0044 (3) −0.0107 (3)
O5 0.0211 (4) 0.0332 (4) 0.0234 (4) 0.0008 (3) −0.0028 (3) −0.0138 (3)
O6 0.0183 (3) 0.0160 (3) 0.0203 (3) 0.0012 (3) −0.0070 (3) −0.0066 (3)
O7 0.0213 (4) 0.0127 (3) 0.0178 (3) 0.0020 (3) −0.0047 (3) −0.0049 (3)
C1 0.0139 (4) 0.0172 (5) 0.0162 (4) 0.0006 (4) −0.0013 (3) −0.0041 (4)
C2 0.0124 (4) 0.0144 (4) 0.0178 (4) 0.0000 (3) −0.0021 (3) −0.0049 (3)
C3 0.0124 (4) 0.0200 (5) 0.0231 (5) 0.0012 (4) −0.0020 (4) −0.0103 (4)
C4 0.0140 (4) 0.0162 (4) 0.0166 (4) 0.0011 (3) −0.0008 (3) −0.0060 (4)
C5 0.0141 (4) 0.0160 (4) 0.0186 (4) 0.0017 (3) −0.0034 (3) −0.0073 (4)
C6 0.0196 (5) 0.0176 (5) 0.0207 (5) −0.0032 (4) −0.0043 (4) −0.0011 (4)
C7 0.0183 (5) 0.0199 (5) 0.0226 (5) −0.0022 (4) −0.0039 (4) −0.0082 (4)
C8 0.0240 (5) 0.0211 (5) 0.0172 (5) −0.0030 (4) 0.0005 (4) −0.0034 (4)
C9 0.0146 (4) 0.0161 (4) 0.0189 (5) −0.0009 (4) −0.0035 (3) −0.0036 (4)
C10 0.0127 (4) 0.0143 (4) 0.0177 (4) 0.0005 (3) −0.0037 (3) −0.0037 (3)
C11 0.0168 (4) 0.0131 (4) 0.0204 (5) 0.0015 (3) −0.0031 (4) −0.0057 (4)
C12 0.0200 (5) 0.0147 (4) 0.0168 (4) 0.0030 (4) −0.0042 (4) −0.0047 (4)
C13 0.0158 (4) 0.0154 (4) 0.0179 (4) −0.0013 (4) −0.0054 (4) −0.0032 (4)
C14 0.0179 (5) 0.0202 (5) 0.0244 (5) 0.0031 (4) −0.0052 (4) 0.0005 (4)
C15 0.0323 (6) 0.0230 (5) 0.0254 (5) 0.0106 (5) −0.0115 (5) −0.0051 (4)
C16 0.0236 (5) 0.0200 (5) 0.0195 (5) 0.0001 (4) 0.0007 (4) −0.0038 (4)
O8 0.0130 (3) 0.0183 (3) 0.0265 (4) −0.0002 (3) −0.0001 (3) −0.0078 (3)
O9 0.0234 (4) 0.0331 (4) 0.0206 (4) 0.0007 (3) −0.0015 (3) −0.0110 (3)
O10 0.0210 (4) 0.0126 (3) 0.0167 (3) −0.0014 (3) −0.0006 (3) −0.0059 (3)
O11 0.0163 (3) 0.0159 (3) 0.0197 (3) −0.0001 (3) 0.0016 (3) −0.0068 (3)
O12 0.0233 (4) 0.0181 (4) 0.0319 (4) −0.0012 (3) 0.0012 (3) −0.0095 (3)
O13 0.0138 (3) 0.0179 (3) 0.0250 (4) −0.0027 (3) 0.0002 (3) −0.0088 (3)
O14 0.0134 (3) 0.0195 (4) 0.0215 (4) −0.0015 (3) −0.0020 (3) −0.0074 (3)
C17 0.0154 (4) 0.0160 (4) 0.0189 (5) 0.0000 (4) 0.0011 (4) −0.0034 (4)
C18 0.0132 (4) 0.0132 (4) 0.0192 (4) −0.0007 (3) 0.0007 (3) −0.0048 (3)
C19 0.0168 (5) 0.0128 (4) 0.0222 (5) −0.0005 (4) −0.0016 (4) −0.0075 (4)
C20 0.0181 (5) 0.0148 (4) 0.0163 (4) −0.0009 (4) −0.0008 (3) −0.0059 (3)
C21 0.0164 (5) 0.0157 (4) 0.0184 (5) 0.0009 (4) 0.0011 (4) −0.0051 (4)
C22 0.0207 (5) 0.0180 (5) 0.0267 (5) −0.0051 (4) 0.0016 (4) −0.0008 (4)
C23 0.0249 (5) 0.0215 (5) 0.0196 (5) −0.0082 (4) −0.0009 (4) −0.0031 (4)
C24 0.0204 (5) 0.0201 (5) 0.0198 (5) 0.0002 (4) −0.0045 (4) −0.0074 (4)
C25 0.0152 (4) 0.0184 (5) 0.0168 (4) −0.0007 (4) −0.0028 (3) −0.0039 (4)
C26 0.0136 (4) 0.0150 (4) 0.0190 (5) −0.0010 (3) −0.0023 (3) −0.0045 (4)
C27 0.0129 (4) 0.0200 (5) 0.0226 (5) −0.0009 (4) −0.0022 (4) −0.0086 (4)
C28 0.0158 (5) 0.0159 (5) 0.0192 (5) −0.0023 (4) −0.0022 (4) −0.0044 (4)
C29 0.0155 (5) 0.0172 (5) 0.0228 (5) −0.0024 (4) −0.0007 (4) −0.0074 (4)
C30 0.0188 (5) 0.0180 (5) 0.0229 (5) 0.0009 (4) −0.0033 (4) −0.0019 (4)
C31 0.0253 (5) 0.0213 (5) 0.0216 (5) 0.0008 (4) −0.0028 (4) −0.0020 (4)
C32 0.0171 (5) 0.0205 (5) 0.0254 (5) 0.0003 (4) 0.0005 (4) −0.0068 (4)

