Skip to main content
Canadian Journal of Public Health = Revue Canadienne de Santé Publique logoLink to Canadian Journal of Public Health = Revue Canadienne de Santé Publique
. 2016 Jan 1;107(Suppl 1):eS42–eS47. doi: 10.17269/CJPH.107.5347

Walkable home neighbourhood food environment and children’s overweight and obesity: Proximity, density or price?

Ha Le 17, Rachel Engler-Stringer 17,27, Nazeem Muhajarine 17,27,
PMCID: PMC6972190  PMID: 27281522

Abstract

OBJECTIVES: To identify characteristics of the food environment associated with child overweight/obesity that could, if subjected to intervention, mitigate the risk of childhood overweight/obesity. We examined whether the proximity to or density of grocery and convenience stores or fast food restaurants, or the prices of healthy food options were more strongly associated with overweight/obesity risk in children.

METHODS: We collected geocoded data by residential addresses for 1,469 children aged 10-14 years and conducted a census of all food outlets in Saskatoon. The Nutrition Environment Measures Survey (NEMS-Stores and the NEMS-Restaurants were used to measure availability, quality and relative price of healthy food items in stores and restaurants. Children’s weight status was calculated on the basis of measured height and weight. Logistic regression was used to test the associations between overweight/obesity and food environment variables.

RESULTS: Within an 800 m walking distance from home, 76% of children did not have access to a grocery store; 58% and 32% had access to at least one convenience store or one fast-food restaurant respectively. A significantly lower odds of overweight/obesity was associated with lower price of healthy food items/options in grocery stores (odds ratio [OR] = 0.87, 95% confidence interval [CI] 0.77-0.99) and fast-food restaurants (OR = 0.97, 95% CI 0.95-0.99) within walking distance of home. Neither the distance to the closest food outlet nor the density of food outlets around children’s homes was associated with odds of overweight/obesity.

CONCLUSIONS: Improving economic access to healthy food in food outlets or fast-food restaurants is one strategy to counter childhood overweight/obesity.

KEY WORDS: Environment, public health, child health, obesity

Footnotes

Source of Funding: This research was funded by the Canadian Institutes of Health Research (Grant #106643).

Conflict of Interest: None to declare.

