Skip to main content
Springer logoLink to Springer
. 2017 Dec 15;77(12):872. doi: 10.1140/epjc/s10052-017-5442-0

Determination of the strong coupling constant αs from transverse energy–energy correlations in multijet events at s=8TeV using the ATLAS detector

M Aaboud 180, G Aad 115, B Abbott 144, J Abdallah 10, O Abdinov 14, B Abeloos 148, S H Abidi 209, O S AbouZeid 183, N L Abraham 199, H Abramowicz 203, H Abreu 202, R Abreu 147, Y Abulaiti 195,196, B S Acharya 217,218, S Adachi 205, L Adamczyk 61, J Adelman 139, M Adersberger 130, T Adye 170, A A Affolder 183, T Agatonovic-Jovin 16, C Agheorghiesei 39, J A Aguilar-Saavedra 159,164, S P Ahlen 30, F Ahmadov 94, G Aielli 173,174, S Akatsuka 97, H Akerstedt 195,196, T P A Åkesson 111, E Akilli 73, A V Akimov 126, G L Alberghi 27,28, J Albert 224, P Albicocco 71, M J Alconada Verzini 100, M Aleksa 46, I N Aleksandrov 94, C Alexa 38, G Alexander 203, T Alexopoulos 12, M Alhroob 144, B Ali 167, M Aliev 102,103, G Alimonti 121, J Alison 47, S P Alkire 57, B M M Allbrooke 199, B W Allen 147, P P Allport 21, A Aloisio 134,135, A Alonso 58, F Alonso 100, C Alpigiani 184, A A Alshehri 79, M I Alstaty 115, B Alvarez Gonzalez 46, D Álvarez Piqueras 222, M G Alviggi 134,135, B T Amadio 18, Y Amaral Coutinho 32, C Amelung 31, D Amidei 119, S P Amor Dos Santos 159,161, A Amorim 159,160, S Amoroso 46, G Amundsen 31, C Anastopoulos 185, L S Ancu 73, N Andari 21, T Andeen 13, C F Anders 84, J K Anders 104, K J Anderson 47, A Andreazza 121,122, V Andrei 83, S Angelidakis 11, I Angelozzi 138, A Angerami 57, A V Anisenkov 140, N Anjos 15, A Annovi 156,157, C Antel 83, M Antonelli 71, A Antonov 128, D J Antrim 216, F Anulli 171, M Aoki 95, L Aperio Bella 46, G Arabidze 120, Y Arai 95, J P Araque 159, V Araujo Ferraz 32, A T H Arce 69, R E Ardell 107, F A Arduh 100, J-F Arguin 125, S Argyropoulos 92, M Arik 22, A J Armbruster 46, L J Armitage 106, O Arnaez 209, H Arnold 72, M Arratia 44, O Arslan 29, A Artamonov 127, G Artoni 151, S Artz 113, S Asai 205, N Asbah 66, A Ashkenazi 203, L Asquith 199, K Assamagan 36, R Astalos 190, M Atkinson 221, N B Atlay 187, K Augsten 167, G Avolio 46, B Axen 18, M K Ayoub 148, G Azuelos 125, A E Baas 83, M J Baca 21, H Bachacou 182, K Bachas 102,103, M Backes 151, M Backhaus 46, P Bagnaia 171,172, H Bahrasemani 188, J T Baines 170, M Bajic 58, O K Baker 231, E M Baldin 140, P Balek 227, F Balli 182, W K Balunas 154, E Banas 63, Sw Banerjee 228, A A E Bannoura 230, L Barak 46, E L Barberio 118, D Barberis 74,75, M Barbero 115, T Barillari 131, M-S Barisits 46, J T Barkeloo 147, T Barklow 189, N Barlow 44, S L Barnes 55, B M Barnett 170, R M Barnett 18, Z Barnovska-Blenessy 53, A Baroncelli 175, G Barone 31, A J Barr 151, L Barranco Navarro 222, F Barreiro 112, J Barreiro Guimarães da Costa 50, R Bartoldus 189, A E Barton 101, P Bartos 190, A Basalaev 155, A Bassalat 148, R L Bates 79, S J Batista 209, J R Batley 44, M Battaglia 183, M Bauce 171,172, F Bauer 182, H S Bawa 189, J B Beacham 142, M D Beattie 101, T Beau 110, P H Beauchemin 215, P Bechtle 29, H P Beck 20, K Becker 151, M Becker 113, M Beckingham 225, C Becot 141, AJ Beddall 25, A Beddall 23, V A Bednyakov 94, M Bedognetti 138, C P Bee 198, T A Beermann 46, M Begalli 32, M Begel 36, J K Behr 66, A S Bell 108, G Bella 203, L Bellagamba 27, A Bellerive 45, M Bellomo 202, K Belotskiy 128, O Beltramello 46, N L Belyaev 128, O Benary 203, D Benchekroun 177, M Bender 130, K Bendtz 195,196, N Benekos 12, Y Benhammou 203, E Benhar Noccioli 231, J Benitez 92, D P Benjamin 69, M Benoit 73, J R Bensinger 31, S Bentvelsen 138, L Beresford 151, M Beretta 71, D Berge 138, E Bergeaas Kuutmann 220, N Berger 7, J Beringer 18, S Berlendis 81, N R Bernard 116, G Bernardi 110, C Bernius 189, F U Bernlochner 29, T Berry 107, P Berta 168, C Bertella 50, G Bertoli 195,196, F Bertolucci 156,157, I A Bertram 101, C Bertsche 66, D Bertsche 144, G J Besjes 58, O Bessidskaia Bylund 195,196, M Bessner 66, N Besson 182, C Betancourt 72, A Bethani 114, S Bethke 131, A J Bevan 106, J Beyer 131, R M Bianchi 158, O Biebel 130, D Biedermann 19, R Bielski 114, N V Biesuz 156,157, M Biglietti 175, J Bilbao De Mendizabal 73, T R V Billoud 125, H Bilokon 71, M Bindi 80, A Bingul 23, C Bini 171,172, S Biondi 27,28, T Bisanz 80, C Bittrich 68, D M Bjergaard 69, C W Black 200, J E Black 189, K M Black 30, R E Blair 8, T Blazek 190, I Bloch 66, C Blocker 31, A Blue 79, W Blum 113, U Blumenschein 106, S Blunier 48, G J Bobbink 138, V S Bobrovnikov 140, S S Bocchetta 111, A Bocci 69, C Bock 130, M Boehler 72, D Boerner 230, D Bogavac 130, A G Bogdanchikov 140, C Bohm 195, V Boisvert 107, P Bokan 220, T Bold 61, A S Boldyrev 129, A E Bolz 84, M Bomben 110, M Bona 106, M Boonekamp 182, A Borisov 169, G Borissov 101, J Bortfeldt 46, D Bortoletto 151, V Bortolotto 86,87,88, D Boscherini 27, M Bosman 15, J D Bossio Sola 43, J Boudreau 158, J Bouffard 2, E V Bouhova-Thacker 101, D Boumediene 56, C Bourdarios 148, S K Boutle 79, A Boveia 142, J Boyd 46, I R Boyko 94, J Bracinik 21, A Brandt 10, G Brandt 80, O Brandt 83, U Bratzler 206, B Brau 116, J E Brau 147, W D Breaden Madden 79, K Brendlinger 66, A J Brennan 118, L Brenner 138, R Brenner 220, S Bressler 227, D L Briglin 21, T M Bristow 70, D Britton 79, D Britzger 66, F M Brochu 44, I Brock 29, R Brock 120, G Brooijmans 57, T Brooks 107, W K Brooks 49, J Brosamer 18, E Brost 139, J H Broughton 21, P A Bruckman de Renstrom 63, D Bruncko 191, A Bruni 27, G Bruni 27, L S Bruni 138, BH Brunt 44, M Bruschi 27, N Bruscino 29, P Bryant 47, L Bryngemark 66, T Buanes 17, Q Buat 188, P Buchholz 187, A G Buckley 79, I A Budagov 94, F Buehrer 72, M K Bugge 150, O Bulekov 128, D Bullock 10, T J Burch 139, S Burdin 104, C D Burgard 72, A M Burger 7, B Burghgrave 139, K Burka 63, S Burke 170, I Burmeister 67, J T P Burr 151, E Busato 56, D Büscher 72, V Büscher 113, P Bussey 79, J M Butler 30, C M Buttar 79, J M Butterworth 108, P Butti 46, W Buttinger 36, A Buzatu 52, A R Buzykaev 140, S Cabrera Urbán 222, D Caforio 167, V M Cairo 59,60, O Cakir 4, N Calace 73, P Calafiura 18, A Calandri 115, G Calderini 110, P Calfayan 90, G Callea 59,60, L P Caloba 32, S Calvente Lopez 112, D Calvet 56, S Calvet 56, T P Calvet 115, R Camacho Toro 47, S Camarda 46, P Camarri 173,174, D Cameron 150, R Caminal Armadans 221, C Camincher 81, S Campana 46, M Campanelli 108, A Camplani 121,122, A Campoverde 187, V Canale 134,135, M Cano Bret 55, J Cantero 145, T Cao 203, M D M Capeans Garrido 46, I Caprini 38, M Caprini 38, M Capua 59,60, R M Carbone 57, R Cardarelli 173, F Cardillo 72, I Carli 168, T Carli 46, G Carlino 134, B T Carlson 158, L Carminati 121,122, R M D Carney 195,196, S Caron 137, E Carquin 49, S Carrá 121,122, G D Carrillo-Montoya 46, J Carvalho 159,161, D Casadei 21, M P Casado 15, M Casolino 15, D W Casper 216, R Castelijn 138, V Castillo Gimenez 222, N F Castro 159, A Catinaccio 46, J R Catmore 150, A Cattai 46, J Caudron 29, V Cavaliere 221, E Cavallaro 15, D Cavalli 121, M Cavalli-Sforza 15, V Cavasinni 156,157, E Celebi 22, F Ceradini 175,176, L Cerda Alberich 222, A S Cerqueira 33, A Cerri 199, L Cerrito 173,174, F Cerutti 18, A Cervelli 20, SA Cetin 24, A Chafaq 177, D Chakraborty 139, S K Chan 82, W S Chan 138, Y L Chan 86, P Chang 221, J D Chapman 44, D G Charlton 21, C C Chau 209, C A Chavez Barajas 199, S Che 142, S Cheatham 217,219, A Chegwidden 120, S Chekanov 8, S V Chekulaev 212, G A Chelkov 94, M A Chelstowska 46, C Chen 93, H Chen 36, S Chen 51, S Chen 205, X Chen 52, Y Chen 96, H C Cheng 119, H J Cheng 50, A Cheplakov 94, E Cheremushkina 169, R Cherkaoui El Moursli 181, V Chernyatin 36, E Cheu 9, K Cheung 89, L Chevalier 182, V Chiarella 71, G Chiarelli 156,157, G Chiodini 102, A S Chisholm 46, A Chitan 38, Y H Chiu 224, M V Chizhov 94, K Choi 90, A R Chomont 56, S Chouridou 204, V Christodoulou 108, D Chromek-Burckhart 46, M C Chu 86, J Chudoba 166, A J Chuinard 117, J J Chwastowski 63, L Chytka 146, A K Ciftci 4, D Cinca 67, V Cindro 105, I A Cioara 29, C Ciocca 27,28, A Ciocio 18, F Cirotto 134,135, Z H Citron 227, M Citterio 121, M Ciubancan 38, A Clark 73, B L Clark 82, M R Clark 57, P J Clark 70, R N Clarke 18, C Clement 195,196, Y Coadou 115, M Cobal 217,219, A Coccaro 73, J Cochran 93, L Colasurdo 137, B Cole 57, A P Colijn 138, J Collot 81, T Colombo 216, P Conde Muiño 159,160, E Coniavitis 72, S H Connell 193, I A Connelly 114, S Constantinescu 38, G Conti 46, F Conventi 134, M Cooke 18, A M Cooper-Sarkar 151, F Cormier 223, K J R Cormier 209, M Corradi 171,172, F Corriveau 117, A Cortes-Gonzalez 46, G Cortiana 131, G Costa 121, M J Costa 222, D Costanzo 185, G Cottin 44, G Cowan 107, B E Cox 114, K Cranmer 141, S J Crawley 79, R A Creager 154, G Cree 45, S Crépé-Renaudin 81, F Crescioli 110, W A Cribbs 195,196, M Cristinziani 29, V Croft 137, G Crosetti 59,60, A Cueto 112, T Cuhadar Donszelmann 185, A R Cukierman 189, J Cummings 231, M Curatolo 71, J Cúth 113, H Czirr 187, P Czodrowski 46, G D’amen 27,28, S D’Auria 79, L D’eramo 110, M D’Onofrio 104, M J Da Cunha Sargedas De Sousa 159,160, C Da Via 114, W Dabrowski 61, T Dado 190, T Dai 119, O Dale 17, F Dallaire 125, C Dallapiccola 116, M Dam 58, J R Dandoy 154, M F Daneri 43, N P Dang 228, A C Daniells 21, N S Dann 114, M Danninger 223, M Dano Hoffmann 182, V Dao 198, G Darbo 74, S Darmora 10, J Dassoulas 3, A Dattagupta 147, T Daubney 66, W Davey 29, C David 66, T Davidek 168, M Davies 203, D R Davis 69, P Davison 108, E Dawe 118, I Dawson 185, K De 10, R de Asmundis 134, A De Benedetti 144, S De Castro 27,28, S De Cecco 110, N De Groot 137, P de Jong 138, H De la Torre 120, F De Lorenzi 93, A De Maria 80, D De Pedis 171, A De Salvo 171, U De Sanctis 173,174, A De Santo 199, K De Vasconcelos Corga 115, J B De Vivie De Regie 148, W J Dearnaley 101, R Debbe 36, C Debenedetti 183, D V Dedovich 94, N Dehghanian 3, I Deigaard 138, M Del Gaudio 59,60, J Del Peso 112, T Del Prete 156,157, D Delgove 148, F Deliot 182, C M Delitzsch 73, A Dell’Acqua 46, L Dell’Asta 30, M Dell’Orso 156,157, M Della Pietra 134,135, D della Volpe 73, M Delmastro 7, C Delporte 148, P A Delsart 81, D A DeMarco 209, S Demers 231, M Demichev 94, A Demilly 110, S P Denisov 169, D Denysiuk 182, D Derendarz 63, J E Derkaoui 180, F Derue 110, P Dervan 104, K Desch 29, C Deterre 66, K Dette 67, M R Devesa 43, P O Deviveiros 46, A Dewhurst 170, S Dhaliwal 31, F A Di Bello 73, A Di Ciaccio 173,174, L Di Ciaccio 7, W K Di Clemente 154, C Di Donato 134,135, A Di Girolamo 46, B Di Girolamo 46, B Di Micco 175,176, R Di Nardo 46, K F Di Petrillo 82, A Di Simone 72, R Di Sipio 209, D Di Valentino 45, C Diaconu 115, M Diamond 209, F A Dias 58, M A Diaz 48, E B Diehl 119, J Dietrich 19, S Díez Cornell 66, A Dimitrievska 16, J Dingfelder 29, P Dita 38, S Dita 38, F Dittus 46, F Djama 115, T Djobava 77, J I Djuvsland 83, M A B do Vale 34, D Dobos 46, M Dobre 38, C Doglioni 111, J Dolejsi 168, Z Dolezal 168, M Donadelli 35, S Donati 156,157, P Dondero 152,153, J Donini 56, J Dopke 170, A Doria 134, M T Dova 100, A T Doyle 79, E Drechsler 80, M Dris 12, Y Du 54, J Duarte-Campderros 203, A Dubreuil 73, E Duchovni 227, G Duckeck 130, A Ducourthial 110, O A Ducu 125, D Duda 138, A Dudarev 46, A