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Geometric parameters (Å, º)

O1—C1 1.3792 (12) O8—C25 1.3820 (13)
O1—C9 1.4041 (12) O8—C17 1.4073 (13)
O2—C1 1.1943 (13) O9—C17 1.1939 (13)
O3—C4 1.4304 (12) O10—C21 1.4321 (12)
O3—C5 1.4330 (12) O10—C20 1.4360 (12)
O4—C4 1.4251 (12) O11—C20 1.4274 (13)
O4—C3 1.4284 (12) O11—C19 1.4333 (12)
O5—C9 1.1946 (13) O12—C25 1.1942 (14)
O6—C12 1.4276 (13) O13—C28 1.4301 (12)
O6—C11 1.4314 (12) O13—C27 1.4318 (13)
O7—C13 1.4301 (12) O14—C28 1.4296 (13)
O7—C12 1.4331 (13) O14—C29 1.4341 (13)
C1—C2 1.5135 (14) C17—C18 1.5239 (15)
C2—C5 1.5336 (14) C18—C19 1.5264 (15)
C2—C6 1.5346 (14) C18—C21 1.5278 (14)
C2—C3 1.5482 (14) C18—C22 1.5378 (14)
C3—H3A 0.9900 C19—H19A 0.9900
C3—H3B 0.9900 C19—H19B 0.9900
C4—C7 1.5152 (14) C20—C23 1.5140 (14)
C4—C8 1.5293 (14) C20—C24 1.5290 (15)
C5—H5A 0.9900 C21—H21A 0.9900
C5—H5B 0.9900 C21—H21B 0.9900
C6—H6A 0.9800 C22—H22A 0.9800
C6—H6B 0.9800 C22—H22B 0.9800
C6—H6C 0.9800 C22—H22C 0.9800
C7—H7A 0.9800 C23—H23A 0.9800
C7—H7B 0.9800 C23—H23B 0.9800
C7—H7C 0.9800 C23—H23C 0.9800
C8—H8A 0.9800 C24—H24A 0.9800
C8—H8B 0.9800 C24—H24B 0.9800
C8—H8C 0.9800 C24—H24C 0.9800
C9—C10 1.5273 (15) C25—C26 1.5163 (14)
C10—C11 1.5259 (14) C26—C30 1.5346 (14)
C10—C13 1.5312 (14) C26—C29 1.5369 (14)
C10—C14 1.5368 (14) C26—C27 1.5432 (15)
C11—H11A 0.9900 C27—H27A 0.9900
C11—H11B 0.9900 C27—H27B 0.9900
C12—C15 1.5112 (14) C28—C32 1.5154 (15)
C12—C16 1.5281 (15) C28—C31 1.5264 (15)
C13—H13A 0.9900 C29—H29A 0.9900
C13—H13B 0.9900 C29—H29B 0.9900
C14—H14A 0.9800 C30—H30A 0.9800
C14—H14B 0.9800 C30—H30B 0.9800
C14—H14C 0.9800 C30—H30C 0.9800
C15—H15A 0.9800 C31—H31A 0.9800
C15—H15B 0.9800 C31—H31B 0.9800
C15—H15C 0.9800 C31—H31C 0.9800
C16—H16A 0.9800 C32—H32A 0.9800
C16—H16B 0.9800 C32—H32B 0.9800
C16—H16C 0.9800 C32—H32C 0.9800
C1—O1—C9 118.80 (8) C25—O8—C17 118.48 (8)
C4—O3—C5 113.91 (7) C21—O10—C20 114.29 (7)
C4—O4—C3 114.18 (8) C20—O11—C19 114.15 (8)
C12—O6—C11 113.64 (8) C28—O13—C27 114.50 (8)
