Abstract
OBJECTIVES: To explore differences in urban versus rural lifetime excess risk of cancer from five specific contaminants found in food and beverages.
METHODS: Probable contaminant intake is estimated using Monte Carlo simulations of contaminant concentrations in combination with dietary patterns. Contaminant concentrations for arsenic, benzene, lead, polychlorinated biphenyls (PCBs) and tetrachloroethylene (PERC) were derived from government dietary studies. The dietary patterns of 34 944 Canadians from 10 provinces were available from Health Canada’s Canadian Community Health Survey, Cycle 2.2, Nutrition (2004). Associated lifetime excess cancer risk (LECR) was subsequently calculated from the results of the simulations.
RESULTS: In the calculation of LECR from food and beverages for the five selected substances, two (lead and PERC) were shown to have excess risk below 10 per million; whereas for the remaining three (arsenic, benzene and PCBs), it was shown that at least 50% of the population were above 10 per million excess cancers. Arsenic residues, ingested via rice and rice cereal, registered the greatest disparity between urban and rural intake, with LECR per million levels well above 1000 per million at the upper bound. The majority of PCBs ingestion comes from meat, with values slightly higher for urban populations and LECR per million estimates between 50 and 400. Drinking water is the primary contributor of benzene intake in both urban and rural populations, with LECR per million estimates of 35 extra cancers in the top 1% of sampled population.
CONCLUSION: Overall, there are few disparities between urban and rural lifetime excess cancer risk from contaminants found in food and beverages. Estimates could be improved with more complete Canadian dietary intake and concentration data in support of detailed exposure assessments in estimating LECR.
Key Words: Risk assessment, diet, carcinogens, urban health, rural health
Résumé
OBJECTIFS: Explorer les écarts dans le risque excédentaire à vie de cancer en zone urbaine et en zone rurale associé à cinq contaminants précis trouvés dans les aliments et les boissons.
MÉTHODE: Nous avons estimé l’absorption probable des contaminants à l’aide de simulations de Monte-Carlo portant sur les concentrations de contaminants combinées aux habitudes alimentaires. Les concentrations d’arsenic, de benzène, de plomb, de biphényles polychlorés (BPC) et de tétrachloréthylène (PERC) ont été dérivées d’études gouvernementales d’exposition par voie alimentaire. Les habitudes alimentaires de 34 944 Canadiens dans 10 provinces provenaient du cycle 2.2, Nutrition, de l’Enquête sur la santé dans les collectivités canadiennes de Santé Canada (2004). À partir des résultats des simulations, nous avons calculé le risque excédentaire à vie de cancer (REAVC) associé.
RÉSULTATS: Lorsque nous avons calculé le REAVC associé aux aliments et aux boissons pour les cinq substances choisies, nous avons obtenu un risque excédentaire inférieur à 10 par million pour deux substances (le plomb et le PERC); pour les trois autres substances (l’arsenic, le benzène et les BPC), au moins 50 % de la population était au-dessus du seuil de 10 cancers excédentaires par million. Les résidus d’arsenic, ingérés dans le riz et les céréales de riz, ont présenté la plus grande disparité entre les niveaux d’absorption en zone urbaine et rurale, avec un REAVC par million très au-dessus de 1 000 par million à la limite supérieure. La majorité des BPC ingérés le sont dans la viande, avec des valeurs légèrement supérieures dans les populations urbaines et un REAVC qui se situerait entre 50 et 400 par million. L’eau potable est la principale source d’absorption du benzène, tant dans les populations urbaines que rurales, avec un REAVC par million estimé à 35 cancers excédentaires dans le centile supérieur de la population échantillonnée.
CONCLUSION: Dans l’ensemble, il y a peu de disparités entre les zones urbaines et rurales pour ce qui est du risque excédentaire à vie de cancer associé aux contaminants trouvés dans les aliments et les boissons. Les estimations du REAVC pourraient être améliorées si l’on disposait de données plus complètes sur les apports alimentaires et les concentrations au Canada pour appuyer les évaluations approfondies de l’exposition.
Mots Clés: évaluation des risques, régime alimentaire, cancérogènes, santé en zone urbaine, santé en zone rurale
Footnotes
Conflict of Interest: None to declare.
References
- 1.Morton LW, Bitto EA, Oakland MJ, Sand M. Accessing food resources: Rural and urban patterns of giving and getting food. Agric Human Values. 2008;25(1):107–19. doi: 10.1007/s10460-007-9095-8. [DOI] [Google Scholar]
- 2.Dean WR, Sharkey JR. Rural and urban differences in the associations between characteristics of the community food environment and fruit and vegetable intake. JNutrEducBehav. 2011;43(6):426–33. doi: 10.1016/j.jneb.2010.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Ostry A, Morrision K. A method for estimating the extent of regional food self-sufficiency and dietary ill health in the province of British Columbia, Canada. Sustain. 2013;5(11):4949–60. doi: 10.3390/su5114949. [DOI] [Google Scholar]
- 4.Jackson J, Doescher M, Jerant AF, Hart L. A national study of obesity prevalence and trends by type of rural county. J Rural Health. 2005;21:140–48. doi: 10.1111/j.1748-0361.2005.tb00074.x. [DOI] [PubMed] [Google Scholar]
- 5.BMC Public Health. 2014.
- 6.Monroe AC, Ricketts TC, Savitz LA. Cancer in rural versus urban populations: A review. J Rural Health. 1992;8(3):212–20. doi: 10.1111/j.1748-0361.1992.tb00354.x. [DOI] [PubMed] [Google Scholar]
- 7.Pampalon R, Martinez J, Hamel D. Does living in rural areas make a difference for health in Québec? Health Place. 2006;12(4):421–35. doi: 10.1016/j.healthplace.2005.04.002. [DOI] [PubMed] [Google Scholar]
- 8.Sharp L, Donnelly D, Hegarty A, Carsin AE, Deady S, McCluskey N, et al. Risk of several cancers is higher in urban areas after adjusting for socioeconomic status. Results from a two-country population-based study of 18 common cancers. J Urban Health. 2014;91(3):510–25. doi: 10.1007/s11524-013-9846-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.IARC. Agents Classified by the IARC Monographs, Volumes 1-114. 2015. [Google Scholar]
- 10.Health Canada. A Handbook for Exposure Calculations. Ottawa, ON: Health Canada; 1995. [Google Scholar]
- 11.Health Canada. Federal Contaminated Site Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values and Chemical-Specific Factors. Ottawa, ON: Health Canada; 2010. [Google Scholar]
- 12.CA-OEHHA. Hot Spots Unit Risk and Cancer Potency Values. Sacramento, CA: California Environmental Protection Agency; 2011. [Google Scholar]
- 13.US EPA. Integrated Risk Information System: CPFs. Washington, DC: US Environmental Protection Agency; 2015. [Google Scholar]
- 14.Tao SS, Bolger PM. Dietary arsenic intakes in the United States: FDA Total Diet Study, September 1991–December 1996. Food Addit Contam. 1999;16:465–72. doi: 10.1080/026520399283759. [DOI] [PubMed] [Google Scholar]
- 15.Health Canada. Canadian Community Health Survey, Cycle 2.2, Nutrition (2004): A Guide to Accessing and Interpreting the Data. Ottawa, ON: Health Canada; 2004. [Google Scholar]
- 16.Health Canada. Canadian Community Health Survey, Cycle 2.2, Nutrition (2004): Income-Related Household Food Security in Canada. Ottawa, ON: Health Canada; 2007. [Google Scholar]
- 17.Canadian Council on Social Development. A Demographic Profile of Canada. Kanata, ON: CCSD; 2004. pp. 1–12. [Google Scholar]
- 18.Canadian Food Inspection Agency. National Chemical Residue Monitoring Program 2012–2013Report. Ottawa, ON: CFIA; 2014. [Google Scholar]
- 19.US FDA. US Food and Drug Administration - Total Diet Study Market Baskets 1991–1993 through 2003–2004. College Park, MD: USFDA; 2006. [Google Scholar]
- 20.US FDA. Total Diet Study. Elements Results Summary Statistics. Market Baskets 2006 through 2011. 2014. [Google Scholar]
- 21.Cheasley R. Geographic Exposure and Risk Assessment for Food Contaminants in Canada. 2016. [Google Scholar]
- 22.Statistics Canada. Nutrition - General Health (Including Vitamin & Mineral Supplements) & 24-Hour Dietary Recall Components User Guide. Ottawa, ON: Statistics Canada; 2008. [Google Scholar]
- 23.Jara EA, Winter CK. Dietary exposure to total and inorganic arsenic in the United States, 2006–2008. Int J Food Contam. 2014;1(1):3. doi: 10.1186/s40550-014-0003-x. [DOI] [Google Scholar]
- 24.Lynch HN, Greenberg GI, Pollock MC, Lewis AS. A comprehensive evaluation of inorganic arsenic in food and considerations for dietary intake analyses. Sci Total Environ. 2014;496:299–313. doi: 10.1016/j.scitotenv.2014.07.032. [DOI] [PubMed] [Google Scholar]
- 25.CAREX Canada. Surveillance of Environmental and Occupational Exposures for Cancer Prevention. 2016. [Google Scholar]
- 26.Munoz O, Bastias JM, Araya M, Morales A, Orellana C, Rebolledo R, et al. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem Toxicol. 2005;43(11):1647–55. doi: 10.1016/j.fct.2005.05.006. [DOI] [PubMed] [Google Scholar]
- 27.Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ Health Perspect. 2010;118(3):345–50. doi: 10.1289/ehp.0901205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Health Canada. Guidelines for CanadianDrinking Water Quality: Guideline Technical Document - Benzene. 2009. [Google Scholar]
- 29.Vinci R, Jacxsens L, Van Loco J, Matsiko E, Lachat C, de Schaetzen T, et al. Assessment of human exposure to benzene through foods from the Belgian market. Chemosphere. 2012;88(8):1001–7. doi: 10.1016/j.chemosphere.2012.03.044. [DOI] [PubMed] [Google Scholar]
- 30.Turconi G, Minoia C, Ronchi A, Roggi C. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy. Br J Nutr. 2009;101(8):1200–8. doi: 10.1017/S0007114508055670. [DOI] [PubMed] [Google Scholar]
- 31.Health Canada. Final Human Health State of the Science Report on Lead. Ottawa, ON: Health Canada; 2013. [Google Scholar]
- 32.Voorspoels S, Covaci A, Neels H. Dietary PCB intake in Belgium. Environ Toxicol Pharmacol. 2008;25(2):179–82. doi: 10.1016/j.etap.2007.10.013. [DOI] [PubMed] [Google Scholar]
- 33.Arnich N, Tard A, Leblanc JC, Le Bizec B, Narbonne JF, Maximilien R. Dietary intake of non-dioxin-like PCBs (NDL-PCBs) in France, impact of maximum levels in some foodstuffs. Regul Toxicol Pharmacol. 2009;54(3):287–93. doi: 10.1016/j.yrtph.2009.05.010. [DOI] [PubMed] [Google Scholar]
- 34.Health Canada. Priority Substances List Assessment Report - Tetrachloroethylene. Ottawa, ON: Health Canada; 1993. [Google Scholar]
- 35.Health Canada. Canadian Total Diet Study. Ottawa, ON: Health Canada; 2014. [Google Scholar]