Chr Dudder 113, E M Duffield 18, L Duflot 148, M Dührssen 46, M Dumancic 227, A E Dumitriu 38, A K Duncan 79, M Dunford 83, H Duran Yildiz 4, M Düren 78, A Durglishvili 77, D Duschinger 68, B Dutta 66, M Dyndal 66, B S Dziedzic 63, C Eckardt 66, K M Ecker 131, R C Edgar 119, T Eifert 46, G Eigen 17, K Einsweiler 18, T Ekelof 220, M El Kacimi 179, R El Kosseifi 115, V Ellajosyula 115, M Ellert 220, S Elles 7, F Ellinghaus 230, A A Elliot 224, N Ellis 46, J Elmsheuser 36, M Elsing 46, D Emeliyanov 170, Y Enari 205, O C Endner 113, J S Ennis 225, J Erdmann 67, A Ereditato 20, G Ernis 230, M Ernst 36, S Errede 221, M Escalier 148, C Escobar 222, B Esposito 71, O Estrada Pastor 222, A I Etienvre 182, E Etzion 203, H Evans 90, A Ezhilov 155, M Ezzi 181, F Fabbri 27,28, L Fabbri 27,28, V Fabiani 137, G Facini 47, R M Fakhrutdinov 169, S Falciano 171, R J Falla 108, J Faltova 46, Y Fang 50, M Fanti 121,122, A Farbin 10, A Farilla 175, C Farina 158, E M Farina 152,153, T Farooque 120, S Farrell 18, S M Farrington 225, P Farthouat 46, F Fassi 181, P Fassnacht 46, D Fassouliotis 11, M Faucci Giannelli 107, A Favareto 74,75, W J Fawcett 151, L Fayard 148, O L Fedin 155, W Fedorko 223, S Feigl 150, L Feligioni 115, C Feng 54, E J Feng 46, H Feng 119, M J Fenton 79, A B Fenyuk 169, L Feremenga 10, P Fernandez Martinez 222, S Fernandez Perez 15, J Ferrando 66, A Ferrari 220, P Ferrari 138, R Ferrari 152, D E Ferreira de Lima 84, A Ferrer 222, D Ferrere 73, C Ferretti 119, F Fiedler 113, A Filipčič 105, M Filipuzzi 66, F Filthaut 137, M Fincke-Keeler 224, K D Finelli 200, M C N Fiolhais 159,161, L Fiorini 222, A Fischer 2, C Fischer 15, J Fischer 230, W C Fisher 120, N Flaschel 66, I Fleck 187, P Fleischmann 119, R R M Fletcher 154, T Flick 230, B M Flierl 130, L R Flores Castillo 86, M J Flowerdew 131, G T Forcolin 114, A Formica 182, F A Förster 15, A Forti 114, A G Foster 21, D Fournier 148, H Fox 101, S Fracchia 185, P Francavilla 110, M Franchini 27,28, S Franchino 83, D Francis 46, L Franconi 150, M Franklin 82, M Frate 216, M Fraternali 152,153, D Freeborn 108, S M Fressard-Batraneanu 46, B Freund 125, D Froidevaux 46, J A Frost 151, C Fukunaga 206, T Fusayasu 132, J Fuster 222, C Gabaldon 81, O Gabizon 202, A Gabrielli 27,28, A Gabrielli 18, G P Gach 61, S Gadatsch 46, S Gadomski 107, G Gagliardi 74,75, L G Gagnon 125, C Galea 137, B Galhardo 159,161, E J Gallas 151, B J Gallop 170, P Gallus 167, G Galster 58, K K Gan 142, S Ganguly 56, Y Gao 104, Y S Gao 189, F M Garay Walls 70, C García 222, J E García Navarro 222, J A García Pascual 50, M Garcia-Sciveres 18, R W Gardner 47, N Garelli 189, V Garonne 150, A Gascon Bravo 66, K Gasnikova 66, C Gatti 71, A Gaudiello 74,75, G Gaudio 152, I L Gavrilenko 126, C Gay 223, G Gaycken 29, E N Gazis 12, C N P Gee 170, J Geisen 80, M Geisen 113, M P Geisler 83, K Gellerstedt 195,196, C Gemme 74, M H Genest 81, C Geng 119, S Gentile 171,172, C Gentsos 204, S George 107, D Gerbaudo 15, A Gershon 203, G Geßner 67, S Ghasemi 187, M Ghneimat 29, B Giacobbe 27, S Giagu 171,172, P Giannetti 156,157, S M Gibson 107, M Gignac 223, M Gilchriese 18, D Gillberg 45, G Gilles 230, D M Gingrich 3, N Giokaris 11, M P Giordani 217,219, F M Giorgi 27, P F Giraud 182, P Giromini 82, D Giugni 121, F Giuli 151, C Giuliani 131, M Giulini 84, B K Gjelsten 150, S Gkaitatzis 204, I Gkialas 11, E L Gkougkousis 183, P Gkountoumis 12, L K Gladilin 129, C Glasman 112, J Glatzer 15, P C F Glaysher 66, A Glazov 66, M Goblirsch-Kolb 31, J Godlewski 63, S Goldfarb 118, T Golling 73, D Golubkov 169, A Gomes 159,160,162, R Gonçalo 159, R Goncalves Gama 32, J Goncalves Pinto Firmino Da Costa 182, G Gonella 72, L Gonella 21, A Gongadze 94, S González de la Hoz 222, S Gonzalez-Sevilla 73, L Goossens 46, P A Gorbounov 127, H A Gordon 36, I Gorelov 136, B Gorini 46, E Gorini 102,103, A Gorišek 105, A T Goshaw 69, C Gössling 67, M I Gostkin 94, C A Gottardo 29, C R Goudet 148, D Goujdami 179, A G Goussiou 184, N Govender 193, E Gozani 202, L Graber 80, I Grabowska-Bold 61, P O J Gradin 220, J Gramling 216, E Gramstad 150, S Grancagnolo 19, V Gratchev 155, P M Gravila 42, C Gray 79, H M Gray 18, Z D Greenwood 109, C Grefe 29, K Gregersen 108, I M Gregor 66, P Grenier 189, K Grevtsov 7, J Griffiths 10, A A Grillo 183, K Grimm 101, S Grinstein 15, Ph Gris 56, J-F Grivaz 148, S Groh 113, E Gross 227, J Grosse-Knetter 80, G C Grossi 109, Z J Grout 108, A Grummer 136, L Guan 119, W Guan 228, J Guenther 91, F Guescini 212, D Guest 216, O Gueta 203, B Gui 142, E Guido 74,75, T Guillemin 7, S Guindon 2, U Gul 79, C Gumpert 46, J Guo 55, W Guo 119, Y Guo 53, R Gupta 64, S Gupta 151, G Gustavino 171,172, P Gutierrez 144, N G Gutierrez Ortiz 108, C Gutschow 108, C Guyot 182, M P Guzik 61, C Gwenlan 151, C B Gwilliam 104, A Haas 141, C Haber 18, H K Hadavand 10, N Haddad 181, A Hadef 115, S Hageböck 29, M Hagihara 214, H Hakobyan 232, M Haleem 66, J Haley 145, G Halladjian 120, G D Hallewell 115, K Hamacher 230, P Hamal 146, K Hamano 224, A Hamilton 192, G N Hamity 185, P G Hamnett 66, L Han 53, S Han 50, K Hanagaki 95, K Hanawa 205, M Hance 183, B Haney 154, P Hanke 83, J B Hansen 58, J D Hansen 58, M C Hansen 29, P H Hansen 58, K Hara 214, A S Hard 228, T Harenberg 230, F Hariri 148, S Harkusha 123, R D Harrington 70, P F Harrison 225, N M Hartmann 130, M Hasegawa 96, Y Hasegawa 186, A Hasib 70, S Hassani 182, S Haug 20, R Hauser 120, L Hauswald 68, L B Havener 57, M Havranek 167, C M Hawkes 21, R J Hawkings 46, D Hayakawa 207, D Hayden 120, C P Hays 151, J M Hays 106, H S Hayward 104, S J Haywood 170, S J Head 21, T Heck 113, V Hedberg 111, L Heelan 10, K K Heidegger 72, S Heim 66, T Heim 18, B Heinemann 66, J J Heinrich 130, L Heinrich 141, C Heinz 78, J Hejbal 166, L Helary 46, A Held 223, S Hellman 195,196, C Helsens 46, R C W Henderson 101, Y Heng 228, S Henkelmann 223, A M Henriques Correia 46, S Henrot-Versille 148, G H Herbert 19, H Herde 31, V Herget 229, Y Hernández Jiménez 194, H Herr 113, G Herten 72, R Hertenberger 130, L Hervas 46, T C Herwig 154, G G Hesketh 108, N P Hessey 212, J W Hetherly 64, S Higashino 95, E Higón-Rodriguez 222, E Hill 224, J C Hill 44, K H Hiller 66, S J Hillier 21, M Hils 68, I Hinchliffe 18, M Hirose 72, D Hirschbuehl 230, B Hiti 105, O Hladik 166, X Hoad 70, J Hobbs 198, N Hod 212, M C Hodgkinson 185, P Hodgson 185, A Hoecker 46, M R Hoeferkamp 136, F Hoenig 130, D Hohn 29, T R Holmes 47, M Homann 67, S Honda 214, T Honda 95, T M Hong 158, B H Hooberman 221, W H Hopkins 147, Y Horii 133, A J Horton 188, J-Y Hostachy 81, S Hou 201, A Hoummada 177, J Howarth 114, J Hoya 100, M Hrabovsky 146, J Hrdinka 46, I Hristova 19, J Hrivnac 148, T Hryn’ova 7, A Hrynevich 124, P J Hsu 89, S-C Hsu 184, Q Hu 53, S Hu 55, Y Huang 50, Z Hubacek 167, F Hubaut 115, F Huegging 29, T B Huffman 151, E W Hughes 57, G Hughes 101, M Huhtinen 46, P Huo 198, N Huseynov 94, J Huston 120, J Huth 82, G Iacobucci 73, G Iakovidis 36, I Ibragimov 187, L Iconomidou-Fayard 148, Z Idrissi 181, P Iengo 46, O Igonkina 138, T Iizawa 226, Y Ikegami 95, M Ikeno 95, Y Ilchenko 13, D Iliadis 204, N Ilic 189, G Introzzi 152,153, P Ioannou 11, M Iodice 175, K Iordanidou 57, V Ippolito 82, M F Isacson 220, N Ishijima 149, M Ishino 205, M Ishitsuka 207, C Issever 151, S Istin 22, F Ito 214, J M Iturbe Ponce 114, R Iuppa 210,211, H Iwasaki 95, J M Izen 65, V Izzo 134, S Jabbar 3, P Jackson 1, R M Jacobs 29, V Jain 2, K B Jakobi 113, K Jakobs 72, S Jakobsen 91, T Jakoubek 166, D O Jamin 145, D K Jana 109, R Jansky 73, J Janssen 29, M Janus 80, P A Janus 61, G Jarlskog 111, N Javadov 94, T Javůrek 72, M Javurkova 72, F Jeanneau 182, L Jeanty 18, J Jejelava 76, A Jelinskas 225, P Jenni 72, C Jeske 225, S Jézéquel 7, H Ji 228, J Jia 198, H Jiang 93, Y Jiang 53, Z Jiang 189, S Jiggins 108, J Jimenez Pena 222, S Jin 50, A Jinaru 38, O Jinnouchi 207, H Jivan 194, P Johansson 185, K A Johns 9, C A Johnson 90, W J Johnson 184, K Jon-And 195,196, R W L Jones 101, S D Jones 199, S Jones 9, T J Jones 104, J Jongmanns 83, P M Jorge 159,160, J Jovicevic 212, X Ju 228, A Juste Rozas 15, M K Köhler 227, A Kaczmarska 63, M Kado 148, H Kagan 142, M Kagan 189, S J Kahn 115, T Kaji 226, E Kajomovitz 69, C W Kalderon 111, A Kaluza 113, S Kama 64, A Kamenshchikov 169, N Kanaya 205, L Kanjir 105, V A Kantserov 128, J Kanzaki 95, B Kaplan 141, L S Kaplan 228, D Kar 194, K Karakostas 12, N Karastathis 12, M J Kareem 80, E Karentzos 12, S N Karpov 94, Z M Karpova 94, K Karthik 141, V Kartvelishvili 101, A N Karyukhin 169, K Kasahara 214, L Kashif 228, R D Kass 142, A Kastanas 197, Y Kataoka 205, C Kato 205, A Katre 73, J Katzy 66, K Kawade 96, K Kawagoe 99, T Kawamoto 205, G Kawamura 80, E F Kay 104, V F Kazanin 140, R Keeler 224, R Kehoe 64, J S Keller 45, J J Kempster 107, J Kendrick 21, H Keoshkerian 209, O Kepka 166, B P Kerševan 105, S Kersten 230, R A Keyes 117, M Khader 221, F Khalil-zada 14, A Khanov 145, A G Kharlamov 140, T Kharlamova 140, A Khodinov 208, T J Khoo 73, V Khovanskiy 127, E Khramov 94, J Khubua 77, S Kido 96, C R Kilby 107, H Y Kim 10, S H Kim 214, Y K Kim 47, N Kimura 204, O M Kind 19, B T King 104, D Kirchmeier 68, J Kirk 170, A E Kiryunin 131, T Kishimoto 205, D Kisielewska 61, V Kitali 66, K Kiuchi 214, O Kivernyk 7, E Kladiva 191, T Klapdor-Kleingrothaus 72, M H Klein 57, M Klein 104, U Klein 104, K Kleinknecht 113, P Klimek 139, A Klimentov 36, R Klingenberg 67, T Klingl 29, T Klioutchnikova 46, E-E Kluge 83, P Kluit 138, S Kluth 131, E Kneringer 91, E B F G Knoops 115, A Knue 131, A Kobayashi 205, D Kobayashi 207, T Kobayashi 205, M Kobel 68, M Kocian 189, P Kodys 168, T Koffas 45, E Koffeman 138, N M Köhler 131, T Koi 189, M Kolb 84, I Koletsou 7, A A Komar 126, Y Komori 205, T Kondo 95, N Kondrashova 55, K Köneke 72, A C König 137, T Kono 95, R Konoplich 141, N Konstantinidis 108, R Kopeliansky 90, S Koperny 61, A K Kopp 72, K Korcyl 63, K Kordas 204, A Korn 108, A A Korol 140, I Korolkov 15, E V Korolkova 185, O Kortner 131, S Kortner 131, T Kosek 168, V V Kostyukhin 29, A Kotwal 69, A Koulouris 12, A Kourkoumeli-Charalampidi 152,153, C Kourkoumelis 11, E Kourlitis 185, V Kouskoura 36, A B Kowalewska 63, R Kowalewski 224, T Z Kowalski 61, C Kozakai 205, W Kozanecki 182, A S Kozhin 169, V A Kramarenko 129, G Kramberger 105, D Krasnopevtsev 128, M W Krasny 110, A Krasznahorkay 46, D Krauss 131, J A Kremer 61, J Kretzschmar 104, K Kreutzfeldt 78, P Krieger 209, K Krizka 47, K Kroeninger 67, H Kroha 131, J Kroll 166, J Kroll 154, J Kroseberg 29, J Krstic 16, U Kruchonak 94, H Krüger 29, N Krumnack 93, M C Kruse 69, T Kubota 118, H Kucuk 108, S Kuday 5, J T Kuechler 230, S Kuehn 46, A Kugel 83, F Kuger 229, T Kuhl 66, V Kukhtin 94, R Kukla 115, Y Kulchitsky 123, S Kuleshov 49, Y P Kulinich 221, M Kuna 171,172, T Kunigo 97, A Kupco 166, T Kupfer 67, O Kuprash 203, H Kurashige 96, L L Kurchaninov 212, Y A Kurochkin 123, M G Kurth 50, V Kus 166, E S Kuwertz 224, M Kuze 207, J Kvita 146, T Kwan 224, D Kyriazopoulos 185, A La Rosa 131, J L La Rosa Navarro 35, L La Rotonda 59,60, F La Ruffa 59,60, C Lacasta 222, F Lacava 171,172, J Lacey 66, H Lacker 19, D Lacour 110, E Ladygin 94, R Lafaye 7, B Laforge 110, T Lagouri 231, S Lai 80, S Lammers 90, W Lampl 9, E Lançon 