References

  • 1.Roberts KC, Shields M, De Groh M, Aziz A, Gilbert JA. Overweight and obesity in children and adolescents: Results from the 2009 to 2011 Canadian Health Measures Survey. Health Rep. 2012;23(3):37–41. [PubMed] [Google Scholar]
  • 2.Summerbell CD, Waters E, Edmunds LD, Kelly S, Brown T, Campbell KJ. Interventions for preventing obesity in children. Cochrane Database Syst Rev. 2005;3:1–70. doi: 10.1002/14651858.CD001871.pub2. [DOI] [PubMed] [Google Scholar]
  • 3.Morland K, Wing S, Roux AD. The contextual effect of the local food environment on residents’ diets: The atherosclerosis risk in communities study. Am J Public Health. 2002;92(11):1761–68. doi: 10.2105/AJPH.92.11.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Laraia BA, Siega-Riz AM, Kaufman JS, Jones SJ. Proximity of supermarkets is positively associated with diet quality index for pregnancy. Prev Med. 2004;39(5):869–75. doi: 10.1016/j.ypmed.2004.03.018. [DOI] [PubMed] [Google Scholar]
  • 5.Wang MC, Gonzalez AA, Ritchie LD, Winkleby MA. The neighborhood food environment: Sources of historical data on retail food stores. Int J Behav Nutr Phys Act. 2006;3(1):15. doi: 10.1186/1479-5868-3-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Glanz K, Sallis JF, Saelens BE, Frank LD. Healthy nutrition environments: Concepts and measures. Am J Health Promot. 2005;19(5):330–33. doi: 10.4278/0890-1171-19.5.330. [DOI] [PubMed] [Google Scholar]
  • 7.Holsten JE. Obesity and the community food environment: A systematic review. Public Health Nut. 2009;12(3):397–405. doi: 10.1017/S1368980008002267. [DOI] [PubMed] [Google Scholar]
  • 8.Engler-Stringer R, Muhajarine N, Le H, Del Canto S, Ridalls T. Saskatchewan Population Health and Evaluation Research Unit, Saskatoon. 2014. Characterizing the Food Environment in Saskatoon for Families with Children: Research Methods and Descriptive Results. [Google Scholar]
  • 9.WHO AnthroPlus for personal computers Manual . Software for assessing growth of the world’s children and adolescents. Geneva: World Health Organization; 2009. [Google Scholar]
  • 10.Rockett HR, Berkey CS, Colditz GA. Comparison of a short food frequency questionnaire with the Youth/Adolescent Questionnaire in the Growing Up Today Study. Int J Pediatr Obes. 2007;2(1):31–39. doi: 10.1080/17477160601095417. [DOI] [PubMed] [Google Scholar]
  • 11.Veugelers PJ, Fitzgerald AL. Prevalence of and risk factors for childhood overweight and obesity. Can Med Assoc J. 2005;173(6):607–13. doi: 10.1503/cmaj.050445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Matthews VL, Wien M, Sabaté J. The risk of child and adolescent overweight is related to types of food consumed. Nutr J. 2011;10(1):71–74. doi: 10.1186/1475-2891-10-71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: A systematic review of cross-sectional studies 1990–2005. Obesity. 2008;16(2):275–84. doi: 10.1038/oby.2007.35. [DOI] [PubMed] [Google Scholar]
  • 14.Glanz K, Sallis JF, Saelens BE, Frank LD. Nutrition Environment Measures Survey in stores (NEMS-S): Development and evaluation. Am J Prev Med. 2007;32(4):282–89. doi: 10.1016/j.amepre.2006.12.019. [DOI] [PubMed] [Google Scholar]
  • 15.Saelens BE, Glanz K, Sallis JF, Frank LD. Nutrition environment measures study in restaurants (NEMS-R): Development and evaluation. Am J Prev Med. 2007;32(4):273–81. doi: 10.1016/j.amepre.2006.12.022. [DOI] [PubMed] [Google Scholar]
  • 16.Agrawal AW, Schlossberg M, Irvin K. How far, by which route and why? A spatial analysis of pedestrian preference. J Urban Des. 2008;13(1):81–98. doi: 10.1080/13574800701804074. [DOI] [Google Scholar]
  • 17.Austin SB, Melly SJ, Sanchez BN, Patel A, Buka S, Gortmaker SL. Clustering of fast-food restaurants around schools: A novel application of spatial statistics to the study of food environments. Am J Public Health. 2005;95(9):1575–81. doi: 10.2105/AJPH.2004.056341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zenk SN, Powell LM. U.S. secondary schools and food outlets. Health Place. 2008;14(2):336–46. doi: 10.1016/j.healthplace.2007.08.003. [DOI] [PubMed] [Google Scholar]
  • 19.Rockett HR, Berkey CS, Field AE, Colditz GA. Cross-sectional measurement of nutrient intake among adolescents in 1996. Prev Med. 2001;33(1):27–37. doi: 10.1006/pmed.2001.0850. [DOI] [PubMed] [Google Scholar]
  • 20.Larson NI, Story MT, Nelson MC. Neighborhood environments: Disparities in access to healthy foods in the U.S. Am J Prev Med. 2009;36(1):74–81.e10. doi: 10.1016/j.amepre.2008.09.025. [DOI] [PubMed] [Google Scholar]
  • 21.Fleischhacker SE, Evenson KR, Rodriguez DA, Ammerman AS. A systematic review of fast food access studies. Obes Rev. 2011;12(5):e460–71. doi: 10.1111/j.1467-789X.2010.00715.x. [DOI] [PubMed] [Google Scholar]
  • 22.An R, Sturm R. School and residential neighborhood food environment and diet among California youth. Am J Prev Med. 2012;42(2):129–35. doi: 10.1016/j.amepre.2011.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Drewnowski A, Moudon AV, Jiao J, Aggarwal A, Charreire H, Chaix B. Food environment and socioeconomic status influence obesity rates in Seattle and in Paris. Int J Obes. 2014;38(2):306–14. doi: 10.1038/ijo.2013.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Powell LM, Chaloupka FJ. Food prices and obesity: Evidence and policy implications for taxes and subsidies. Milbank Q. 2009;87(1):229–57. doi: 10.1111/j.1468-0009.2009.00554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sturm R, Datar A. Body mass index in elementary school children, metropolitan area food prices and food outlet density. Public Health. 2005;119(12):1059–68. doi: 10.1016/j.puhe.2005.05.007. [DOI] [PubMed] [Google Scholar]
  • 26.Sturm R, Datar A. Food prices and weight gain during elementary school: 5-year update. Public Health. 2008;122(11):1140–43. doi: 10.1016/j.puhe.2008.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Bow CJD, Waters NM, Faris PD, Seidel JE, Galbraith PD, Knudtson ML, Ghali WA. Accuracy of city postal code coordinates as a proxy for location of residence. Int J Health Geogr. 2004;3(1):5. doi: 10.1186/1476-072X-3-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Healy MA, Gilliland JA. Quantifying the magnitude of environmental exposure misclassification when using imprecise address proxies in public health research. Spat Spatiotemporal Epidemiol. 2012;3(1):55–67. doi: 10.1016/j.sste.2012.02.006. [DOI] [PubMed] [Google Scholar]
  • 29.Papas MA, Alberg AJ, Ewing R, Helzlsouer KJ, Gary TL, Klassen AC. The built environment and obesity. Epidemiol Rev. 2007;29(1):129–43. doi: 10.1093/epirev/mxm009. [DOI] [PubMed] [Google Scholar]
  • 30.Hanibuchi T, Kondo K, Nakaya T, Nakade M, Ojima T, Hirai H, Kawachi I. Neighborhood food environment and body mass index among Japanese older adults: Results from the Aichi Gerontological Evaluation Study (AGES) Int J Health Geogr. 2011;10:43. doi: 10.1186/1476-072X-10-43. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Canadian Journal of Public Health = Revue Canadienne de Santé Publique are provided here courtesy of Springer

RESOURCES