C13—O7—C12 114.10 (8) C28—O14—C29 114.37 (8)
O2—C1—O1 123.18 (9) O9—C17—O8 121.02 (9)
O2—C1—C2 126.81 (9) O9—C17—C18 125.63 (9)
O1—C1—C2 109.90 (8) O8—C17—C18 113.21 (9)
C1—C2—C5 108.49 (8) C17—C18—C19 112.87 (8)
C1—C2—C6 111.34 (8) C17—C18—C21 106.98 (8)
C5—C2—C6 110.85 (8) C19—C18—C21 106.97 (8)
C1—C2—C3 107.78 (8) C17—C18—C22 108.84 (9)
C5—C2—C3 107.70 (8) C19—C18—C22 110.24 (8)
C6—C2—C3 110.56 (9) C21—C18—C22 110.90 (9)
O4—C3—C2 109.92 (8) O11—C19—C18 111.17 (8)
O4—C3—H3A 109.7 O11—C19—H19A 109.4
C2—C3—H3A 109.7 C18—C19—H19A 109.4
O4—C3—H3B 109.7 O11—C19—H19B 109.4
C2—C3—H3B 109.7 C18—C19—H19B 109.4
H3A—C3—H3B 108.2 H19A—C19—H19B 108.0
O4—C4—O3 110.43 (8) O11—C20—O10 110.54 (8)
O4—C4—C7 105.51 (8) O11—C20—C23 105.06 (9)
O3—C4—C7 105.46 (8) O10—C20—C23 105.60 (8)
O4—C4—C8 111.28 (8) O11—C20—C24 111.92 (8)
O3—C4—C8 111.84 (8) O10—C20—C24 110.91 (8)
C7—C4—C8 112.00 (9) C23—C20—C24 112.51 (9)
O3—C5—C2 109.66 (8) O10—C21—C18 109.60 (8)
O3—C5—H5A 109.7 O10—C21—H21A 109.7
C2—C5—H5A 109.7 C18—C21—H21A 109.7
O3—C5—H5B 109.7 O10—C21—H21B 109.7
C2—C5—H5B 109.7 C18—C21—H21B 109.7
H5A—C5—H5B 108.2 H21A—C21—H21B 108.2
C2—C6—H6A 109.5 C18—C22—H22A 109.5
C2—C6—H6B 109.5 C18—C22—H22B 109.5
H6A—C6—H6B 109.5 H22A—C22—H22B 109.5
C2—C6—H6C 109.5 C18—C22—H22C 109.5
H6A—C6—H6C 109.5 H22A—C22—H22C 109.5
H6B—C6—H6C 109.5 H22B—C22—H22C 109.5
C4—C7—H7A 109.5 C20—C23—H23A 109.5
C4—C7—H7B 109.5 C20—C23—H23B 109.5
H7A—C7—H7B 109.5 H23A—C23—H23B 109.5
C4—C7—H7C 109.5 C20—C23—H23C 109.5
H7A—C7—H7C 109.5 H23A—C23—H23C 109.5
H7B—C7—H7C 109.5 H23B—C23—H23C 109.5
C4—C8—H8A 109.5 C20—C24—H24A 109.5
C4—C8—H8B 109.5 C20—C24—H24B 109.5
H8A—C8—H8B 109.5 H24A—C24—H24B 109.5
C4—C8—H8C 109.5 C20—C24—H24C 109.5
H8A—C8—H8C 109.5 H24A—C24—H24C 109.5
H8B—C8—H8C 109.5 H24B—C24—H24C 109.5
O5—C9—O1 120.96 (9) O12—C25—O8 123.29 (9)
O5—C9—C10 125.75 (9) O12—C25—C26 126.46 (9)
O1—C9—C10 113.15 (9) O8—C25—C26 110.18 (9)
C11—C10—C9 113.22 (8) C25—C26—C30 110.55 (8)
C11—C10—C13 107.29 (8) C25—C26—C29 108.29 (8)
C9—C10—C13 107.24 (8) C30—C26—C29 111.02 (9)
C11—C10—C14 109.60 (9) C25—C26—C27 108.45 (8)
C9—C10—C14 109.05 (8) C30—C26—C27 111.08 (9)
C13—C10—C14 110.40 (8) C29—C26—C27 107.34 (8)
O6—C11—C10 111.08 (8) O13—C27—C26 110.17 (8)
O6—C11—H11A 109.4 O13—C27—H27A 109.6
C10—C11—H11A 109.4 C26—C27—H27A 109.6
O6—C11—H11B 109.4 O13—C27—H27B 109.6
C10—C11—H11B 109.4 C26—C27—H27B 109.6
H11A—C11—H11B 108.0 H27A—C27—H27B 108.1
O6—C12—O7 110.23 (8) O14—C28—O13 110.38 (8)
O6—C12—C15 105.58 (9) O14—C28—C32 105.13 (8)
O7—C12—C15 105.40 (8) O13—C28—C32 105.60 (8)
O6—C12—C16 111.80 (8) O14—C28—C31 111.89 (9)
O7—C12—C16 111.59 (9) O13—C28—C31 111.58 (9)
C15—C12—C16 111.91 (9) C32—C28—C31 111.90 (9)
O7—C13—C10 110.12 (8) O14—C29—C26 109.88 (8)
O7—C13—H13A 109.6 O14—C29—H29A 109.7
C10—C13—H13A 109.6 C26—C29—H29A 109.7
O7—C13—H13B 109.6 O14—C29—H29B 109.7
C10—C13—H13B 109.6 C26—C29—H29B 109.7
H13A—C13—H13B 108.2 H29A—C29—H29B 108.2
C10—C14—H14A 109.5 C26—C30—H30A 109.5
C10—C14—H14B 109.5 C26—C30—H30B 109.5
H14A—C14—H14B 109.5 H30A—C30—H30B 109.5
C10—C14—H14C 109.5 C26—C30—H30C 109.5
H14A—C14—H14C 109.5 H30A—C30—H30C 109.5
H14B—C14—H14C 109.5 H30B—C30—H30C 109.5
C12—C15—H15A 109.5 C28—C31—H31A 109.5
C12—C15—H15B 109.5 C28—C31—H31B 109.5
H15A—C15—H15B 109.5 H31A—C31—H31B 109.5
C12—C15—H15C 109.5 C28—C31—H31C 109.5
H15A—C15—H15C 109.5 H31A—C31—H31C 109.5
H15B—C15—H15C 109.5 H31B—C31—H31C 109.5
C12—C16—H16A 109.5 C28—C32—H32A 109.5
C12—C16—H16B 109.5 C28—C32—H32B 109.5
H16A—C16—H16B 109.5 H32A—C32—H32B 109.5
C12—C16—H16C 109.5 C28—C32—H32C 109.5
H16A—C16—H16C 109.5 H32A—C32—H32C 109.5
H16B—C16—H16C 109.5 H32B—C32—H32C 109.5
C9—O1—C1—O2 3.46 (14) C25—O8—C17—O9 −55.71 (13)
C9—O1—C1—C2 −179.97 (8) C25—O8—C17—C18 128.37 (9)
O2—C1—C2—C5 −3.88 (14) O9—C17—C18—C19 164.90 (10)
O1—C1—C2—C5 179.70 (7) O8—C17—C18—C19 −19.41 (11)
O2—C1—C2—C6 −126.13 (11) O9—C17—C18—C21 47.51 (13)
O1—C1—C2—C6 57.46 (10) O8—C17—C18—C21 −136.79 (8)
O2—C1—C2—C3 112.47 (11) O9—C17—C18—C22 −72.37 (13)
O1—C1—C2—C3 −63.95 (10) O8—C17—C18—C22 103.33 (10)
C4—O4—C3—C2 56.70 (10) C20—O11—C19—C18 −55.78 (11)
C1—C2—C3—O4 −171.01 (8) C17—C18—C19—O11 −62.23 (11)
C5—C2—C3—O4 −54.14 (10) C21—C18—C19—O11 55.16 (10)
C6—C2—C3—O4 67.10 (10) C22—C18—C19—O11 175.83 (8)
C3—O4—C4—O3 −56.64 (10) C19—O11—C20—O10 53.54 (10)
C3—O4—C4—C7 −170.13 (8) C19—O11—C20—C23 167.00 (8)
C3—O4—C4—C8 68.19 (11) C19—O11—C20—C24 −70.62 (11)
C5—O3—C4—O4 57.13 (10) C21—O10—C20—O11 −55.42 (11)
C5—O3—C4—C7 170.65 (8) C21—O10—C20—C23 −168.54 (8)
C5—O3—C4—C8 −67.37 (10) C21—O10—C20—C24 69.31 (10)
C4—O3—C5—C2 −57.84 (10) C20—O10—C21—C18 58.32 (10)
C1—C2—C5—O3 170.98 (7) C17—C18—C21—O10 65.26 (10)
C6—C2—C5—O3 −66.48 (10) C19—C18—C21—O10 −55.93 (10)
C3—C2—C5—O3 54.57 (10) C22—C18—C21—O10 −176.18 (8)
C1—O1—C9—O5 57.23 (13) C17—O8—C25—O12 −5.51 (15)
C1—O1—C9—C10 −126.81 (9) C17—O8—C25—C26 177.25 (8)
O5—C9—C10—C11 −168.32 (10) O12—C25—C26—C30 121.38 (11)
O1—C9—C10—C11 15.95 (11) O8—C25—C26—C30 −61.49 (11)
O5—C9—C10—C13 −50.17 (13) O12—C25—C26—C29 −0.44 (14)
O1—C9—C10—C13 134.10 (8) O8—C25—C26—C29 176.69 (8)
O5—C9—C10—C14 69.39 (13) O12—C25—C26—C27 −116.62 (11)
O1—C9—C10—C14 −106.34 (10) O8—C25—C26—C27 60.51 (10)
C12—O6—C11—C10 56.87 (11) C28—O13—C27—C26 −56.55 (11)
C9—C10—C11—O6 63.78 (10) C25—C26—C27—O13 171.20 (8)
C13—C10—C11—O6 −54.34 (10) C30—C26—C27—O13 −67.12 (10)
C14—C10—C11—O6 −174.23 (8) C29—C26—C27—O13 54.41 (10)
C11—O6—C12—O7 −55.71 (10) C29—O14—C28—O13 −55.94 (10)
C11—O6—C12—C15 −169.06 (8) C29—O14—C28—C32 −169.37 (8)
C11—O6—C12—C16 69.02 (11) C29—O14—C28—C31 68.96 (11)
C13—O7—C12—O6 56.53 (11) C27—O13—C28—O14 55.42 (10)
C13—O7—C12—C15 170.01 (8) C27—O13—C28—C32 168.54 (8)
C13—O7—C12—C16 −68.31 (10) C27—O13—C28—C31 −69.66 (11)
C12—O7—C13—C10 −57.49 (11) C28—O14—C29—C26 57.59 (10)
C11—C10—C13—O7 54.30 (10) C25—C26—C29—O14 −171.68 (8)
C9—C10—C13—O7 −67.63 (10) C30—C26—C29—O14 66.78 (11)
C14—C10—C13—O7 173.69 (8) C27—C26—C29—O14 −54.79 (10)

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3B···O10i 0.99 2.54 3.5043 (16) 164
C5—H5A···O9ii 0.99 2.54 3.4723 (18) 156
C11—H11B···O10i 0.99 2.57 3.5152 (17) 161
C14—H14A···O12iii 0.98 2.56 3.531 (2) 171
C16—H16C···O3iv 0.98 2.53 3.4973 (16) 170
C19—H19A···O7 0.99 2.53 3.5095 (17) 168
C27—H27A···O7 0.99 2.52 3.5035 (16) 170

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x+1, y, z.

Funding Statement

This work was funded by American Chemical Society Petroleum Research Fund grant 53890-ND7 to J. A. Giesen.

References

  1. Andrén, O. C. J., Fernandes, A. P. & Malkoch, M. (2017). J. Am. Chem. Soc. 139, 17660–17666. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.
  4. Buhleier, E., Wehner, W. & Vögtle, F. (1978). Synthesis, 155–158.
  5. Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.
  6. Gao, M., Wang, Y.-C., Yang, K.-R., He, W., Yang, X.-L. & Yao, Z.-J. (2018). Angew. Chem. Int. Ed. 57, 13313–13318. [DOI] [PubMed]
  7. García-Gallego, S., Hult, D., Olsson, J. V. & Malkoch, M. (2015). Angew. Chem. Int. Ed. 54, 2416–2419. [DOI] [PubMed]
  8. Garmendia, S., Mantione, D., Alonso-de Castro, S., Jehanno, C., Lezama, L., Hedrick, J. L., Mecerreyes, D., Salassa, L. & Sardon, H. (2017). Polym. Chem. 8, 2693–2701.
  9. Giesen, J. A., Diament, B. J. & Grayson, S. M. (2018). J. Am. Soc. Mass Spectrom. 29, 490–500. [DOI] [PubMed]
  10. Gillies, E. R. & Fréchet, J. M. J. (2002). J. Am. Chem. Soc. 124, 14137–14146. [DOI] [PubMed]
  11. Grayson, S. M., Myers, B. K., Bengtsson, J. & Malkoch, M. (2014). J. Am. Soc. Mass Spectrom. 25, 303–309. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hawker, C. J. & Fréchet, J. M. J. (1992). J. Am. Chem. Soc. 114, 8405–8413.
  14. Ihre, H., Hult, A., Fréchet, J. M. J. & Gitsov, I. (1998). Macromolecules, 31, 4061–4068.
  15. Ihre, H., Hult, A. & Söderlind, E. (1996b). J. Am. Chem. Soc. 118, 6388–6395.
  16. Ihre, H., Johansson, M., Malmström, E. & Hult, A. (1996a). Adv. Dendritic Macromol 3, 1–25.
  17. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  18. Malkoch, M., Malmström, E. & Hult, A. (2002). Macromolecules, 35, 8307–8314.
  19. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Simmons, T. R., Pickett, C. J. & Wright, J. A. (2011). Acta Cryst. C67, o1–o5. [DOI] [PubMed]
  23. Stenström, P., Andrén, O. C. J. & Malkoch, M. (2016). Molecules, 21, 366, https://doi.org/10.3390/molecules21030366. [DOI] [PMC free article] [PubMed]
  24. Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J. & Smith, P. (1985). Polym. J. 17, 117–132.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989019016670/hb7867sup1.cif

e-76-00086-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019016670/hb7867Isup2.hkl

e-76-00086-Isup2.hkl (190.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019016670/hb7867IIsup3.hkl

e-76-00086-IIsup3.hkl (683.1KB, hkl)

13C and 1H NMR spectra. DOI: 10.1107/S2056989019016670/hb7867sup4.docx

CCDC references: 1971440, 1971439

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES