Abstract
OBJECTIVES: The relationships between local food environments and dietary patterns are important for older adults and could be different in men and women. We examined associations between exposure to neighbourhood food sources and food consumption and the moderating role of diet knowledge separately among older women and men living in Montreal in 2003-2005 (n=722).
METHODS: The proportion of fast-food outlets relative to all restaurants (%FFO) and the proportion of healthy food stores relative to all stores (%HFS) were estimated for 500 m buffers around participants’ homes. Two dietary patterns, designated ”Western” and ”prudent”, reflecting lower- and higher-quality diets respectively, were identified from food frequency questionnaire data. The unique and interactive effects of diet knowledge and food-source exposure on diet scores were tested with separate linear regression models for women and men.
RESULTS: For men, greater %FFO exposure was related to lower prudent diet scores (ß = -0.18, p = 0.02), but no effect of %HFS exposure was observed and no interactions were statistically significant. For women, an inverse relationship between %FFO and prudent diet scores was strongest among those with low diet knowledge (ß=-0.22, p<0.01). No other associations were statistically significant.
CONCLUSION: Older men’s diet patterns may reflect unhealthy cues associated with fast-food outlets. Among women, diet knowledge potentiated both negative and positive relationships with the food environment. In the absence of consistent main effects of the food environment on diet scores, subgroup analysis is a promising avenue for research.
Key words: Diet, older adults, urban population, food supply, effect modifier
Résumé
OBJECTIFS : Les liens entre les environnements alimentaires locaux et les habitudes alimentaires sont importants pour les personnes âgées et pourraient différer selon le sexe. Nous avons examiné séparément pour des femmes et des hommes âgés vivant à Montréal en 2003-2005 (n = 722) les associations entre l’exposition aux commerces alimentaires du quartier, la consommation d’aliments et le rôle modérateur des connaissances en nutrition.
MÉTHODE : Nous avons estimé la proportion de débits de restauration rapide (DRP) par rapport à l’ensemble des restaurants et la proportion de magasins d’alimentation pouvant offrir des aliments sains (MAS) par rapport à l’ensemble des magasins dans un rayon de 500 m autour du domicile des participants. Deux types d’habitudes alimentaires, qualifiées d’ « occidentales » et de « prudentes » pour indiquer les régimes de qualité inférieure et supérieure, respectivement, ont été cernés à partir des données de questionnaires sur la fréquence de consommation des produits alimentaires. Les effets uniques et interactifs des connaissances en nutrition et de l’exposition aux commerces alimentaires sur les scores des habitudes alimentaires ont été analysés selon des modèles de régression linéaire distincts selon le sexe.
RéSULTATS : Chez les hommes, un pourcentage supérieure d’exposition aux DRP était lié à des notes plus faibles pour le régime « prudent » (ß = -0,18, p = 0,02), mais nous n’avons observé aucun effet du pourcentage d’exposition aux MAS, et aucune interaction n’était significative. Chez les femmes, la relation inverse entre le %DRP et le régime « prudent » était la plus forte chez les participantes dont les connaissances en nutrition étaient faibles (ß = -0,22, p < 0,01). Aucune autre association n’était significative.
CONCLUSION : Les habitudes alimentaires des hommes peuvent s’expliquer par des repères malsains associés aux débits de restauration rapide. Chez les femmes, les connaissances en nutrition peuvent entraîner à la fois des relations négatives et positives avec l’environnement alimentaire. En l’absence d’effets principaux cohérents de l’environnement alimentaire sur les scores des habitudes alimentaires, l’analyse par sous-groupe est une piste de recherche prometteuse.
Mots Clés: régime alimentaire, personne âgée, population urbaine, approvisionnement en nourriture, effets modificateurs
Footnotes
Acknowledgements: This work was supported by the Canadian Institutes of Health Research (grant MOP-173669 to the VoisiNuAge study and MOP-62842 to the NuAge Study, and grant MFE-226542 to GM) and the Fonds de la recherche en santé du Québec (grant #16207 to LR and #20328 to YK). LG held a CIHR/CRPO (Canadian Institutes of Health Research/Centre de recherche en prévention de l’obésité) Applied Public Health Chair on Neighbourhoods, Lifestyle, and Healthy Body Weight. GM was also supported by the Strategic Training Program in Transdisciplinary Research on Public Health Interventions: Promotion, Prevention and Public Policy (4P), a partnership of CIHR and the Québec Population Health Research Network. YK holds a CIHR Applied Public Health Chair on Urban Interventions and Population Health. The results presented in this paper are solely the responsibility of the authors and do not necessarily represent the view of the funders.
Conflict of Interest: None to declare.
References
- 1.Payette H, Shatenstein B. Determinants of healthy eating in community-dwelling elderly people. Can J Public Health. 2005;96(S3):S27–31. [PubMed] [Google Scholar]
- 2.Garriguet D. Canadians’ eating habits. Health Rep. 2007;18(2):17–32. [PubMed] [Google Scholar]
- 3.Ree M, Riediger N, Moghadasian MH. Factors affecting food selection in Canadian population. Eur J Clin Nutr. 2007;62:1255–62. doi: 10.1038/sj.ejcn.1602863. [DOI] [PubMed] [Google Scholar]
- 4.Hughes G, Bennett KM, Hetherington MM. Old and alone: Barriers to healthy eating in older men living on their own. Appetite. 2004;43:269–76. doi: 10.1016/j.appet.2004.06.002. [DOI] [PubMed] [Google Scholar]
- 5.Baker AH, Wardle J. Sex differences in fruit and vegetable intake in older adults. Appetite. 2003;40(3):269–75. doi: 10.1016/S0195-6663(03)00014-X. [DOI] [PubMed] [Google Scholar]
- 6.Guillaumie L, Godin G, Vezina-Im L-A. Psychosocial determinants of fruit and vegetable intake in adult population: A systematic review. Int J Behav Nutr Phys Act. 2010;7:12. doi: 10.1186/1479-5868-7-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.McEntee J. Highlighting food inadequacies: Does the food desert metaphor help this cause? Br Food J. 2009;111:349–63. doi: 10.1108/00070700910951498. [DOI] [Google Scholar]
- 8.Mercille G, Richard L, Gauvin L, Kestens Y, Shatenstein B, Daniel M, Payette H. Associations between residential food environment and dietary patterns in urban-dwelling older adults: Results from the Voisi Nu Age study. Public Health Nutr. 2012;15(11):2026–39. doi: 10.1017/S136898001200273X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Sharkey JR, Johnson CM, Dean WR. Food access and perceptions of the community and household food environment as correlates of fruit and vegetable intake among rural seniors. BMC Geriatr. 2010;10:32. doi: 10.1186/1471-2318-10-32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Glass TA, Balfour JL. Neighborhoods, aging, and functional limitations. In: Kawachi I, Berkman LF, editors. Neighborhoods and Health. New York, NY: Oxford University Press; 2003. [Google Scholar]
- 11.Caspi CE, Sorensen G, Subramanian SV, Kawachi I. The local food environment and diet: A systematic review. Health Place. 2012;18:1172–87. doi: 10.1016/j.healthplace.2012.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Clary CM, Ramos Y, Shareck M, Kestens Y. Should we use absolute or relative measures when assessing foodscape exposure in relation to fruit and vegetable intake? Evidence from a wide-scale Canadian study. PrevMed. 2015;71:83–87. doi: 10.1016/j.ypmed.2014.11.023. [DOI] [PubMed] [Google Scholar]
- 13.Mason KE, Bentley RJ, Kavanagh AM. Fruit and vegetable purchasing and the relative density of healthy and unhealthy food stores: Evidence from an Australian multilevel study. J Epidemiol Community Health. 2013;67:231–36. doi: 10.1136/jech-2012-201535. [DOI] [PubMed] [Google Scholar]
- 14.Boone-Heinonen J, Gordon-Larsen P, Kiefe CI, Shikany JM, Lewis CE, Popkin BM. Fast food restaurants and food stores: Longitudinal associations with diet in young to middle-aged adults: The CARDIA Study. Arch Intern Med. 2011;171:1162–70. doi: 10.1001/archinternmed.2011.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Hermstad AK, Swan DW, Kegler MC, Barnette JK, Glanz K. Individual and environmental correlates of dietary fat intake in rural communities: A structural equation model analysis. Soc Sci Med. 2010;71:93–101. doi: 10.1016/j.socscimed.2010.03.028. [DOI] [PubMed] [Google Scholar]
- 16.Macdonald L, Ellaway A, Ball K, Macintyre S. Is proximity to a food retail store associated with diet and BMI in Glasgow, Scotland? BMC Public Health. 2011;11:464. doi: 10.1186/1471-2458-11-464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Paquet C, Daniel M, Knauper B, Gauvin L, Kestens Y, Dube L. Interactive effects of reward sensitivity and residential fast-food restaurant exposure on fast-food consumption. AmJ Clin Nutr. 2010;91:771–76. doi: 10.3945/ajcn.2009.28648. [DOI] [PubMed] [Google Scholar]
- 18.Gaudreau P, Morais JA, Shatenstein B, Gray-Donald K, Khalil A, Dionne I, et al. Nutrition as a determinant of successful aging: Description of the Quebec longitudinal study Nuage and results from cross-sectional pilot studies. Rejuvenation Res. 2007;10:377–86. doi: 10.1089/rej.2007.0596. [DOI] [PubMed] [Google Scholar]
- 19.Daniel M, Kestens Y. Montreal Epidemiological and Geographical Analysis of Population Health Outcomes and Neighbourhood Effect: MEGAPHONE (Copyright #1046898) Montréal, QC: Centre de recherche du Centre hospitalier de l’Université de Montréal; 2007. [Google Scholar]
- 20.Shatenstein B, Nadon S, Godin C, Ferland G. Development and validation of a food frequency questionnaire. Can J Diet Pract Res. 2005;66:67–75. doi: 10.3148/66.2.2005.67. [DOI] [PubMed] [Google Scholar]
- 21.Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma K-N. Eating patterns and risk of colon cancer. Am J Epidemiol. 1998;148:4–16. doi: 10.1093/aje/148.1.4-a. [DOI] [PubMed] [Google Scholar]
- 22.Paquet C, Daniel M, Kestens Y, Leger K, Gauvin L. Field validation of listings of food stores and commercial physical activity establishments from secondary data. Int J Behav Nutr Phys Act. 2008;5:58. doi: 10.1186/1479-5868-5-58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Tabachnick BG, Fidell LS. Using Multivariate Statistics. 5th ed. Boston, MA: Allyn and Bacon; 2007. [Google Scholar]
- 24.American Dietetic Association. Nutrition and you: Trends 2002. Final Report of Findings. Chicago, IL: American Dietetic Association; 2002. [Google Scholar]
- 25.Ware JE, Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Med Care. 1992;30:473–83. doi: 10.1097/00005650-199206000-00002. [DOI] [PubMed] [Google Scholar]
- 26.Yesavage JA, Brink T, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res. 1983;17:37–49. doi: 10.1016/0022-3956(82)90033-4. [DOI] [PubMed] [Google Scholar]
- 27.Hébert R, Desrosiers J, Dubuc N, Tousignant M, Guilbeault J, Pinsonnault E. Le système de mesure de l’autonomie fonctionnelle (SMAF) Revue de Gériatrie. 2003;28(4):323–36. [Google Scholar]
- 28.Fillenbaum GG, Smyer MA. The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J Gerontol. 1981;36(4):428–34. doi: 10.1093/geronj/36.4.428. [DOI] [PubMed] [Google Scholar]
- 29.QualityMetric Incorporated. SF-36 ® PCS, MCS and NBS Calculator. 2010. [Google Scholar]
- 30.Franco M, Diez-Roux AV, Nettleton JA, Lazo M, Brancati F, Caballero B, et al. Availability of healthy foods and dietary patterns: The Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr. 2009;89:897–904. doi: 10.3945/ajcn.2008.26434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Moore LV, Diez Roux AV, Nettleton JA, Jacobs DR, Franco M. Fast-food consumption, diet quality, and neighborhood exposure to fast food. Am J Epidemiol. 2009;170:29–36. doi: 10.1093/aje/kwp090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Pearce J, Hiscock R, Blakely T, Witten K. A national study of the association between neighbourhood access to fast-food outlets and the diet and weight of local residents. Health Place. 2009;15:193–97. doi: 10.1016/j.healthplace.2008.04.003. [DOI] [PubMed] [Google Scholar]
- 33.Flagg LA, Sen B, Kilgore M, Locher JL. The influence of gender, age, education and household size on meal preparation and food shopping responsibilities. Public Health Nutr. 2014;17:2061–70. doi: 10.1017/S1368980013002267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Cohen D, Farley T. Eating as an automatic behavior. Prev Chronic Dis. 2008;5(1):A23. [PMC free article] [PubMed] [Google Scholar]
- 35.Daveluy C, Pica L, Audet N, Courtemanche R, Lapointe F. Enquête sociale et de santé 1998, 2e éd. Québec, QC: Institut de la statistique du Québec; 2000. [Google Scholar]
- 36.Apparicio P, Cloutier MS, Shearmur R. The case of Montreal’s missing food deserts: Evaluation of accessibility to food supermarkets. Int J Health Geogr. 2007;6:4. doi: 10.1186/1476-072X-6-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Manilla B, Keller HH, Hedley MR. Food tasting as nutrition education for older adults. Can J Diet Pract Res. 2010;71(2):99–102. doi: 10.3148/71.1.2010.99. [DOI] [PubMed] [Google Scholar]
- 38.Gustafson Alison A., Sharkey Joseph, Samuel-Hodge Carmen D., Jones-Smith Jessica C., Cai Jianwen, Ammerman Alice S. Food Store Environment Modifies Intervention Effect on Fruit and Vegetable Intake among Low-Income Women in North Carolina. Journal of Nutrition and Metabolism. 2012;2012:1–8. doi: 10.1155/2012/932653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Jennings A, Cassidy A, Winters T, Barnes S, Lipp A, Holland R, et al. Positive effect of a targeted intervention to improve access and availability of fruit and vegetables in an area of deprivation. Health Place. 2012;18(5):1074–78. doi: 10.1016/j.healthplace.2012.05.001. [DOI] [PubMed] [Google Scholar]