36, U Landgraf 72, M P J Landon 106, M C Lanfermann 73, V S Lang 83, J C Lange 15, R J Langenberg 46, A J Lankford 216, F Lanni 36, K Lantzsch 29, A Lanza 152, A Lapertosa 74,75, S Laplace 110, J F Laporte 182, T Lari 121, F Lasagni Manghi 27,28, M Lassnig 46, P Laurelli 71, W Lavrijsen 18, A T Law 183, P Laycock 104, T Lazovich 82, M Lazzaroni 121,122, B Le 118, O Le Dortz 110, E Le Guirriec 115, E P Le Quilleuc 182, M LeBlanc 224, T LeCompte 8, F Ledroit-Guillon 81, C A Lee 36, G R Lee 170, S C Lee 201, L Lee 82, B Lefebvre 117, G Lefebvre 110, M Lefebvre 224, F Legger 130, C Leggett 18, A Lehan 104, G Lehmann Miotto 46, X Lei 9, W A Leight 66, M A L Leite 35, R Leitner 168, D Lellouch 227, B Lemmer 80, K J C Leney 108, T Lenz 29, B Lenzi 46, R Leone 9, S Leone 156,157, C Leonidopoulos 70, G Lerner 199, C Leroy 125, A A J Lesage 182, C G Lester 44, M Levchenko 155, J Levêque 7, D Levin 119, L J Levinson 227, M Levy 21, D Lewis 106, B Li 53, Changqiao Li 53, H Li 198, L Li 55, Q Li 50, S Li 69, X Li 55, Y Li 187, Z Liang 50, B Liberti 173, A Liblong 209, K Lie 88, J Liebal 29, W Liebig 17, A Limosani 200, S C Lin 234, T H Lin 113, B E Lindquist 198, A E Lionti 73, E Lipeles 154, A Lipniacka 17, M Lisovyi 84, T M Liss 221, A Lister 223, A M Litke 183, B Liu 201, H Liu 119, H Liu 36, J K K Liu 151, J Liu 54, J B Liu 53, K Liu 115, L Liu 221, M Liu 53, Y L Liu 53, Y Liu 53, M Livan 152,153, A Lleres 81, J Llorente Merino 50, S L Lloyd 106, C Y Lo 87, F Lo Sterzo 201, E M Lobodzinska 66, P Loch 9, F K Loebinger 114, A Loesle 72, K M Loew 31, A Loginov 231, T Lohse 19, K Lohwasser 185, M Lokajicek 166, B A Long 30, J D Long 221, R E Long 101, L Longo 102,103, K A Looper 142, J A Lopez 49, D Lopez Mateos 82, I Lopez Paz 15, A Lopez Solis 110, J Lorenz 130, N Lorenzo Martinez 7, M Losada 26, P J Lösel 130, X Lou 50, A Lounis 148, J Love 8, P A Love 101, H Lu 86, N Lu 119, Y J Lu 89, H J Lubatti 184, C Luci 171,172, A Lucotte 81, C Luedtke 72, F Luehring 90, W Lukas 91, L Luminari 171, O Lundberg 195,196, B Lund-Jensen 197, P M Luzi 110, D Lynn 36, R Lysak 166, E Lytken 111, F Lyu 50, V Lyubushkin 94, H Ma 36, L L Ma 54, Y Ma 54, G Maccarrone 71, A Macchiolo 131, C M Macdonald 185, B Maček 105, J Machado Miguens 154,160, D Madaffari 222, R Madar 56, W F Mader 68, A Madsen 66, J Maeda 96, S Maeland 17, T Maeno 36, A S Maevskiy 129, E Magradze 80, J Mahlstedt 138, C Maiani 148, C Maidantchik 32, A A Maier 131, T Maier 130, A Maio 159,160,162, O Majersky 190, S Majewski 147, Y Makida 95, N Makovec 148, B Malaescu 110, Pa Malecki 63, V P Maleev 155, F Malek 81, U Mallik 92, D Malon 8, C Malone 44, S Maltezos 12, S Malyukov 46, J Mamuzic 222, G Mancini 71, L Mandelli 121, I Mandić 105, J Maneira 159,160, L Manhaes de Andrade Filho 33, J Manjarres Ramos 68, K H Mankinen 111, A Mann 130, A Manousos 46, B Mansoulie 182, J D Mansour 50, R Mantifel 117, M Mantoani 80, S Manzoni 121,122, L Mapelli 46, G Marceca 43, L March 73, L Marchese 151, G Marchiori 110, M Marcisovsky 166, M Marjanovic 56, D E Marley 119, F Marroquim 32, S P Marsden 114, Z Marshall 18, M U F Martensson 220, S Marti-Garcia 222, C B Martin 142, T A Martin 225, V J Martin 70, B Martin dit Latour 17, M Martinez 15, V I Martinez Outschoorn 221, S Martin-Haugh 170, V S Martoiu 38, A C Martyniuk 108, A Marzin 46, L Masetti 113, T Mashimo 205, R Mashinistov 126, J Masik 114, A L Maslennikov 140, L Massa 173,174, P Mastrandrea 7, A Mastroberardino 59,60, T Masubuchi 205, P Mättig 230, J Maurer 38, S J Maxfield 104, D A Maximov 140, R Mazini 201, I Maznas 204, S M Mazza 121,122, NC McFadden 136, G Mc Goldrick 209, S P Mc Kee 119, A McCarn 119, R L McCarthy 198, T G McCarthy 131, L I McClymont 108, E F McDonald 118, J A Mcfayden 108, G Mchedlidze 80, S J McMahon 170, P C McNamara 118, R A McPherson 224, S Meehan 184, T J Megy 72, S Mehlhase 130, A Mehta 104, T Meideck 81, K Meier 83, B Meirose 65, D Melini 222, B R Mellado Garcia 194, J D Mellenthin 80, M Melo 190, F Meloni 20, S B Menary 114, L Meng 104, X T Meng 119, A Mengarelli 27,28, S Menke 131, E Meoni 59,60, S Mergelmeyer 19, P Mermod 73, L Merola 134,135, C Meroni 121, F S Merritt 47, A Messina 171,172, J Metcalfe 8, A S Mete 216, C Meyer 154, J-P Meyer 182, J Meyer 138, H Meyer Zu Theenhausen 83, F Miano 199, R P Middleton 170, S Miglioranzi 74,75, L Mijović 70, G Mikenberg 227, M Mikestikova 166, M Mikuž 105, M Milesi 118, A Milic 209, D W Miller 47, C Mills 70, A Milov 227, D A Milstead 195,196, A A Minaenko 169, Y Minami 205, I A Minashvili 94, A I Mincer 141, B Mindur 61, M Mineev 94, Y Minegishi 205, Y Ming 228, L M Mir 15, K P Mistry 154, T Mitani 226, J Mitrevski 130, V A Mitsou 222, A Miucci 20, P S Miyagawa 185, A Mizukami 95, J U Mjörnmark 111, T Mkrtchyan 232, M Mlynarikova 168, T Moa 195,196, K Mochizuki 125, P Mogg 72, S Mohapatra 57, S Molander 195,196, R Moles-Valls 29, R Monden 97, M C Mondragon 120, K Mönig 66, J Monk 58, E Monnier 115, A Montalbano 198, J Montejo Berlingen 46, F Monticelli 100, S Monzani 121,122, R W Moore 3, N Morange 148, D Moreno 26, M Moreno Llácer 46, P Morettini 74, S Morgenstern 46, D Mori 188, T Mori 205, M Morii 82, M Morinaga 205, V Morisbak 150, A K Morley 200, G Mornacchi 46, J D Morris 106, L Morvaj 198, P Moschovakos 12, M Mosidze 77, H J Moss 185, J Moss 189, K Motohashi 207, R Mount 189, E Mountricha 36, E J W Moyse 116, S Muanza 115, R D Mudd 21, F Mueller 131, J Mueller 158, R S P Mueller 130, D Muenstermann 101, P Mullen 79, G A Mullier 20, F J Munoz Sanchez 114, W J Murray 170,225, H Musheghyan 46, M Muškinja 105, A G Myagkov 169, M Myska 167, B P Nachman 18, O Nackenhorst 73, K Nagai 151, R Nagai 95, K Nagano 95, Y Nagasaka 85, K Nagata 214, M Nagel 72, E Nagy 115, A M Nairz 46, Y Nakahama 133, K Nakamura 95, T Nakamura 205, I Nakano 143, R F Naranjo Garcia 66, R Narayan 13, D I Narrias Villar 83, I Naryshkin 155, T Naumann 66, G Navarro 26, R Nayyar 9, H A Neal 119, P Yu Nechaeva 126, T J Neep 182, A Negri 152,153, M Negrini 27, S Nektarijevic 137, C Nellist 148, A Nelson 216, M E Nelson 151, S Nemecek 166, P Nemethy 141, M Nessi 46, M S Neubauer 221, M Neumann 230, P R Newman 21, T Y Ng 88, T Nguyen Manh 125, R B Nickerson 151, R Nicolaidou 182, J Nielsen 183, V Nikolaenko 169, I Nikolic-Audit 110, K Nikolopoulos 21, J K Nilsen 150, P Nilsson 36, Y Ninomiya 205, A Nisati 171, N Nishu 52, R Nisius 131, I Nitsche 67, T Nitta 226, T Nobe 205, Y Noguchi 97, M Nomachi 149, I Nomidis 45, M A Nomura 36, T Nooney 106, M Nordberg 46, N Norjoharuddeen 151, O Novgorodova 68, S Nowak 131, M Nozaki 95, L Nozka 146, K Ntekas 216, E Nurse 108, F Nuti 118, K O’connor 31, D C O’Neil 188, A A O’Rourke 66, V O’Shea 79, F G Oakham 45, H Oberlack 131, T Obermann 29, J Ocariz 110, A Ochi 96, I Ochoa 57, J P Ochoa-Ricoux 48, S Oda 99, S Odaka 95, H Ogren 90, A Oh 114, S H Oh 69, C C Ohm 18, H Ohman 220, H Oide 74,75, H Okawa 214, Y Okumura 205, T Okuyama 95, A Olariu 38, L F Oleiro Seabra 159, S A Olivares Pino 70, D Oliveira Damazio 36, A Olszewski 63, J Olszowska 63, A Onofre 159,163, K Onogi 133, P U E Onyisi 13, M J Oreglia 47, Y Oren 203, D Orestano 175,176, N Orlando 87, R S Orr 209, B Osculati 74,75, R Ospanov 53, G Otero y Garzon 43, H Otono 99, M Ouchrif 180, F Ould-Saada 150, A Ouraou 182, K P Oussoren 138, Q Ouyang 50, M Owen 79, R E Owen 21, V E Ozcan 22, N Ozturk 10, K Pachal 188, A Pacheco Pages 15, L Pacheco Rodriguez 182, C Padilla Aranda 15, S Pagan Griso 18, M Paganini 231, F Paige 36, G Palacino 90, S Palazzo 59,60, S Palestini 46, M Palka 62, D Pallin 56, E St Panagiotopoulou 12, I Panagoulias 12, C E Pandini 110, J G Panduro Vazquez 107, P Pani 46, S Panitkin 36, D Pantea 38, L Paolozzi 73, Th D Papadopoulou 12, K Papageorgiou 11, A Paramonov 8, D Paredes Hernandez 231, A J Parker 101, M A Parker 44, K A Parker 66, F Parodi 74,75, J A Parsons 57, U Parzefall 72, V R Pascuzzi 209, J M Pasner 183, E Pasqualucci 171, S Passaggio 74, Fr Pastore 107, S Pataraia 113, J R Pater 114, T Pauly 46, B Pearson 131, S Pedraza Lopez 222, R Pedro 159,160, S V Peleganchuk 140, O Penc 166, C Peng 50, H Peng 53, J Penwell 90, B S Peralva 33, M M Perego 182, D V Perepelitsa 36, F Peri 19, L Perini 121,122, H Pernegger 46, S Perrella 134,135, R Peschke 66, V D Peshekhonov 94, K Peters 66, R F Y Peters 114, B A Petersen 46, T C Petersen 58, E Petit 81, A Petridis 1, C Petridou 204, P Petroff 148, E Petrolo 171, M Petrov 151, F Petrucci 175,176, N E Pettersson 116, A Peyaud 182, R Pezoa 49, F H Phillips 120, P W Phillips 170, G Piacquadio 198, E Pianori 225, A Picazio 116, E Piccaro 106, M A Pickering 151, R Piegaia 43, J E Pilcher 47, A D Pilkington 114, A W J Pin 114, M Pinamonti 173,174, J L Pinfold 3, H Pirumov 66, M Pitt 227, L Plazak 190, M-A Pleier 36, V Pleskot 113, E Plotnikova 94, D Pluth 93, P Podberezko 140, R Poettgen 195,196, R Poggi 152,153, L Poggioli 148, D Pohl 29, G Polesello 152, A Poley 66, A Policicchio 59,60, R Polifka 46, A Polini 27, C S Pollard 79, V Polychronakos 36, K Pommès 46, D Ponomarenko 128, L Pontecorvo 171, B G Pope 120, G A Popeneciu 40, A Poppleton 46, S Pospisil 167, K Potamianos 18, I N Potrap 94, C J Potter 44, G Poulard 46, T Poulsen 111, J Poveda 46, M E Pozo Astigarraga 46, P Pralavorio 115, A Pranko 18, S Prell 93, D Price 114, L E Price 8, M Primavera 102, S Prince 117, N Proklova 128, K Prokofiev 88, F Prokoshin 49, S Protopopescu 36, J Proudfoot 8, M Przybycien 61, A Puri 221, P Puzo 148, J Qian 119, G Qin 79, Y Qin 114, A Quadt 80, M Queitsch-Maitland 66, D Quilty 79, S Raddum 150, V Radeka 36, V Radescu 151, S K Radhakrishnan 198, P Radloff 147, P Rados 118, F Ragusa 121,122, G Rahal 233, J A Raine 114, S Rajagopalan 36, C Rangel-Smith 220, T Rashid 148, S Raspopov 7, M G Ratti 121,122, D M Rauch 66, F Rauscher 130, S Rave 113, I Ravinovich 227, J H Rawling 114, M Raymond 46, A L Read 150, N P Readioff 81, M Reale 102,103, D M Rebuzzi 152,153, A Redelbach 229, G Redlinger 36, R Reece 183, R G Reed 194, K Reeves 65, L Rehnisch 19, J Reichert 154, A Reiss 113, C Rembser 46, H Ren 50, M Rescigno 171, S Resconi 121, E D Resseguie 154, S Rettie 223, E Reynolds 21, O L Rezanova 140, P Reznicek 168, R Rezvani 125, R Richter 131, S Richter 108, E Richter-Was 62, O Ricken 29, M Ridel 110, P Rieck 131, C J Riegel 230, J Rieger 80, O Rifki 144, M Rijssenbeek 198, A Rimoldi 152,153, M Rimoldi 20, L Rinaldi 27, G Ripellino 197, B Ristić 46, E Ritsch 46, I Riu 15, F Rizatdinova 145, E Rizvi 106, C Rizzi 15, R T Roberts 114, S H Robertson 117, A Robichaud-Veronneau 117, D Robinson 44, J E M Robinson 66, A Robson 79, E Rocco 113, C Roda 156,157, Y Rodina 115, S Rodriguez Bosca 222, A Rodriguez Perez 15, D Rodriguez Rodriguez 222, S Roe 46, C S Rogan 82, O Røhne 150, J Roloff 82, A Romaniouk 128, M Romano 27,28, S M Romano Saez 56, E Romero Adam 222, N Rompotis 104, M Ronzani 72, L Roos 110, S Rosati 171, K Rosbach 72, P Rose 183, N-A Rosien 80, E Rossi 134,135, L P Rossi 74, J H N Rosten 44, R Rosten 184, M Rotaru 38, I Roth 227, J Rothberg 184, D Rousseau 148, A Rozanov 115, Y Rozen 202, X Ruan 194, F Rubbo 189, F Rühr 72, A Ruiz-Martinez 45, Z Rurikova 72, N A Rusakovich 94, H L Russell 117, J P Rutherfoord 9, N Ruthmann 46, Y F Ryabov 155, M Rybar 221, G Rybkin 148, S Ryu 8, A Ryzhov 169, G F Rzehorz 80, A F Saavedra 200, G Sabato 138, S Sacerdoti 43, HF-W Sadrozinski 183, R Sadykov 94, F Safai Tehrani 171, P Saha 139, M Sahinsoy 83, M Saimpert 66, M Saito 205, T Saito 205, H Sakamoto 205, Y Sakurai 226, G Salamanna 175,176, J E Salazar Loyola 49, D Salek 138, P H Sales De Bruin 220, D Salihagic 131, A Salnikov 189, J Salt 222, D Salvatore 59,60, F Salvatore 199, A Salvucci 86,87,88, A Salzburger 46, D Sammel 72, D Sampsonidis 204, D Sampsonidou 204, J Sánchez 222, V Sanchez Martinez 222, A Sanchez Pineda 217,219, H Sandaker 150, R L Sandbach 106, C O Sander 66, M Sandhoff 230, C Sandoval 26, D P C Sankey 170, M Sannino 74,75, Y Sano 133, A Sansoni 71, C Santoni 56, R Santonico 173,174, H Santos 159, I Santoyo Castillo 199, A Sapronov 94, J G Saraiva 159,162, B Sarrazin 29, O Sasaki 95, K Sato 214, E Sauvan 7, G Savage 107, P Savard 209, N Savic 131, C Sawyer 170, L Sawyer 109, J Saxon 47, C Sbarra 27, A Sbrizzi 27,28, T Scanlon 108, D A Scannicchio 216, M Scarcella 200, V Scarfone 59,60, J Schaarschmidt 184, P Schacht 131, B M Schachtner 130, D Schaefer 46, L Schaefer 154, R Schaefer 66, J Schaeffer 113, S Schaepe 29, S Schaetzel 84, U Schäfer 113, A C Schaffer 148, D Schaile 130, R D Schamberger 198, V Scharf 83, V A Schegelsky 155, D Scheirich 168, M Schernau 216, C Schiavi 74,75, S Schier 183, L K Schildgen 29, C Schillo 72, M Schioppa 59,60, S Schlenker 46, K R Schmidt-Sommerfeld 131, K Schmieden 46, C Schmitt 113, S Schmitt 66, S Schmitz 113, U Schnoor 72, L Schoeffel 182, A Schoening 84, B D Schoenrock 120, E Schopf 29, M Schott 113, J F P Schouwenberg 137, J Schovancova 46, S Schramm 73, N Schuh 113, A Schulte 113, M J Schultens 29, H-C Schultz-Coulon 83, H Schulz 19, M Schumacher 72, B A Schumm 183, Ph Schune 182, A Schwartzman 189, T A Schwarz 119, H Schweiger 114, Ph Schwemling 182, R Schwienhorst 120, J Schwindling 182, A Sciandra 29, G Sciolla 31, M Scornajenghi 59,60, F Scuri 156,157, F Scutti 118, J Searcy 119, P Seema 29, S C Seidel 136, A Seiden 183, J M Seixas 32, G Sekhniaidze 134, K Sekhon 119, S J Sekula 64, N Semprini-Cesari 27,28, S Senkin 56, C Serfon 150, L Serin 148, L Serkin 217,218, M Sessa 175,176, R Seuster 224, H Severini 144, T Sfiligoj 105, F Sforza 46, A Sfyrla 73, E Shabalina 80, N W Shaikh 195,196, L Y Shan 50, R Shang 221, J T Shank 30, M Shapiro 18, P B Shatalov 127, K Shaw 217,218, S M Shaw 114, A Shcherbakova 195,196, C Y Shehu 199, Y Shen 144, N Sherafati 45, P Sherwood 108, L Shi 201, S Shimizu 96, C O Shimmin 231, M Shimojima 132, I P J Shipsey 151, S Shirabe 99, M Shiyakova 94, J Shlomi 227, A Shmeleva 126, D Shoaleh Saadi 125, M J Shochet 47, S Shojaii 121, D R Shope 144, S Shrestha 142, E Shulga 128, M A Shupe 9, P Sicho 166, A M Sickles 221, P E Sidebo 197, E Sideras Haddad 194, O Sidiropoulou 229, A Sidoti 27,28, F Siegert 68, Dj Sijacki 16, J Silva 159,162, S B Silverstein 195, V Simak 167, Lj Simic 16, S Simion 148, E Simioni 113, B Simmons 108, M Simon 113, P Sinervo 209, N B Sinev 147, M Sioli 27,28, G Siragusa 229, I Siral 119, S Yu Sivoklokov 129, J Sjölin 195,196, M B Skinner 101, P Skubic 144, M Slater 21, T Slavicek 167, M Slawinska 63, K Sliwa 215, R Slovak 168, V Smakhtin 227, B H Smart 7, J Smiesko 190, N Smirnov 128, S Yu Smirnov 128, Y Smirnov 128, L N Smirnova 129, O Smirnova 111, J W Smith 80, M N K Smith 57, R W Smith 57, M Smizanska 101, K Smolek 167, A A Snesarev 126, I M Snyder 147, S Snyder 36, R Sobie 224, F Socher 68, A Soffer 203, D A Soh 201, G Sokhrannyi 105, C A Solans Sanchez 46, M Solar 167, E Yu Soldatov 128, U Soldevila 222, A A Solodkov 169, A Soloshenko 94, OV Solovyanov 169, V Solovyev 155, P Sommer 72, H Son 215, A Sopczak 167, D Sosa 84, C L Sotiropoulou 156,157, R Soualah 217,219, A M Soukharev 140, D South 66, B C Sowden 107, S Spagnolo 102,103, M Spalla 156,157, M Spangenberg 225, F Spanò 107, D Sperlich 19, F Spettel 131, T M Spieker 83, R Spighi 27, G Spigo 46, L A Spiller 118, M Spousta 168, R D St Denis 79, A Stabile 121, R Stamen 83, S Stamm 19, E Stanecka 63, R W Stanek 8, C Stanescu 175, M M Stanitzki 66, B S Stapf 138, S Stapnes 150, E A Starchenko 169, G H Stark 47, J Stark 81, S H Stark 58, P Staroba 166, P Starovoitov 83, S Stärz 46, R Staszewski 63, P Steinberg 36, B Stelzer 188, H J Stelzer 46, O Stelzer-Chilton 212, H Stenzel 78, G A Stewart 79, M C Stockton 147, M Stoebe 117, G Stoicea 38, P Stolte 80, S Stonjek 131, A R Stradling 10, A Straessner 68, M E Stramaglia 20, J Strandberg 197, S Strandberg 195,196, M Strauss 144, P Strizenec 191, R Ströhmer 229, D M Strom 147, R Stroynowski 64, A Strubig 137, S A Stucci 36, B Stugu 17, N A Styles 66, D Su 189, J Su 158, S Suchek 83, Y Sugaya 149, M Suk 167, V V Sulin 126, DMS Sultan 210,211, S Sultansoy 6, T Sumida 97, S Sun 82, X Sun 3, K Suruliz 199, C J E Suster 200, M R Sutton 199, S Suzuki 95, M Svatos 166, M Swiatlowski 47, S P Swift 2, I Sykora 190, T Sykora 168, D Ta 72, K Tackmann 66, J Taenzer 203, A Taffard 216, R Tafirout 212, N Taiblum 203, H Takai 36, R Takashima 98, E H Takasugi 131, T Takeshita 186, Y Takubo 95, M Talby 115, A A Talyshev 140, J Tanaka 205, M Tanaka 207, R Tanaka 148, S Tanaka 95, R Tanioka 96, B B Tannenwald 142, S Tapia Araya 49, S Tapprogge 113, S Tarem 202, G F Tartarelli 121, P Tas 168, M Tasevsky 166, T Tashiro 97, E Tassi 59,60, A Tavares Delgado 159,160, Y Tayalati 181, A C Taylor 136, G N Taylor 118, P T E Taylor 118, W Taylor 213, P Teixeira-Dias 107, D Temple 188, H Ten Kate 46, P K Teng 201, J J Teoh 149, F Tepel 230, S Terada 95, K Terashi 205, J Terron 112, S Terzo 15, M Testa 71, R J Teuscher 209, T Theveneaux-Pelzer 115, J P Thomas 21, J Thomas-Wilsker 107, P D Thompson 21, A S Thompson 79, L A Thomsen 231, E Thomson 154, M J Tibbetts 18, R E Ticse Torres 115, V O Tikhomirov 126, Yu A Tikhonov 140, S Timoshenko 128, P Tipton 231, S Tisserant 115, K Todome 207, S Todorova-Nova 7, S Todt 68, J Tojo 99, S Tokár 190, K Tokushuku 95, E Tolley 82, L Tomlinson 114, M Tomoto 133, L Tompkins 189, K Toms 136, B Tong 82, P Tornambe 72, E Torrence 147, H Torres 188, E Torró Pastor 184, J Toth 115, F Touchard 115, D R Tovey 185, C J Treado 141, T Trefzger 229, F Tresoldi 199, A Tricoli 36, I M Trigger 212, S Trincaz-Duvoid 110, M F Tripiana 15, W Trischuk 209, B Trocmé 81, A Trofymov 66, C Troncon 121, M Trottier-McDonald 18, M Trovatelli 224, L Truong 217,219, M Trzebinski 63, A Trzupek 63, K W Tsang 86, JC-L Tseng 151, P V Tsiareshka 123, G Tsipolitis 12, N Tsirintanis 11, S Tsiskaridze 15, V Tsiskaridze 72, E G Tskhadadze 76, K M Tsui 86, I I Tsukerman 127, V Tsulaia 18, S Tsuno 95, D Tsybychev 198, Y Tu 87, A Tudorache 38, V Tudorache 38, T T Tulbure 37, A N Tuna 82, S A Tupputi 27,28, S Turchikhin 94, D Turgeman 227, I Turk Cakir 5, R Turra 121, P M Tuts 57, G Ucchielli 27,28, I Ueda 95, M Ughetto 195,196, F Ukegawa 214, G Unal 46, A Undrus 36, G Unel 216, F C Ungaro 118, Y Unno 95, C Unverdorben 130, J Urban 191, P Urquijo 118, P Urrejola 113, G Usai 10, J Usui 95, L Vacavant 115, V Vacek 167, B Vachon 117, A Vaidya 108, C Valderanis 130, E Valdes Santurio 195,196, S Valentinetti 27,28, A Valero 222, L Valéry 15, S Valkar 168, A Vallier 7, J A Valls Ferrer 222, W Van Den Wollenberg 138, H van der Graaf 138, P van Gemmeren 8, J Van Nieuwkoop 188, I van Vulpen 138, M C van Woerden 138, M Vanadia 173,174, W Vandelli 46, A Vaniachine 208, P Vankov 138, G Vardanyan 232, R Vari 171, E W Varnes 9, C Varni 74,75, T Varol 64, D Varouchas 148, A Vartapetian 10, K E Varvell 200, J G Vasquez 231, G A Vasquez 49, F Vazeille 56, T Vazquez Schroeder 117, J Veatch 80, V Veeraraghavan 9, L M Veloce 209, F Veloso 159,161, S Veneziano 171, A Ventura 102,103, M Venturi 224, N Venturi 46, A Venturini 31, V Vercesi 152, M Verducci 175,176, W Verkerke 138, A T Vermeulen 138, J C Vermeulen 138, M C Vetterli 188, N Viaux Maira 49, O Viazlo 111, I Vichou 221, T Vickey 185, O E Vickey Boeriu 185, G H A Viehhauser 151, S Viel 18, L Vigani 151, M Villa 27,28, M Villaplana Perez 121,122, E Vilucchi 71, M G Vincter 45, V B Vinogradov 94, A Vishwakarma 66, C Vittori 27,28, I Vivarelli 199, S Vlachos 12, M Vogel 230, P Vokac 167, G Volpi 156,157, H von der Schmitt 131, E von Toerne 29, V Vorobel 168, K Vorobev 128, M Vos 222, R Voss 46, J H Vossebeld 104, N Vranjes 16, M Vranjes Milosavljevic 16, V Vrba 167, M Vreeswijk 138, R Vuillermet 46, I Vukotic 47, P Wagner 29, W Wagner 230, J Wagner-Kuhr 130, H Wahlberg 100, S Wahrmund 68, J Wakabayashi 133, J Walder 101, R Walker 130, W Walkowiak 187, V Wallangen 195,196, C Wang 51, C Wang 54, F Wang 228, H Wang 18, H Wang 3, J Wang 66, J Wang 200, Q Wang 144, R Wang 8, S M Wang 201, T Wang 57, W Wang 201, W Wang 53, Z Wang 55, C Wanotayaroj 147, A Warburton 117, C P Ward 44, D R Wardrope 108, A Washbrook 70, P M Watkins 21, A T Watson 21, M F Watson 21, G Watts 184, S Watts 114, B M Waugh 108, A F Webb 13, S Webb 113, M S Weber 20, S W Weber 229, S A Weber 45, J S Webster 8, A R Weidberg 151, B Weinert 90, J Weingarten 80, M Weirich 113, C Weiser 72, H Weits 138, P S Wells 46, T Wenaus 36, T Wengler 46, S Wenig 46, N Wermes 29, M D Werner 93, P Werner 46, M Wessels 83, K Whalen 147, N L Whallon 184, A M Wharton 101, A S White 119, A White 10, M J White 1, R White 49, D Whiteson 216, B W Whitmore 101, F J Wickens 170, W Wiedenmann 228, M Wielers 170, C Wiglesworth 58, L A M Wiik-Fuchs 29, A Wildauer 131, F Wilk 114, H G Wilkens 46, H H Williams 154, S Williams 138, C Willis 120, S Willocq 116, J A Wilson 21, I Wingerter-Seez 7, E Winkels 199, F Winklmeier 147, O J Winston 199, B T Winter 29, M Wittgen 189, M Wobisch 109, T M H Wolf 138, R Wolff 115, M W Wolter 63, H Wolters 159,161, V W S Wong 223, S D Worm 21, B K Wosiek 63, J Wotschack 46, K W Wozniak 63, M Wu 47, S L Wu 228, X Wu 73, Y Wu 119, T R Wyatt 114, B M Wynne 70, S Xella 58, Z Xi 119, L Xia 52, D Xu 50, L Xu 36, T Xu 182, B Yabsley 200, S Yacoob 192, D Yamaguchi 207, Y Yamaguchi 149, A Yamamoto 95, S Yamamoto 205, T Yamanaka 205, M Yamatani 205, K Yamauchi 133, Y Yamazaki 96, Z Yan 30, H Yang 55, H Yang 18, Y Yang 201, Z Yang 17, W-M Yao 18, Y C Yap 110, Y Yasu 95, E Yatsenko 7, K H Yau Wong 29, J Ye 64, S Ye 36, I Yeletskikh 94, E Yigitbasi 30, E Yildirim 113, K Yorita 226, K Yoshihara 154, C Young 189, C J S Young 46, J Yu 10, J Yu 93, S P Y Yuen 29, I Yusuff 44, B Zabinski 63, G Zacharis 12, R Zaidan 15, A M Zaitsev 169, N Zakharchuk 66, J Zalieckas 17, A Zaman 198, S Zambito 82, D Zanzi 118, C Zeitnitz 230, G Zemaityte 151, A Zemla 61, J C Zeng 221, Q Zeng 189, O Zenin 169, T Ženiš 190, D Zerwas 148, D Zhang 119, F Zhang 228, G Zhang 53, H Zhang 51, J Zhang 8, L Zhang 72, L Zhang 53, M Zhang 221, P Zhang 51, R Zhang 29, R Zhang 53, X Zhang 54, Y Zhang 50, Z Zhang 148, X Zhao 64, Y Zhao 54, Z Zhao 53, A Zhemchugov 94, B Zhou 119, C Zhou 228, L Zhou 64, M Zhou 50, M Zhou 198, N Zhou 52, C G Zhu 54, H Zhu 50, J Zhu 119, Y Zhu 53, X Zhuang 50, K Zhukov 126, A Zibell 229, D Zieminska 90, N I Zimine 94, C Zimmermann 113, S Zimmermann 72, Z Zinonos 131, M Zinser 113, M Ziolkowski 187, L Živković 16, G Zobernig 228, A Zoccoli 27,28, R Zou 47, M zur Nedden 19, L Zwalinski 46; ATLAS Collaboration41,165,178,235
PMCID: PMC6954043  PMID: 31985738

Abstract

Measurements of transverse energy–energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s=8TeV proton–proton collisions with an integrated luminosity of 20.2fb-1. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of αs(μ) predicted in QCD up to scales over 1TeV. A global fit to the transverse energy–energy correlation distributions yields αs(mZ)=0.1162±0.0011(exp.)-0.0070+0.0084(theo.), while a global fit to the asymmetry distributions yields a value of αs(mZ)=0.1196±0.0013(exp.)-0.0045+0.0075(theo.).

Introduction

Experimental studies of the energy dependence of event shape variables have proved very useful in precision tests of quantum chromodynamics (QCD). Event shape variables have been measured in e+e- experiments from PETRA–PEP [13] to LEP–SLC [47] energies, at the ep collider HERA [812] as well as in hadron colliders from Tevatron [13] to LHC energies [14, 15].

Most event shape variables are based on the determination of the thrust’s principal axis [16] or the sphericity tensor [17]. A notable exception is given by the energy–energy correlations (EEC), originally proposed by Basham et al. [18], and measurements [1931] of these have significantly improved the precision tests of perturbative QCD (pQCD). The EEC is defined as the energy-weighted angular distribution of hadron pairs produced in e+e- annihilation and, by construction, the EEC as well as its associated asymmetry (AEEC) are infrared safe. The second-order corrections to these functions were found to be significantly smaller [3235] than for other event shape variables such as thrust.

The transverse energy–energy correlation (TEEC) and its associated asymmetry (ATEEC) were proposed as the appropriate generalisation to hadron colliders in Ref. [36], where leading-order (LO) predictions were also presented. As a jet-based quantity, it makes use of the jet transverse energy ET=Esinθ since the energy alone is not Lorentz-invariant under longitudinal boosts along the beam direction. Here θ refers to the polar angle of the jet axis, while E is the jet energy.1 The next-to-leading-order (NLO) corrections were obtained recently [37] by using the NLOJET++ program [38, 39]. They are found to be of moderate size so that the TEEC and ATEEC functions are well suited for precision tests of QCD, including a precise determination of the strong coupling constant αs. The TEEC is defined as [40]

1σdΣdcosϕ1σijdσdxTidxTjdcosϕxTixTjdxTidxTj=1NA=1NijETiAETjAkETkA2δ(cosϕ-cosϕij), 1

where the last expression is valid for a sample of N hard-scattering multi-jet events, labelled by the index A, and the indices i and j run over all jets in a given event. Here, xTi is the fraction of transverse energy of jet i with respect to the total transverse energy, i.e. xTi=ETi/kETk, ϕij is the angle in the transverse plane between jet i and jet j and δ(x) is the Dirac delta function, which ensures ϕ=ϕij.

The associated asymmetry ATEEC is then defined as the difference between the forward (cosϕ>0) and the backward (cosϕ<0) parts of the TEEC, i.e.

1σdΣasymdcosϕ1σdΣdcosϕϕ-1σdΣdcosϕπ-ϕ.

Recently, the ATLAS Collaboration presented a measurement of the TEEC and ATEEC [41], where these observables were used for a determination of the strong coupling constant αs(mZ) at an energy regime of Q=305GeV. This paper extends the previous measurement to higher energy scales up to values close to 1TeV. The analysis consists in the measurement of the TEEC and ATEEC distributions in different energy regimes, determining αs(mZ) in each of them, and using these determinations to test the running of αs predicted by the QCD β-function. Precise knowledge of the running of αs is not only important as a precision test of QCD at large scales but also as a test for new physics, as the existence of new coloured fermions would imply modifications to the β-function [42, 43].

ATLAS detector

The ATLAS detector [44] is a multipurpose particle physics detector with a forward-backward symmetric cylindrical geometry and a solid angle coverage of almost 4π.

The inner tracking system covers the pseudorapidity range |η|<2.5. It consists of a silicon pixel detector, a silicon microstrip detector and, for |η|<2.0, a transition radiation tracker. It is surrounded by a thin superconducting solenoid providing a 2 T magnetic field along the beam direction. A high-granularity liquid-argon sampling electromagnetic calorimeter covers the region |η|<3.2. A steel/scintillator tile hadronic calorimeter provides coverage in the range |η|<1.7. The endcap and forward regions, spanning 1.5<|η|<4.9, are instrumented with liquid-argon calorimeters for electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters. It consists of three large air-core superconducting toroid systems and separate trigger and high-precision tracking chambers providing accurate muon tracking for |η|<2.7.

The trigger system [45] has three consecutive levels: level 1, level 2 and the event filter. The level 1 triggers are hardware-based and use coarse detector information to identify regions of interest, whereas the level 2 triggers are software-based and perform a fast online data reconstruction. Finally, the event filter uses reconstruction algorithms similar to the offline versions with the full detector granularity.

Monte Carlo simulation

Multi-jet production in pp collisions is described by the convolution of the production cross-sections for parton–parton scattering with the parton distribution functions (PDFs). Monte Carlo (MC) event generators differ in the approximations used to calculate the underlying short-distance QCD processes, in the way parton showers are built to take into account higher-order effects and in the fragmentation scheme responsible for long-distance effects. Pythia and Herwig++ event generators were used for the description of multi-jet production in pp collisions. These event generators differ in the modelling of the parton shower, hadronisation and underlying event. Pythia uses pT-ordered parton showers, in which the pT of the emitted parton is decreased in each step, while for the angle-ordered parton showers in Herwig++, the relevant scale is related to the angle between the emitted and the incoming parton. The generated events were processed with the ATLAS full detector simulation [46] based on Geant4 [47].

The baseline MC samples were generated using Pythia 8.160 [48] with the matrix elements for the underlying 22 processes calculated at LO using the CT10 LO PDFs [49] and matched to pT-ordered parton showers. A set of tuned parameters called the AU2CT10 tune [50] was used to model the underlying event (UE). The hadronisation follows the Lund string model [51].

A different set of samples were generated with Herwig++ 2.5.2 [52], using the LO CTEQ6L1 PDFs [53] and the CTEQ6L1-UE-EE-3 tune for the underlying event [54]. Herwig++ uses angle-ordered parton showers, a cluster hadronisation scheme and the underlying-event parameterisation is given by Jimmy [55].

Additional samples are generated using Sherpa 1.4.5 [56], which calculates matrix elements for 2N processes at LO, which are then convolved with the CT10 LO PDFs, and uses the CKKW [57] method for the parton shower matching. These samples were generated with up to three hard-scattering partons in the final state.

In order to compensate for the steeply falling pT spectrum, MC samples are generated in seven intervals of the leading-jet transverse momentum. Each of these samples contain of the order of 6×106 events for Pythia8 and 1.4×106 events for Herwig++ and Sherpa.

All MC simulated samples described above are subject to a reweighting algorithm in order to match the average number of pp interactions per bunch-crossing observed in the data. The average number of interactions per bunch-crossing amounts to μ=20.4 in data, and to μ=22.0 in the MC simulation.

Data sample and jet calibration

The data used were recorded in 2012 at s=8TeV and collected using a single-jet trigger. It requires at least one jet, reconstructed with the anti-kt algorithm [58] with radius parameter R=0.4 as implemented in FastJet [59]. The jet transverse energy measured by the trigger system is required to be greater than 360GeV at the trigger level. This trigger is fully efficient for values of the scalar sum of the calibrated transverse momenta of the two leading jets, pT1+pT2, denoted hereafter by HT2, above 730GeV. This is the lowest unprescaled trigger for the 2012 data-taking period, and the integrated luminosity of the full data sample is 20.2fb-1.

Events are required to have at least one vertex, with two or more associated tracks with transverse momentum pT>400MeV. The vertex maximising pT2, where the sum is performed over tracks, is chosen as the primary vertex.

In the analysis, jets are reconstructed with the same algorithm as used in the trigger, the anti-kt algorithm with radius parameter R=0.4. The input objects to the jet algorithm are topological clusters of energy deposits in the calorimeters [60]. The baseline calibration for these clusters corrects their energy using local hadronic calibration [61, 62]. The four-momentum of an uncalibrated jet is defined as the sum of the four-momenta of its constituent clusters, which are considered massless. Thus, the resulting jets are massive. However, the effect of this mass is marginal for jets in the kinematic range considered in this paper, as the difference between transverse energy and transverse momentum is at the per-mille level for these jets.

The jet calibration procedure includes energy corrections for multiple pp interactions in the same or neighbouring bunch crossings, known as “pile-up”, as well as angular corrections to ensure that the jet originates from the primary vertex. Effects due to energy losses in inactive material, shower leakage, the magnetic field, as well as inefficiencies in energy clustering and jet reconstruction, are taken into account. This is done using an MC-based correction, in bins of η and pT, derived from the relation of the reconstructed jet energy to the energy of the corresponding particle-level jet, not including muons or non-interacting particles. In a final step, an in situ calibration corrects for residual differences in the jet response between the MC simulation and the data using pT-balance techniques for dijet, γ+jet, Z+jet and multi-jet final states. The total jet energy scale (JES) uncertainty is given by a set of independent sources, correlated in pT. The uncertainty in the pT value of individual jets due to the JES increases from (1–4)% for |η|<1.8 to 5% for 1.8<|η|<4.5 [63].

The selected jets must fulfill pT>100GeV and |η|<2.5. The two leading jets are further required to fulfil HT2>800GeV. In addition, jets are required to satisfy quality criteria that reject beam-induced backgrounds (jet cleaning) [64].

The number of selected events in data is 6.2×106, with an average jet multiplicity Njet=2.3. In order to study the dependence of the TEEC and ATEEC on the energy scale, and thus the running of the strong coupling, the data are further binned in HT2. The binning is chosen as a compromise between reaching the highest available energy scales while keeping a sufficient statistical precision in the TEEC distributions, and thus in the determination of αs. Table 1 summarises this choice, as well as the number of events in each energy bin and the average value of the chosen scale Q=HT2/2, obtained from detector-level data.

Table 1.

Summary of the HT2 bins used in the analysis. The table shows the number of events falling into each energy bin together with the value of the scale Q at which the coupling constant αs is measured

HT2 range [GeV] Number of events Q=HT2/2 [GeV]
[800, 850] 1 809 497 412
[850, 900] 1 240 059 437
[900, 1000] 1 465 814 472
[1000, 1100] 745 898 522
[1100, 1400] 740 563 604
[1400, 5000] 192 204 810

Results at the detector level

The data sample described in Sect. 4 is used to measure the TEEC and ATEEC functions. In order to study the kinematical dependence of such observables, and thus the running of the strong coupling with the energy scale involved in the hard process, the binning introduced in Table 1 is used. Figure 1 compares the TEEC and ATEEC distributions, measured in two of these bins, with the MC predictions from Pythia8, Herwig++ and Sherpa.

Fig. 1.

Fig. 1

Detector-level distributions for the TEEC (top) and ATEEC functions (bottom) for the first and the last HT2 intervals chosen in this analysis, together with MC predictions from Pythia8, Herwig++ and Sherpa. The total uncertainty, including statistical and detector experimental sources, i.e. those not related to unfolding corrections, is also indicated using an error bar for the distributions and a green-shaded band for the ratios. The systematic uncertainties are discussed in Sect. 7

The TEEC distributions show two peaks in the regions close to the kinematical endpoints cosϕ=±1. The first one, at cosϕ=-1 is due to the back-to-back configuration in two-jet events, which dominate the sample, while the second peak at cosϕ=+1 is due to the self-correlations of one jet with itself. These self-correlations are included in Eq. (1) and are necessary for the correct normalisation of the TEEC functions. The central regions of the TEEC distributions shown in Fig. 1 are dominated by gluon radiation, which is decorrelated from the main event axis as predicted by QCD and measured in Refs. [65, 66].

Among the MC predictions considered here, Pythia8 and Sherpa are the ones which fit the data best, while Herwig++ shows significant discrepancies with the data.

Correction to particle level

In order to allow comparison with particle-level MC predictions, as well as NLO theoretical predictions, the detector-level distributions presented in Sect. 5 need to be corrected for detector effects. Particle-level jets are reconstructed in the MC samples using the anti-kt algorithm with R=0.4, applied to final-state particles with an average lifetime τ>10-11s, including muons and neutrinos. The kinematical requirements for particle-level jets are the same as for the definition of TEEC/ATEEC at the detector level.

In the data, an unfolding procedure is used which relies on an iterative Bayesian unfolding method [67] as implemented in the RooUnfold program [68]. The method makes use of a transfer matrix for each distribution, which takes into account any inefficiencies in the detector, as well as its finite resolution. The Pythia8 MC sample is used to determine the transfer matrices from the particle-level to detector-level TEEC distributions. Pairs of jets not entering the transfer matrices are accounted for using inefficiency correction factors.

The excellent azimuthal resolution of the ATLAS detector, together with the reduction of the energy scale and resolution effects by the weighting procedure involved in the definition of the TEEC function, are reflected in the fact that the transfer matrices have very small off-diagonal terms (smaller than 10%), leading to very small migrations between bins.

The statistical uncertainty is propagated through the unfolding procedure by using pseudo-experiments. A set of 103 replicas is considered for each measured distribution by applying a Poisson-distributed fluctuation around the nominal measured distribution. Each of these replicas is unfolded using a fluctuated version of the transfer matrix, which produces the corresponding set of 103 replicas of the unfolded spectra. The statistical uncertainty is defined as the standard deviation of all replicas.

Systematic uncertainties

The dominant sources are those associated with the MC model used in the unfolding procedure and the JES uncertainty in the jet calibration procedure.

  • Jet Energy Scale: The uncertainty in the jet calibration procedure [63] is propagated to the TEEC by varying each jet energy and transverse momentum by one standard deviation of each of the 67 nuisance parameters of the JES uncertainty, which depend on both the jet transverse momentum and pseudorapidity. The total JES uncertainty is evaluated as the sum in quadrature of all nuisance parameters, and amounts to 2%.

  • Jet Energy Resolution: The effect on the TEEC function of the jet energy resolution uncertainty [69] is estimated by smearing the energy and transverse momentum by a smearing factor depending on both pT and η. This amounts to approximately 1% in the TEEC distributions.

  • Monte Carlo modelling: The modelling uncertainty is estimated by performing the unfolding procedure described in Sect. 6 with different MC approaches. The difference between the unfolded distributions using Pythia and Herwig++ defines the envelope of the uncertainty. This was cross-checked using the difference between Pythia and Sherpa, leading to similar results. This is the dominant experimental uncertainty for this measurement, being always below 5% for the TEEC distributions, and being larger for low HT2.

  • Unfolding: The mismodelling of the data made by the MC simulation is accounted for as an additional source of uncertainty. This is assessed by reweighting the transfer matrices so that the level of agreement between the detector-level projection and the data is enhanced. The modified detector-level distributions are then unfolded using the method described in Sect. 6. The difference between the modified particle-level distribution and the nominal one is then taken as the uncertainty. This uncertainty is smaller than 0.5% for the full cosϕ range for all bins in HT2. The impact of this uncertainty on the TEEC function is below 1%.

  • Jet Angular Resolution: The uncertainty in the jet angular resolution is propagated to the TEEC measurements by smearing the azimuthal coordinate φ of each jet by 10% of the resolution in the MC simulation. This is motivated by the track-to-cluster matching studies done in Ref. [65]. This impacts the TEEC measurement at the level of 0.5%.

  • Jet cleaning: The modelling of the efficiency of the jet-cleaning cuts is considered as an additional source of experimental uncertainty. This is studied by tightening the jet cleaning-requirements in both data and MC simulation, and considering the double ratio between them. The differences are below 0.5%.

In order to mitigate statistical fluctuations, the resulting systematic uncertainties are smoothed using a Gaussian kernel algorithm. The impact of these systematic uncertainties is summarised in Fig. 2, where the relative errors are shown for the TEEC and ATEEC distributions for each HT2 bin considered.

Fig. 2.

Fig. 2

Systematic uncertainties in the measured TEEC (top) and ATEEC distributions (bottom) for the first and the last bins in HT2. The total uncertainty is below 5% in all bins of the TEEC distributions

Experimental results

The results of the unfolding are compared with particle-level MC predictions, including the estimated systematic uncertainties. Figure 3 shows this comparison for the TEEC, while the ATEEC results are shown in Fig. 4. The level of agreement seen here between data and MC simulation is similar to that at detector level. Pythia and Sherpa broadly describe the data, while the Herwig++ description is disfavoured.

Fig. 3.

Fig. 3

Particle-level distributions for the TEEC functions in each of the HT2 intervals chosen in this analysis, together with MC predictions from Pythia8, Herwig++ and Sherpa. The total uncertainty, including statistical and other experimental sources is also indicated using an error bar for the distributions and a green-shaded band for the ratios

Fig. 4.

Fig. 4

Particle-level distributions for the ATEEC functions in each of the HT2 intervals chosen in this analysis, together with MC predictions from Pythia8, Herwig++ and Sherpa. The total uncertainty, including statistical and other experimental sources is also indicated using an error bar for the distributions and a green-shaded band for the ratios

Theoretical predictions

The theoretical predictions for the TEEC and ATEEC functions are calculated using perturbative QCD at NLO as implemented in NLOJET++ [38, 39]. Typically O(1010) events are generated for the calculation. The partonic cross-sections, σ^, are convolved with the NNLO PDF sets from MMHT 2014 [70], CT14 [71], NNPDF 3.0 [72] and HERAPDF 2.0 [73] using the LHAPDF6 package [74]. The value of αs(mZ) used in the partonic matrix-element calculation is chosen to be the same as that of the PDF. At leading order in αs, the TEEC function defined in Eq. (1) can be expressed as

1σdΣdϕ=Σai,bifa1/p(x1)fa2/p(x2)Σ^a1a2b1b2b3Σai,bifa1/p(x1)fa2/p(x2)σ^a1a2b1b2, 2

where Σ^a1a2b1b2b3 is the partonic cross-section weighted by the fractions of transverse energy of the outgoing partons, xTixTj as in Eq. (1); xi (i=1,2) are the fractional longitudinal momenta carried by the initial-state partons, fa1/p(x1) and fa2/p(x2) are the PDFs and denotes a convolution over x1,x2.

At O(αs4), the numerator in Eq. (2) entails calculations of the 23 partonic subprocesses at NLO accuracy, and the 24 partonic subprocesses at LO. In order to avoid the double collinear singularities appearing in the latter, the angular range is restricted to |cosϕ|0.92. This avoids calculating the two-loop virtual corrections to the 22 subprocesses. Thus, with the azimuthal angle cut, the denominator in Eq. (2) includes the 22 and 23 subprocesses up to and including the O(αs3) corrections.

The nominal renormalisation and factorisation scales are defined as a function of the transverse momenta of the two leading jets as follows [75]

μR=pT1+pT22;μF=pT1+pT24.

This choice eases the comparison with the previous measurement at s=7TeV [41], where the renormalisation scale was the same. The relevant scale for the perturbative calculation is the renormalisation scale, as variations of the factorisation scale lead to small variations of the physical observable. The scale choice for the NLO pQCD templates used to extract αs as well as for the presentation of the measurement is not uniquely defined. The nominal scale choice, HT2/2, used in this paper is based on previous publications [41, 76]. However, it should be noted that other scale choices, which explicitly take into account the kinematics of the third jet, are also viable options and can be considered in future measurements.

The following comments are in order. The NLOJet++ calculations are performed in the limit of massless quarks. PDFs are based on the nf=5 scheme. There is therefore a residual uncertainty due to the mass of the top quark. This is expected to be small since at LHC energies σtt¯σQCD. The correct treatment of top quark mass effects in the initial as well as in final state is not yet available.

Non-perturbative corrections

The pQCD predictions obtained using NLOJET++ are generated at the parton level only. In order to compare these predictions with the data, one needs to correct for non-perturbative (NP) effects, namely hadronisation and the underlying event. Here, doing this relies on bin-by-bin correction factors calculated as the ratio of the MC predictions for TEEC distributions with hadronisation and UE turned on to those with hadronisation and UE turned off. These factors, which are calculated using several MC models, are used to correct the pQCD prediction to the particle level by multiplying each bin of the theoretical distributions. Figure 5 shows the distributions of the factors for the TEEC as a function of cosϕ and for two bins in the energy scale HT2. They were calculated using several models, namely Pythia8 with the AU2 [77] and 4C tunes [78] and Herwig++ with the LHC-UE-EE-3-CTEQ6L1 and LHC-UE-EE-3-LOMOD tunes [54]. From these four possibilities, Pythia8 with the AU2 tune is used for the nominal corrections.

Fig. 5.

Fig. 5

Non-perturbative correction factors for TEEC in the first and last bins of HT2 as a function of cosϕ

Theoretical uncertainties

The theoretical uncertainties are divided into three classes: those corresponding to the renormalisation and factorisation scale variations, the ones corresponding to the PDF eigenvectors, and the ones for the non-perturbative corrections.

  • The theoretical uncertainty due to the choice of renormalisation and factorisation scales is defined as the envelope of all the variations of the TEEC and ATEEC distributions obtained by varying up and down the scales μR,μF by a factor of two, excluding those configurations in which both scales are varied in opposite directions. This is the dominant theoretical uncertainty in this measurement, which can reach 20% in the central region of the TEEC distributions.

  • The parton distribution functions are varied following the set of eigenvectors/replicas provided by each PDF group [7073]. The propagation of the corresponding uncertainty to the TEEC and ATEEC is done following the recommendations for each particular set of distribution functions. The size of this uncertainty is around 1% for each TEEC bin.

  • The uncertainty in the non-perturbative corrections is estimated as the envelope of all models used for the calculation of the correction factors in Fig. 5. This uncertainty is around 1% for each of the TEEC bins considered in the NLO predictions, i.e. those with |cosϕ|0.92.

  • The uncertainty due to αs is also considered for the comparison of the data with the theoretical predictions. This is estimated by varying αs by the uncertainty in its value for each PDF set, as indicated in Refs.  [7073].

The total theoretical uncertainty is obtained by adding these four theoretical uncertainties in quadrature. The total uncertainty can reach 20% for the central part of the TEEC, due to the large value of the scale uncertainty in this region.

Comparison of theoretical predictions and experimental results

The unfolded data obtained in Sect. 8 are compared to the pQCD predictions, once corrected for non-perturbative effects. Figures 6 and 7 show the ratios of the data to the theoretical predictions for the TEEC and ATEEC functions, respectively. The theoretical predictions were calculated, as a function of cosϕ and for each of the HT2 bins considered, using the NNPDF 3.0 PDFs with αs(mZ)=0.1180.

Fig. 6.

Fig. 6

Ratios of the TEEC data in each HT2 bin to the NLO pQCD predictions obtained using the NNPDF 3.0 parton distribution functions, and corrected for non-perturbative effects

Fig. 7.

Fig. 7

Ratios of the ATEEC data in each HT2 bin to the NLO pQCD predictions obtained using the NNPDF 3.0 parton distribution functions, and corrected for non-perturbative effects

From the comparisons in Figs. 6 and 7, one can conclude that perturbative QCD correctly describes the data within the experimental and theoretical uncertainties.

Determination of αs and test of asymptotic freedom

From the comparisons made in the previous section, one can determine the strong coupling constant at the scale given by the pole mass of the Z boson, αs(mZ), by considering the following χ2 function

χ2(αs,λ)=bins(xi-Fi(αs,λ))2Δxi2+Δξi2+kλk2, 3

where the theoretical predictions are varied according to

Fi(αs,λ)=ψi(αs)1+kλkσk(i). 4

In Eqs. (3) and (4), αs stands for αs(mZ); xi is the value of the i-th point of the distribution as measured in data, while Δxi is its statistical uncertainty. The statistical uncertainty in the theoretical predictions is also included as Δξi, while σk(i) is the relative value of the k-th source of systematic uncertainty in bin i.

This technique takes into account the correlations between the different sources of systematic uncertainty discussed in Sect. 7 by introducing the nuisance parameters {λk}, one for each source of experimental uncertainty. Thus, the minimum of the χ2 function defined in Eq. (3) is found in a 74-dimensional space, in which 73 correspond to nuisance parameters λi and one to αs(mZ).

The method also requires an analytical expression for the dependence of the fitted observable on the strong coupling constant, which is given by ψi(αs) for bin i. For each PDF set, the corresponding αs(mZ) variation range is considered and the theoretical prediction is obtained for each value of αs(mZ). The functions ψi(αs) are then obtained by fitting the values of the TEEC (ATEEC) in each (HT2,cosϕ) bin to a second-order polynomial. For both the TEEC and ATEEC functions, the fits to extract αs(mZ) are repeated separately for each HT2 interval, thus determining a value of αs(mZ) for each energy bin. The theoretical uncertainties are determined by shifting the theory distributions by each of the uncertainties separately, recalculating the functions ψi(αs) and determining a new value of αs(mZ). The uncertainty is determined by taking the difference between this value and the nominal one.

Each of the obtained values of αs(mZ) is then evolved to the corresponding measured scale using the NLO solution to the renormalisation group equation (RGE), given by

αs(Q2)=1β0logx1-β1β02loglogxlogx;x=Q2Λ2, 5

where the coefficients β0 and β1 are given by

β0=14π11-23nf;β1=1(4π)2102-383nf,

and Λ is the QCD scale, determined in each case from the fitted value of αs(mZ). Here, nf is the number of active flavours at the scale Q, i.e. the number of quarks with mass m<Q. Therefore, nf=6 in the six bins considered in Table 1. When evolving αs(mZ) to αs(Q), the proper transition rules for nf=5 to nf=6 are applied so that αs(Q) is a continuous function across quark thresholds. Finally, the results are combined by performing a global fit, where all bins are merged together.

Fits to individual TEEC functions

The values of αs(mZ) obtained from fits to the TEEC function in each HT2 bin are summarised in Table 2. The theoretical predictions used for this extraction use NNPDF 3.0 as the nominal PDF set.

Table 2.

Values of the strong coupling constant at the Z boson mass scale, αs(mZ) obtained from fits to the TEEC function for each HT2 interval using the NNPDF 3.0 parton distribution functions. The values of the average scale Q for each energy bin are shown in the first column, while the values of the χ2 function at the minimum are shown in the third column. The uncertainty referred to as NP is the one related to the non-perturbative corrections

Q (GeV) αs(mZ) value (NNPDF 3.0) χ2/Ndof
412 0.1171 ± 0.0021 (exp.) -0.0022+0.0081 (scale) ± 0.0013 (PDF) ± 0.0001 (NP) 24.3/21
437 0.1178 ± 0.0017 (exp.) -0.0017+0.0073 (scale) ± 0.0014 (PDF) ± 0.0002 (NP) 28.3/21
472 0.1177 ± 0.0017 (exp.) -0.0023+0.0079 (scale) ± 0.0015 (PDF) ± 0.0001 (NP) 27.7/21
522 0.1163 ± 0.0017 (exp.) -0.0016+0.0067 (scale) ± 0.0016 (PDF) ± 0.0001 (NP) 22.8/21
604 0.1181 ± 0.0017 (exp.) -0.0022+0.0082 (scale) ± 0.0017 (PDF) ± 0.0005 (NP) 24.3/21
810 0.1186 ± 0.0023 (exp.) -0.0035+0.0085 (scale) ± 0.0020 (PDF) ± 0.0004 (NP) 23.7/21

The values summarised in Table 2 are in good agreement with the 2016 world average value [79], as well as with previous measurements, in particular with previous extractions using LHC data [41, 76, 8084]. The values of the χ2 indicate that agreement between the data and the theoretical predictions is good. The nuisance parameters for the TEEC fits are generally compatible with zero. One remarkable exception is the nuisance parameter associated to the modelling uncertainty, which deviates by half standard deviation with a very small error bar. This is an indication that these data can be used to further tune MC event generators which model multi-jet production.

Figure 8 compares the data with the theoretical predictions after the fit, i.e. where the fitted values of αs(mZ) and the nuisance parameters are already constrained. Table 3 shows the values of αs evolved from mZ to the corresponding scale Q using Eq. (5). The appendix includes tables in which the values of αs(mZ) obtained from the TEEC fits are extrapolated to different values of Q, given by the averages of kinematical quantities other than HT2/2.

Fig. 8.

Fig. 8

Comparison of the TEEC data and the theoretical predictions after the fit. The value of αs(mZ) used in this comparison is fitted independently for each energy bin

Table 3.

Values of the strong coupling constant at the measurement scales, αs(Q2) obtained from fits to the TEEC function for each HT2 interval using the NNPDF 3.0 parton distribution functions. The uncertainty referred to as NP is the one related to the non-perturbative corrections

Q (GeV) αs(Q2) value (NNPDF 3.0)
412 0.0966 ± 0.0014 (exp.) -0.0015+0.0054 (scale) ± 0.0009 (PDF) ± 0.0001 (NP)
437 0.0964 ± 0.0012 (exp.) -0.0011+0.0048 (scale) ± 0.0009 (PDF) ± 0.0002 (NP)
472 0.0955 ± 0.0011 (exp.) -0.0015+0.0051 (scale) ± 0.0009 (PDF) ± 0.0001 (NP)
522 0.0936 ± 0.0011 (exp.) -0.0010+0.0043 (scale) ± 0.0010 (PDF) ± 0.0001 (NP)
604 0.0933 ± 0.0011 (exp.) -0.0014+0.0050 (scale) ± 0.0011 (PDF) ± 0.0003 (NP)
810 0.0907 ± 0.0013 (exp.) -0.0020+0.0049 (scale) ± 0.0011 (PDF) ± 0.0002 (NP)

Global TEEC fit

The combination of the previous results is done by considering all the HT2 bins into a single, global fit. The result obtained using the NNPDF 3.0 PDF set has the largest PDF uncertainty and thus, in order to be conservative, it is the one quoted as the final value of αs(mZ).

The impact of the correlations of the JES uncertainties on the result is studied by considering two additional correlation scenarios, one with stronger and one with weaker correlation assumptions [63]. From the envelope of these results, an additional uncertainty of 0.0007 is assigned in order to cover this difference.

The results for αs(mZ) are summarised in Table 4 for each of the four PDF sets investigated in this analysis

Table 4.

The results for αs from fits to the TEEC using different PDFs. The uncertainty referred to as NP is the one related to the non-perturbative corrections. The uncertainty labelled as ‘mod’ corresponds to the HERAPDF modelling and parameterisation uncertainty

PDF αs(mZ) value χ2/Ndof
MMHT 2014 0.1151 ± 0.0008 (exp.) -0.0047+0.0064 (scale) ± 0.0012 (PDF) ± 0.0002 (NP) 173/131
CT14 0.1165 ± 0.0010 (exp.) -0.0061+0.0067 (scale) ± 0.0016 (PDF) ± 0.0003 (NP) 161/131
NNPDF 3.0 0.1162 ± 0.0011 (exp.) -0.0061+0.0076 (scale) ± 0.0018 (PDF) ± 0.0003 (NP) 174/131
HERAPDF 2.0 0.1177 ± 0.0008 (exp.) -0.0040+0.0064 (scale) ± 0.0005 (PDF) ± 0.0002 (NP) -0.0007+0.0008 (mod) 169/131

As a result of considering all the data, the experimental uncertainties are reduced with respect to the partial fits. Also, it should be noted that the values of αs extracted with different PDF sets show good agreement with each other within the PDF uncertainties, and are compatible with the latest world average value αs(mZ)=0.1181±0.0011 [79].

The final result for the TEEC fit is

αs(mZ)=0.1162±0.0011(exp.)-0.0061+0.0076(scale)±0.0018(PDF)±0.0003(NP).

A comparison of the results for αs from the global and partial fits is shown in Fig. 9. In this figure, the results from previous experiments [41, 76, 8083, 85, 86] are also shown, together with the world average band [79]. Agreement between this result and the ones from other experiments is very good, even though the experimental uncertainties in this analysis are smaller than in previous measurements in hadron colliders.

Fig. 9.

Fig. 9

Comparison of the values of αs(Q) obtained from fits to the TEEC functions at the energy scales given by HT2/2 (red star points) with the uncertainty band from the global fit (orange full band) and the 2016 world average (green hatched band). Determinations from other experiments are also shown as data points. The error bars, as well as the orange full band, include all experimental and theoretical sources of uncertainty. The strong coupling constant is assumed to run according to the two-loop solution of the RGE

Fits to individual ATEEC functions

The values of αs extracted from the fits to the measured ATEEC functions are summarised in Table 5, together with the values of the χ2 functions at the minima.

Table 5.

Values of the strong coupling constant at the Z boson mass scale, αs(mZ) obtained from fits to the ATEEC function for each HT2 interval using the NNPDF 3.0 parton distribution functions. The values of the average scale Q for each energy bin are shown in the first column, while the values of the χ2 function at the minimum are shown in the third column. The uncertainty referred to as NP is the one related to the non-perturbative corrections

Q (GeV) αs(mZ) value (NNPDF 3.0) χ2/Ndof
412 0.1209 ± 0.0036 (exp.) -0.0031+0.0085 (scale) ± 0.0013 (PDF) ± 0.0004 (NP) 10.6/10
437 0.1211 ± 0.0026 (exp.) -0.0014+0.0064 (scale) ± 0.0015 (PDF) ± 0.0010 (NP) 6.8/10
472 0.1203 ± 0.0028 (exp.) -0.0013+0.0060 (scale) ± 0.0016 (PDF) ± 0.0002 (NP) 8.8/10
522 0.1196 ± 0.0025 (exp.) -0.0010+0.0054 (scale) ± 0.0017 (PDF) ± 0.0004 (NP) 10.9/10
604 0.1176 ± 0.0031 (exp.) -0.0008+0.0058 (scale) ± 0.0020 (PDF) ± 0.0005 (NP) 6.4/10
810 0.1172 ± 0.0037 (exp.) -0.0009+0.0053 (scale) ± 0.0022 (PDF) ± 0.0001 (NP) 9.8/10

The values extracted from the ATEEC show smaller scale uncertainties than their counterpart values from TEEC. This is understood to be due to the fact that the scale dependence is mitigated for the ATEEC distributions because, for the TEEC, this dependence shows some azimuthal symmetry. Also, it is important to note that the values of the χ2 indicate excellent compatibility between the data and the theoretical predictions. Good agreement, within the scale uncertainty, is also observed between these values and the ones extracted from fits to the TEEC, as well as among themselves and with the current world average. The nuisance parameters are compatible with zero within one standard deviation.

As before, the values of αs(Q2) at the scales of the measurement are obtained by evolving the values in Table 5 using Eq. (5). The results are given in Table 6. As in the TEEC case, Fig. 10 compares the data with the theoretical predictions after the fit. The appendix includes tables in which the values of αs(mZ) obtained from the ATEEC fits are extrapolated to different values of Q, given by the averages of kinematic quantities other than HT2/2.

Table 6.

Values of the strong coupling constant at the measurement scales, αs(Q2) obtained from fits to the ATEEC function for each HT2 interval using the NNPDF 3.0 parton distribution functions. The uncertainty referred to as NP is the one related to the non-perturbative corrections

Q (GeV) αs(Q2) value (NNPDF 3.0)
412 0.0992 ± 0.0024 (exp.) -0.0020+0.0056 (scale) ± 0.0009 (PDF) ± 0.0002 (NP)
437 0.0986 ± 0.0017 (exp.) -0.0009+0.0041 (scale) ± 0.0010 (PDF) ± 0.0007 (NP)
472 0.0973 ± 0.0018 (exp.) -0.0008+0.0038 (scale) ± 0.0010 (PDF) ± 0.0001 (NP)
522 0.0957 ± 0.0016 (exp.) -0.0006+0.0034 (scale) ± 0.0011 (PDF) ± 0.0003 (NP)
604 0.0930 ± 0.0019 (exp.) -0.0005+0.0035 (scale) ± 0.0012 (PDF) ± 0.0003 (NP)
810 0.0899 ± 0.0021 (exp.) -0.0005+0.0031 (scale) ± 0.0013 (PDF) ± 0.0001 (NP)

Fig. 10.

Fig. 10

Comparison of the ATEEC data and the theoretical predictions after the fit. The value of αs(mZ) used in this comparison is fitted independently for each energy bin

Global ATEEC fit

As before, the global value of αs(mZ) is obtained from the combined fit of the ATEEC data in the six bins of HT2. Again, the NNPDF 3.0 PDF set is used for the final result as it provides the most conservative choice. Also, as in the TEEC case, two additional correlation scenarios have been considered for the JES uncertainty. An additional uncertainty of 0.0003 is assigned in order to cover the differences.

The results are summarised in Table 7 for the four sets of PDFs considered in the theoretical predictions.

Table 7.

The results for αs from fits to the ATEEC using different PDFs. The uncertainty referred to as NP is the one related to the non-perturbative corrections. The uncertainty labelled as ‘mod’ corresponds to the HERAPDF modelling and parameterisation uncertainty

PDF αs(mZ) value χ2/Ndof
MMHT 2014 0.1185 ± 0.0012 (exp.) -0.0010+0.0047 (scale) ± 0.0010 (PDF) ± 0.0004 (NP) 57.0/65
CT14 0.1203 ± 0.0013 (exp.) -0.0014+0.0053 (scale) ± 0.0015 (PDF) ± 0.0004 (NP) 55.4/65
NNPDF 3.0 0.1196 ± 0.0013 (exp.) -0.0013+0.0061 (scale) ± 0.0017 (PDF) ± 0.0004 (NP) 60.3/65
HERAPDF 2.0 0.1206 ± 0.0012 (exp.) -0.0014+0.0050 (scale) ± 0.0005 (PDF) ± 0.0002 (NP) ± 0.0007 (mod) 54.2/65

The values shown in Table 7 are in good agreement with the values in Table 4, obtained from fits to the TEEC functions. Also, it is important to note that the scale uncertainty is smaller in ATEEC fits than in TEEC fits. The values of the χ2 function at the minima show excellent agreement between the data and the pQCD predictions.

The final result for the ATEEC fit is

αs(mZ)=0.1196±0.0013(exp.)-0.0013+0.0061(scale)±0.0017(PDF)±0.0004(NP).

The values from Table 6 are compared with previous experimental results from Refs. [41, 76, 8083, 85, 86] in Fig. 11, showing good compatibility, as well as with the value from the current world average [79].

Fig. 11.

Fig. 11

Comparison of the values of αs(Q) obtained from fits to the ATEEC functions at the energy scales given by HT2/2 (red star points) with the uncertainty band from the global fit (orange full band) and the 2016 world average (green hatched band). Determinations from other experiments are also shown as data points. The error bars, as well as the orange full band, include all experimental and theoretical sources of uncertainty. The strong coupling constant is assumed to run according to the two-loop solution of the RGE

Conclusion

The TEEC and ATEEC functions are measured in 20.2fb-1 of pp collisions at a centre-of-mass energy s=8TeV using the ATLAS detector at the LHC. The data, binned in six intervals of the sum of transverse momenta of the two leading jets, HT2=pT1+pT2, are corrected for detector effects and compared to the predictions of perturbative QCD, corrected for hadronisation and multi-parton interaction effects. The results show that the data are compatible with the theoretical predictions, within the uncertainties.

The data are used to determine the strong coupling constant αs and its evolution with the interaction scale Q=(pT1+pT2)/2 by means of a χ2 fit to the theoretical predictions for both TEEC and ATEEC in each energy bin. Additionally, global fits to the TEEC and ATEEC data are performed, leading to

αs(mZ)=0.1162±0.0011(exp.)-0.0061+0.0076(scale)±0.0018(PDF)±0.0003(NP),αs(mZ)=0.1196±0.0013(exp.)-0.0013+0.0061(scale)±0.0017(PDF)±0.0004(NP),

respectively. Conservatively, the values obtained using the NNPDF 3.0 PDF set are chosen, as they provide the largest PDF uncertainty among the four PDF sets investigated. These two values are in good agreement with the determinations in previous experiments and with the current world average αs(mZ)=0.1181±0.0011. The correlation coefficient between the two determinations is ρ=0.60.

The present results are limited by the theoretical scale uncertainties, which amount to 6% of the value of αs(mZ) in the case of the TEEC determination and to 4% in the case of the ATEEC. This uncertainty is expected to decrease as higher orders are calculated for the perturbative expansion.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [87].

Appendix

This appendix contains tables in which the measured values of αs(mZ) are extrapolated to different values of Q from the central results, given by the average pT of the third jet, pT3, the average value of the three leading jets, (pT1+pT2+pT3)/3 and the average value of the transverse momentum for each pair of jets (ij), (pT1+pT2)/2 (Tables 8, 9, 10, 11, 12, 13).

Table 8.

Values of αs, obtained from TEEC fits, evolved to the average value of the third-jet transverse momentum in each event, pT3 for each bin in HT2

pT3 (GeV) αs(pT3) value (TEEC, NNPDF 3.0)
169 0.1072 ± 0.0017 (exp.) -0.0019+0.0067 (scale) ± 0.0011 (PDF) ± 0.0001 (NP)
174 0.1074 ± 0.0014 (exp.) -0.0014+0.0060 (scale) ± 0.0012 (PDF) ± 0.0002 (NP)
179 0.1068 ± 0.0014 (exp.) -0.0019+0.0064 (scale) ± 0.0012 (PDF) ± 0.0001 (NP)
186 0.1052 ± 0.0014 (exp.) -0.0013+0.0054 (scale) ± 0.0013 (PDF) ± 0.0001 (NP)
197 0.1060 ± 0.0014 (exp.) -0.0018+0.0065 (scale) ± 0.0014 (PDF) ± 0.0004 (NP)
215 0.1052 ± 0.0018 (exp.) -0.0027+0.0066 (scale) ± 0.0015 (PDF) ± 0.0003 (NP)

Table 9.

Values of αs, obtained from TEEC fits, evolved to the average value of the average transverse momentum of the three leading jets in each event, (pT1+pT2+pT3)/3 for each bin in HT2

HT3/3 (GeV) αs(HT3/3) value (TEEC, NNPDF 3.0)
289 0.1005 ± 0.0015 (exp.) -0.0016+0.0059 (scale) ± 0.0010 (PDF) ± 0.0001 (NP)
307 0.1004 ± 0.0013 (exp.) -0.0012+0.0052 (scale) ± 0.0010 (PDF) ± 0.0002 (NP)
332 0.0994 ± 0.0012 (exp.) -0.0016+0.0055 (scale) ± 0.0010 (PDF) ± 0.0001 (NP)
366 0.0973 ± 0.0012 (exp.) -0.0011+0.0046 (scale) ± 0.0011 (PDF) ± 0.0001 (NP)
423 0.0970 ± 0.0012 (exp.) -0.0015+0.0054 (scale) ± 0.0012 (PDF) ± 0.0003 (NP)
564 0.0943 ± 0.0014 (exp.) -0.0022+0.0053 (scale) ± 0.0012 (PDF) ± 0.0002 (NP)

Table 10.

Values of αs, obtained from TEEC fits, evolved to the average value of transverse momentum for every pair of jets in each event, (pTi+pTj/2 for each bin in HT2

HTij/2 (GeV) αs(HTij/2) value (TEEC, NNPDF 3.0)
366 0.0979 ± 0.0014 (exp.) -0.0015+0.0055 (scale) ± 0.0009 (PDF) ± 0.0001 (NP)
386 0.0978 ± 0.0012 (exp.) -0.0012+0.0049 (scale) ± 0.0010 (PDF) ± 0.0002 (NP)
413 0.0969 ± 0.0011 (exp.) -0.0016+0.0052 (scale) ± 0.0010 (PDF) ± 0.0001 (NP)
452 0.0951 ± 0.0011 (exp.) -0.0011+0.0044 (scale) ± 0.0011 (PDF) ± 0.0001 (NP)
515 0.0949 ± 0.0011 (exp.) -0.0014+0.0052 (scale) ± 0.0011 (PDF) ± 0.0003 (NP)
672 0.0925 ± 0.0014 (exp.) -0.0021+0.0051 (scale) ± 0.0012 (PDF) ± 0.0002 (NP)

Table 11.

Values of αs, obtained from ATEEC fits, evolved to the average value of the third-jet transverse momentum in each event, pT3 for each bin in HT2

pT3 (GeV) αs(pT3) value (ATEEC, NNPDF 3.0)
169 0.1104 ± 0.0030 (exp.) -0.0025+0.0070 (scale) ± 0.0011 (PDF) ± 0.0003 (NP)
174 0.1101 ± 0.0022 (exp.) -0.0011+0.0052 (scale) ± 0.0012 (PDF) ± 0.0008 (NP)
179 0.1090 ± 0.0023 (exp.) -0.0011+0.0049 (scale) ± 0.0013 (PDF) ± 0.0002 (NP)
186 0.1079 ± 0.0021 (exp.) -0.0008+0.0044 (scale) ± 0.0014 (PDF) ± 0.0003 (NP)
197 0.1056 ± 0.0025 (exp.) -0.0006+0.0046 (scale) ± 0.0016 (PDF) ± 0.0004 (NP)
215 0.1041 ± 0.0029 (exp.) -0.0007+0.0042 (scale) ± 0.0017 (PDF) ± 0.0001 (NP)

Table 12.

Values of αs, obtained from ATEEC fits, evolved to the average value of the average transverse momentum of the three leading jets in each event, (pT1+pT2+pT3)/3 for each bin in HT2

HT3/3 (GeV) αs(HT3/3) value (ATEEC, NNPDF 3.0)
289 0.1033 ± 0.0026 (exp.) -0.0022+0.0061 (scale) ± 0.0009 (PDF) ± 0.0003 (NP)
307 0.1027 ± 0.0019 (exp.) -0.0010+0.0045 (scale) ± 0.0011 (PDF) ± 0.0007 (NP)
332 0.1013 ± 0.0019 (exp.) -0.0009+0.0042 (scale) ± 0.0011 (PDF) ± 0.0001 (NP)
366 0.0996 ± 0.0017 (exp.) -0.0007+0.0037 (scale) ± 0.0012 (PDF) ± 0.0003 (NP)
423 0.0966 ± 0.0021 (exp.) -0.0005+0.0038 (scale) ± 0.0013 (PDF) ± 0.0003 (NP)
564 0.0934 ± 0.0023 (exp.) -0.0006+0.0033 (scale) ± 0.0014 (PDF) ± 0.0001 (NP)

Table 13.

Values of αs, obtained from ATEEC fits, evolved to the average value of transverse momentum for every pair of jets in each event, (pTi+pTj/2 for each bin in HT2

HTij/2 (GeV) αs(HTij/2) value (ATEEC, NNPDF 3.0)
366 0.1005 ± 0.0025 (exp.) -0.0021+0.0058 (scale) ± 0.0009 (PDF) ± 0.0002 (NP)
386 0.1000 ± 0.0018 (exp.) -0.0009+0.0043 (scale) ± 0.0010 (PDF) ± 0.0007 (NP)
413 0.0987 ± 0.0018 (exp.) -0.0009+0.0040 (scale) ± 0.0010 (PDF) ± 0.0001 (NP)
452 0.0973 ± 0.0017 (exp.) -0.0007+0.0035 (scale) ± 0.0011 (PDF) ± 0.0003 (NP)
515 0.0946 ± 0.0020 (exp.) -0.0005+0.0037 (scale) ± 0.0013 (PDF) ± 0.0003 (NP)
672 0.0917 ± 0.0022 (exp.) -0.0006+0.0032 (scale) ± 0.0013 (PDF) ± 0.0001 (NP)

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2).

References

  • 1.PLUTO Collaboration, Ch. Berger et al., Energy dependence of jet measures in e+e- annihilation. Z. Phys. C 12, 297 (1982). 10.1007/BF01557575
  • 2.TASSO Collaboration, W. Braunschweig et al., Global jet properties at 14–44 GeV center of mass energy in e+e- annihilation. Z. Phys. C 47, 187 (1990). 10.1007/BF01552339
  • 3.JADE Collaboration, S. Bethke et al., Determination of the strong coupling αs from hadronic event shapes and NNLO QCD predictions using JADE data. Eur. Phys. J. C 64, 351 (2009). 10.1140/epjc/s10052-009-1149-1. arXiv:0810.1389 [hep-ex]
  • 4.OPAL Collaboration, G. Abbiendi et al., Determination of αs using OPAL hadronic event shapes at s=91-209 GeV and resummed NNLO calculations. Eur. Phys. J. C 71, 1733 (2011). 10.1140/epjc/s10052-011-1733-z. arXiv:1101.1470 [hep-ex]
  • 5.ALEPH Collaboration, A. Heister et al., Studies of QCD at e+e- centre of mass energies between 91 and 209 GeV. Eur. Phys. J. C 35, 457 (2003). 10.1140/epjc/s2004-01891-4
  • 6.DELPHI Collaboration, J. Abdallah et al., A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP. Eur. Phys. J. C 29, 285 (2003). 10.1140/epjc/s2003-01198-0. arXiv:hep-ex/0307048
  • 7.L3 Collaboration, P. Achard et al., Determination of αs from hadronic event shapes in e+e- annihilation at 192<s<208GeV. Phys. Lett. B 536, 217 (2002). 10.1016/S0370-2693(02)01814-2. arXiv:hep-ex/0206052
  • 8.ZEUS Collaboration, S. Chekanov et al., Measurement of event shapes in deep inelastic scattering at HERA. Eur. Phys. J. C 27, 531 (2003). 10.1140/epjc/s2003-01148-x. arXiv:hep-ex/0211040
  • 9.ZEUS Collaboration, S. Chekanov et al., Event shapes in deep inelastic scattering at HERA. Nucl. Phys. B 767, 1 (2007). 10.1016/j.nuclphysb.2006.05.016. arXiv:hep-ex/0604032
  • 10.H1 Collaboration, C. Adloff et al., Measurement of event shape variables in deep inelastic e+ scattering. Phys. Lett. B 406, 256 (1997). 10.1016/S0370-2693(97)00754-5. arXiv:hep-ex/9706002
  • 11.H1 Collaboration, C. Adloff et al., Investigation of power corrections to event shape variables measured in deep-inelastic scattering. Eur. Phys. J. C 14, 255 (2000). 10.1007/s100520000344. arXiv:hep-ex/9912052
  • 12.H1 Collaboration, H. Aktas et al., Measurement of event shape variables in deep-inelastic scattering at HERA. Eur. Phys. J. C 46, 343 (2006). 10.1140/epjc/s2006-02493-x. arXiv:hep-ex/0512014
  • 13.CDF Collaboration, T. Aaltonen et al., Measurement of event shapes in proton–antiproton collisions at center-of-mass energy 1.96TeV. Phys. Rev. D 83, 112007 (2011). 10.1103/PhysRevD.83.112007. arXiv:1103.5143 [hep-ex]
  • 14.CMS Collaboration, First measurement of hadronic event shapes in pp collisions at s=7TeV. Phys. Lett. B 699, 48 (2011). 10.1016/j.physletb.2011.03.060. arXiv:1102.0068 [hep-ex]
  • 15.ATLAS Collaboration, Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at s=7TeV. Eur. Phys. J. C 72, 2211 (2012). 10.1140/epjc/s10052-012-2211-y. arXiv:1206.2135 [hep-ex]
  • 16.Brandt S, Peyrou C, Sosnowski R, Wroblewski A. The principal axis of jets—an attempt to analyse high-energy collisions as two-body processes. Phys. Lett. 1964;12:57. doi: 10.1016/0031-9163(64)91176-X. [DOI] [Google Scholar]
  • 17.Bjorken JD, Brodsky SJ. Statistical model for electron–positron annihilation into hadrons. Phys. Rev. D. 1970;1:1416. doi: 10.1103/PhysRevD.1.1416. [DOI] [Google Scholar]
  • 18.Basham CL, Brown LS, Ellis SD, Love ST. Energy correlations in electron–positron annihilation: testing quantum chromodynamics. Phys. Rev. Lett. 1978;41:1585. doi: 10.1103/PhysRevLett.41.1585. [DOI] [Google Scholar]
  • 19.PLUTO Collaboration, Ch. Berger et al., Energy–energy correlations in e+e- annihilation into hadrons. Phys. Lett. B 99, 292 (1981). 10.1016/0370-2693(81)91128-X
  • 20.CELLO Collaboration, H.J. Behrend et al., On the model dependence of the determination of the strong coupling constant in second order QCD from e+e- annihilation into hadrons. Phys. Lett. B 138, 311 (1984). 10.1016/0370-2693(84)91667-8
  • 21.JADE Collaboration, W. Bartel et al., Measurements of energy correlations in e+e- hadrons. Z. Phys. C 25, 231 (1984). 10.1007/BF01547922
  • 22.TASSO Collaboration, W. Braunschweig et al., A study of energy–energy correlations between 12 and 46.8 GeV c.m. energies. Z. Phys. C 36, 349 (1987). 10.1007/BF01573928
  • 23.MARKJ Collaboration, B. Adeva et al., Model-independent second-order determination of the strong-coupling constant αs. Phys. Rev. Lett. 50, 2051 (1983). 10.1103/PhysRevLett.50.2051
  • 24.MARKII Collaboration, D. Schlatter et al., Measurement of energy correlations in e+e- hadrons. Phys. Rev. Lett. 49, 521 (1982). 10.1103/PhysRevLett.49.521
  • 25.MAC Collaboration, E. Fernández et al., Measurement of energy–energy correlations in e+e- hadrons at s=29GeV. Phys. Rev. D 31, 2724 (1985). 10.1103/PhysRevD.31.2724 [DOI] [PubMed]
  • 26.TOPAZ Collaboration, I. Adachi et al., Measurements of αs in e+e- annihilation at s=53.3GeV and 59.5GeV. Phys. Lett. B 227, 495 (1989). 10.1016/0370-2693(89)90969-6
  • 27.ALEPH Collaboration, D. Decamp et al., Measurement of αs from the structure of particle clusters produced in hadronic Z decays. Phys. Lett. B 257, 479 (1991). 10.1016/0370-2693(91)91926-M
  • 28.DELPHI Collaboration, P. Abreu et al., Energy–energy correlations in hadronic final states from Z0 decays. Phys. Lett. B 252, 149 (1990). 10.1016/0370-2693(90)91097-U
  • 29.OPAL Collaboration, M.Z. Akrawy et al., A measurement of energy correlations and a determination of αs(MZ02) in e+e- annihilations at s=91GeV. Phys. Lett. B 252, 159 (1990). 10.1016/0370-2693(90)91098-V
  • 30.L3 Collaboration, B. Adeva et al., Determination of αs from energy-energy correlations measured on the Z0 resonance. Phys. Lett. B 257, 469 (1991). 10.1016/0370-2693(91)91925-L
  • 31.SLD Collaboration, K. Abe et al., Measurement of αs(MZ2) from hadronic event observables at the Z0 resonance. Phys. Rev. D 51, 962 (1995). 10.1103/PhysRevD.51.962 [DOI] [PubMed]
  • 32.Ali A, Barreiro F. An O(αs)2 calculation of energy–energy correlation in e+e- annihilation and comparison with experimental data. Phys. Lett. B. 1982;118:155. doi: 10.1016/0370-2693(82)90621-9. [DOI] [Google Scholar]
  • 33.Ali A, Barreiro F. Energy–energy correlations in e+e- annihilation. Nucl. Phys. B. 1984;236:269. doi: 10.1016/0550-3213(84)90536-4. [DOI] [Google Scholar]
  • 34.Richards DG, Stirling WJ, Ellis SD. Second order corrections to the energy–energy correlation function in quantum chromodynamics. Phys. Lett. B. 1982;119:193. doi: 10.1016/0370-2693(82)90275-1. [DOI] [Google Scholar]
  • 35.Glover EWN, Sutton MR. The energy–energy correlation function revisited. Phys. Lett. B. 1995;342:375. doi: 10.1016/0370-2693(94)01354-F. [DOI] [Google Scholar]
  • 36.Ali A, Pietarinen E, Stirling WJ. Transverse energy–energy correlations: a test of perturbative QCD for the proton–antiproton collider. Phys. Lett. B. 1984;141:447. doi: 10.1016/0370-2693(84)90283-1. [DOI] [Google Scholar]
  • 37.Ali A, Barreiro F, Llorente J, Wang W. Transverse energy–energy correlations in next-to-leading order in αs at the LHC. Phys. Rev. D. 2012;86:114017. doi: 10.1103/PhysRevD.86.114017. [DOI] [Google Scholar]
  • 38.Nagy Z. Three-jet cross-sections in hadron–hadron collisions at NLO. Phys. Rev. Lett. 2002;88:122003. doi: 10.1103/PhysRevLett.88.122003. [DOI] [PubMed] [Google Scholar]
  • 39.Nagy Z. Next-to-leading order calculation of three-jet observables in hadron–hadron collisions. Phys. Rev. D. 2003;68:094002. doi: 10.1103/PhysRevD.68.094002. [DOI] [Google Scholar]
  • 40.G. Altarelli, The Development of Perturbative QCD (World Scientific, Singapore, 1994). 10.1142/9789814354141
  • 41.ATLAS Collaboration, Measurement of transverse energy–energy correlations in multi-jet events in pp collisions at s=7 TeV using the ATLAS detector and determination of the strong coupling constant αs(mZ). Phys. Lett. B 750, 427 (2015). 10.1016/j.physletb.2015.09.050. arXiv:1508.01579 [hep-ex]
  • 42.Kaplan DE, Schwartz MD. Constraining light colored particles with event shapes. Phys. Rev. Lett. 2008;101:022002. doi: 10.1103/PhysRevLett.101.022002. [DOI] [PubMed] [Google Scholar]
  • 43.Becciolini D, et al. Constraining new coloured matter from the ratio of 3- to 2-jets cross sections at the LHC. Phys. Rev. D. 2015;91:015010. doi: 10.1103/PhysRevD.91.015010. [DOI] [Google Scholar]
  • 44.ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008). 10.1088/1748-0221/3/08/S08003
  • 45.ATLAS Collaboration, Performance of the ATLAS trigger system in 2010. Eur. Phys. J. C 72, 1849 (2012). 10.1140/epjc/s10052-011-1849-1. arXiv:1110.1530 [hep-ex]
  • 46.ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). 10.1140/epjc/s10052-010-1429-9. arXiv:1005.4568 [physics.ins-det]
  • 47.GEANT4 Collaboration, S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). 10.1016/S0168-9002(03)01368-8
  • 48.Sjöstrand T, et al. High-energy-physics event generation with PYTHIA 6.1. Comput. Phys. Commun. 2001;135:238. doi: 10.1016/S0010-4655(00)00236-8. [DOI] [Google Scholar]
  • 49.Lai HL, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 50.ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes ATL-PHYS-PUB-2012-003 (2012). https://cds.cern.ch/record/1474107
  • 51.Andersson B, Gustafson G, Ingelman G, Sjöstrand T. Parton fragmentation and string dynamics. Phys. Rep. 1983;97:31. doi: 10.1016/0370-1573(83)90080-7. [DOI] [Google Scholar]
  • 52.Bahr M, et al. Herwig++ physics and manual. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • 53.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;0207:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 54.Gieseke S, Röhr C, Siódmok A. Colour reconnections in Herwig++ Eur. Phys. J. C. 2012;72:2225. doi: 10.1140/epjc/s10052-012-2225-5. [DOI] [Google Scholar]
  • 55.Butterworth JM, Forshaw JR, Seymour MH. Multiparton interactions in photoproduction at HERA. Z. Phys. C. 1996;72:637. [Google Scholar]
  • 56.T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 0902, 007 (2008). 10.1088/1126-6708/2009/02/007. arXiv:0811.4622
  • 57.Catani S, Krauss F, Kuhn R, Webber BR. QCD Matrix elements + parton showers. JHEP. 2001;0111:063. doi: 10.1088/1126-6708/2001/11/063. [DOI] [Google Scholar]
  • 58.Cacciari M, Salam GP, Soyez G. The anti-kt jet clustering algorithm. JHEP. 2008;063:0804. [Google Scholar]
  • 59.Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;072:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 60.W. Lampl, et al., Calorimeter clustering algorithms: description and performance ATLAS-LARG-PUB-2008-002 (2008). http://cds.cern.ch/record/1099735
  • 61.C. Issever, K. Borras, D. Wegener, An improved weighting algorithm to achieve software compensation in a fine grained LAr calorimeter. Nucl. Instrum. Methods A 545, 803 (2005). 10.1016/j.nima.2005.02.010. arXiv:physics/0408129
  • 62.ATLAS Collaboration, Local hadronic calibration ATL-LARG-PUB-2009-001-2 (2009). http://cds.cern.ch/record/1112035
  • 63.ATLAS Collaboration, Jet energy measurement and its systematic uncertainty in proton–proton collisions at s=7TeV with the ATLAS detector. Eur. Phys. J. C 75, 17 (2015). 10.1140/epjc/s10052-014-3190-y. arXiv:1406.0076 [DOI] [PMC free article] [PubMed]
  • 64.ATLAS Collaboration, Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton–proton run. JINST 8, P07004 (2013). 10.1088/1748-0221/8/07/P07004. arXiv:1303.0223 [hep-ex]
  • 65.ATLAS Collaboration, Measurement of dijet azimuthal decorrelations in pp collisions at s=7TeV. Phys. Rev. Lett. 106, 172002 (2011). 10.1103/PhysRevLett.106.172002. arXiv:1102.2696 [hep-ex] [DOI] [PubMed]
  • 66.ATLAS Collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at s=7TeV using the ATLAS detector. Eur. Phys. J. C 74, 3117 (2014). 10.1140/epjc/s10052-014-3117-7. arXiv:1407.5756 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 67.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A. 1995;362:487. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 68.T. Adye, Unfolding algorithms and tests using RooUnfold (2011). arXiv:1105.1160 [physics.data-an]
  • 69.ATLAS Collaboration, Jet energy resolution in proton–proton collisions at s=7TeV recorded in 2010 with the ATLAS detector. Eur. Phys. J. C 73, 2306 (2013). 10.1140/epjc/s10052-013-2306-0. arXiv:1210.6210 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 70.Harland-Lang LA, Martin AD, Motylinski P, Thorne RS. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75:204. doi: 10.1140/epjc/s10052-015-3397-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.S. Dulat et al., Newparton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev.D 93, 033006 (2016). 10.1103/PhysRevD.93.033006. arXiv:1506.07443 [hep-ph]
  • 72.Ball RD, et al. Parton distributions for the LHC Run II. JHEP. 2015;04:040. doi: 10.1007/JHEP04(2015)040. [DOI] [Google Scholar]
  • 73.H1 and ZEUS Collaborations, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive ep scattering cross sections at HERA. JHEP 01, 109 (2010). 10.1007/JHEP01(2010)109. arXiv:0911.0884 [hep-ex]
  • 74.Buckley A, et al. LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C. 2015;75:132. doi: 10.1140/epjc/s10052-015-3318-8. [DOI] [Google Scholar]
  • 75.F. Maltoni, T. McElmurry, R. Putman, S. Willenbrock, Choosing the factorization scale in perturbative QCD (2007). arXiv:hep-ph/0703156
  • 76.CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at s=7TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). 10.1140/epjc/s10052-013-2604-6. arXiv:1304.7498 [hep-ex]
  • 77.ATLAS Collaboration, Further ATLAS tunes of PYTHIA 6 and Pythia 8 ATL-PHYS-PUB-2011-014 (2011). https://cds.cern.ch/record/1400677
  • 78.Corke R, Sjöstrand T. Interleaved parton showers and tuning prospects. JHEP. 2011;03:032. doi: 10.1007/JHEP03(2011)032. [DOI] [Google Scholar]
  • 79.C. Patrignani et al. (Particle Data Group), Review of particle physics. Chin. Phys. C 40, 100001 (2016). 10.1088/1674-1137/40/10/100001
  • 80.CMS Collaboration, Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7TeV and determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 75, 186 (2015). 10.1140/epjc/s10052-015-3376-y. arXiv:1412.1633 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 81.CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at s=7TeV. Eur. Phys. J. C 75, 288 (2015). 10.1140/epjc/s10052-015-3499-1. arXiv:1410.6765 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 82.CMS Collaboration, Measurement and QCD analysis of double-differential inclusive jet cross-sections in pp collisions at s=8TeV and ratios to 2.76 and 7TeV. JHEP 1703, 156 (2017). 10.1007/JHEP03(2017)156. arXiv:1609.05331 [hep-ex]
  • 83.CMS Collaboration, Determination of the top-quark pole mass and strong coupling constant from the tt¯ production cross section in pp collisions at s=7TeV. Phys. Lett. B 728, 496 (2013). 10.1016/j.physletb.2013.12.009.%20doi:10.1016/j.physletb.2014.08.040. arXiv:1307.1907 [hep-ex]
  • 84.Malaescu B, Starovoitov P. Evaluation of the strong coupling constant αs using the ATLAS inclusive jet cross-section data. Eur. Phys. J. C. 2012;72:2041. doi: 10.1140/epjc/s10052-012-2041-y. [DOI] [Google Scholar]
  • 85.D0 Collaboration, V.M. Abazov et al., Measurement of angular correlations of jets at s=1.96TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). 10.1016/j.physletb.2012.10.003. arXiv:1207.4957 [hep-ex]
  • 86.D0 Collaboration, V.M. Abazov et al., Determination of the strong coupling constant from the inclusive jet cross section in pp¯ collisions at s=1.96TeV. Phys. Rev. D 80, 111107 (2009). 10.1103/PhysRevD.80.111107. arXiv:0911.2710 [hep-ex]
  • 87.ATLAS Collaboration, ATL-GEN-PUB-2016-002 ATLAS Computing Acknowledgements 2016–2017. https://cds.cern.ch/record/2202407

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES