Abstract
OBJECTIVES: In urban settings, pedestrian fatalities and injuries are concentrated on major roads. This study aims to describe urban intersections with major roads (arterials and collector roads) and explore the association between intersection characteristics and injured pedestrians.
METHODS: From a stratified random sampling in Montréal, Quebec, 512 intersections were selected and their characteristics collected. The number of injured pedestrians from 1999 to 2008 was obtained from ambulance services. Binomial negative regression models (including IRR: incidence rate ratios) were calculated to determine associations between intersection characteristics and injured pedestrians: i) at all intersections; ii) at intersections with multi-lane roads and iii) at signalized intersections with available vehicle and pedestrian counts.
RESULTS: Major intersections had more traffic lanes (3.8 vs. 1.7, p < 0.01) and longer pedestrian crossings (18.8 m vs. 12.7 m, p < 0.01) than minor intersections. Bus stops were also more frequent at these intersections (75% vs. 6%, p < 0.01). Overall, each additional traffic lane was associated with a 75% increase in the number of injured pedestrians (IRR = 1.75; 95% confidence interval [CI] = 1.41–2.18). At intersections with multi-lane roads, a fourth branch (IRR = 2.40; 95% CI = 1.53–3.77), vehicles parked within 5 m of the intersection (IRR = 2.40; 95% CI = 1.64–3.51), and marked crosswalks (IRR = 1.79; 95% CI = 1.08–2.95) significantly increased the number of injured pedestrians. Raised medians had no significant protective effect.
CONCLUSIONS: The results show that besides traffic and pedestrian volumes, intersection characteristics contribute to pedestrian injuries. The reduction of traffic lanes, parking prohibition near intersections and implementation of appropriate pedestrian refuge areas would improve pedestrian safety.
Key Words: Injuries, pedestrian, major roads, intersections, urban health
Mots Clés: blessés, piétons, artères, intersections, santé urbaine
Résumé
OBJECTIFS: Décrire les intersections avec routes majeures (artère, collectrice) en milieu urbain, et explorer l’association entre les caractéristiques de ces intersections et le nombre de piétons blessés.
MÉTHODES: Les caractéristiques de 512 intersections (Montréal, Québec), sélectionnées via un échantillonnage aléatoire stratifié ont été mesurées. Le nombre de piétons blessés provient des services ambulanciers (1999–2008). L’association entre les caractéristiques des intersections et le nombre de piétons blessés (RTI: rapports de taux d’incidence) a été quantifié par des régressions binomiales négatives: 1) incluant toutes les intersections; 2) incluant les intersections de rues ayant plusieurs voies de circulation; 3) incluant les intersections pour lesquelles des comptages de véhicules et de piétons étaient disponibles.
RÉSULTATS: Les intersections majeures ont davantage de voies de circulation (3,8 c. 1,7, p < 0,01) et des traverses pour piétons plus longues (18,8 m c. 12,7 m, p < 0,01) que les intersections de rues locales. Les arrêts d’autobus y sont plus fréquents (75 % c. 6 %, p < 0,01). Globalement, chaque voie additionnelle de circulation est associée à une augmentation de 75 % du nombre de piétons blessés (RTI = 1,75; IC95% = 1,41–2,18). Aux intersections de rues ayant plusieurs voies de circulation, une quatrième branche (RTI = 2,40; IC95% = 1,53–3,77), la présence de véhicules stationnés à moins de 5 m de l’intersection (RTI = 2,40; IC95% = 1,64–3,51) et le marquage de passages pour piétons (RTI = 1,79; IC95% = 1,08–2,95) sont significativement associés à une augmentation du nombre de piétons blessés.
CONCLUSION: Les résultats démontrent qu’au-delà des volumes de trafic et de piétons, les caractéristiques des intersections avec routes majeures contribuent au plus grand nombre de blessés piétons. La réduction des voies de circulation, l’interdiction de stationner près des coins de rue et d’autres aménagements pertinents pourraient y améliorer la sécurité des piétons en milieu urbain.
Footnotes
Acknowledgements: The research was made possible by in-kind support from the Montréal Public Health Department. We express our sincere gratitude to Urgences-santé for their willing collaboration and expertise in injury data collection and validation, le Centre d’écologie urbaine de Montréal for data collection at intersections and Sylvie Gauthier who edited the English version. Conflict of Interest: None to declare.
References
- 1.National Highway Traffic Safety Administration NHTSA. Traffic Safety Facts 2010: Pedestrians. Washington, DC: U.S. Department of Transportation; 2012. [Google Scholar]
- 2.Direction de la recherche et du développement en sécurité routière. Dossiers statistiques - accidents, parc automobile, permis de conduire: bilan 2011. Québec, QC: Société d’assurance-automobile du Québec; 2012. [Google Scholar]
- 3.Dumbaugh E, Rae R. Safe urban form: Revisiting the relationship between community design and traffic safety. J Am Plann Assoc. 2009;75(3):309–29. doi: 10.1080/01944360902950349. [DOI] [Google Scholar]
- 4.National Highway Traffic Safety Administration NHTSA. National Pedestrian Crash Report. DOT HS 810 968. Washington: U.S. Department of Transportation; 2008. [Google Scholar]
- 5.Schuurman N, Cinnamon J, Crooks VA, Hameed SM. Pedestrian injury and the built environment: An environmental scan of hotspots. BMC Public Health. 2009;9:233. doi: 10.1186/1471-2458-9-233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Morency P, Cloutier MS. From targeted “black spots” to area-wide pedestrian safety. Inj Prev. 2006;12(6):360–64. doi: 10.1136/ip.2006.013326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Morency P, Gauvin L, Tessier F, Miranda-Moreno L, Cloutier MS, Morency C. Analyse désagrégée des facteurs environnementaux associés au nombre d’enfants blessés par un véhicule à moteur en milieu urbain. Cahiers de Géographie du Québec. 2011;55(156):449–68. doi: 10.7202/1008888ar. [DOI] [Google Scholar]
- 8.Lovegrove GR, Sayed T. Macro-level collision prediction models for evaluating neighbourhood traffic safety. Can J Civil Eng. 2006;33(5):609–21. doi: 10.1139/l06-013. [DOI] [Google Scholar]
- 9.Wier M, Weintraub J, Humphreys EH, Seto E, Bhatia R. An area-level model of vehicle pedestrian injury collisions with implications for land use and transportation planning. Accid Anal Prev. 2009;41:137–45. doi: 10.1016/j.aap.2008.10.001. [DOI] [PubMed] [Google Scholar]
- 10.Morency P, Gauvin L, Plante C, Fournier F, Morency C. Neighbourhood social inequalities in road traffic injuries: The influence of traffic volume and road design. Am J Public Health. 2012;102(6):1112–19. doi: 10.2105/AJPH.2011.300528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Ewing R, Dumbaug E. The built environment and traffic safety: A review of empirical evidence. J Plann Lit. 2009;23(4):347–67. doi: 10.1177/0885412209335553. [DOI] [Google Scholar]
- 12.World Road Association PIARC. Road Safety Manual. 1st ed. UK: Route 2 Market Limited; 2004. [Google Scholar]
- 13.Miranda-Moreno LF, Morency P, El-Geneidy AM. The link between built environment, pedestrian activity and pedestrian-vehicle collision occurrence at signalized intersections. Accid Anal Prev. 2011;43(5):1624–34. doi: 10.1016/j.aap.2011.02.005. [DOI] [PubMed] [Google Scholar]
- 14.Lyon C, Persaud B. Pedestrian collision prediction models for Urban intersections - Paper No. 02-3609. Transp Res Rec. 2002;1818:102–7. doi: 10.3141/1818-16. [DOI] [Google Scholar]
- 15.Shahla F, Shalaby AS, Persaud NB, Hadayeghi A. Analysis of transit safety at signalized intersections in Toronto, Ontario, Canada. Transp Res Rec. 2009;2102:108–14. doi: 10.3141/2102-14. [DOI] [Google Scholar]
- 16.Hess PM, Vernez Moudon AV, Matlick JM. Pedestrian safety and transit corridors. J Public Transp. 2004;7(2):73–93. doi: 10.5038/2375-0901.7.2.5. [DOI] [Google Scholar]
- 17.Haddon W., Jr. Energy damage and the 10 countermeasure strategies. Inj Prev. 1995;1(1):40–44. doi: 10.1136/ip.1.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Retting RA, Van Houten R, Malenfant L, Van Houten J, Farmer CM. Special signs and pavement markings improve pedestrian safety. J Inst Transp Eng. 1996;66(12):28–35. [Google Scholar]
- 19.Hauck J, Bates L. Well-marked crosswalks are a pedestrian’s best friends. Rural and Urban Roads. 1979;17(3):26–28. [Google Scholar]
- 20.Herms B. Pedestrian Crosswalk Study: Crashes in Painted and Unpainted Crosswalks. Record No. 406. Washington: Transportation Research Board; 1972. [Google Scholar]
- 21.Jones TL, Tomcheck P. Pedestrian accidents in marked and unmarked crosswalks: A quantitative study. J Inst Transp Eng. 2000;70(9):42–46. [Google Scholar]
- 22.Gibby AR, Stites JL, Thurgood GS, Ferrara TC. Evaluation of Marked and Unmarked Crosswalks at Intersections in California. Report No. FHWA/CA/ TO-94/1. Chico State University, CA: Federal Highway Administration (FHWA); 1994. [Google Scholar]
- 23.Leden L, Garder P, Johansson C. Safe pedestrian crossings for children and elderly. Accid Anal Prev. 2006;38(2):289–94. doi: 10.1016/j.aap.2005.09.012. [DOI] [PubMed] [Google Scholar]
- 24.Koepsell T, McCloskey L, Wolf M, Vernez Moudon A, Buchner D, Kraus J, et al. Crosswalk markings and the risk of pedestrian-motor vehicle collisions in older pedestrians. JAMA. 2002;288(17):2136–43. doi: 10.1001/jama.288.17.2136. [DOI] [PubMed] [Google Scholar]
- 25.Zegeer C, Stewart J, Huang H, Lagerwey P. Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations: Final Report and Recommended Guidelines. FHWA-HRT-04-100. McLean, VA: U.S. Department of Transportation, Federal Highway Administration (FHWA); 2005. [Google Scholar]
- 26.Retting RA, Ferguson SA, McCartt AT. A review of evidence-based traffic engineering measures designed to reduce pedestrian-motor vehicle crashes. Am J Public Health. 2003;93(9):1456–63. doi: 10.2105/AJPH.93.9.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Morency P, Archambault J, Cloutier MS, Tremblay M, Plante C, Dubé AS. Sécurité des piétons en milieu urbain: enquête sur les aménagements routiers aux intersections. Montréal, QC: Agence de la santé et des services sociaux, direction de santé publique; 2013. [Google Scholar]
- 28.Garder PE. The impact of speed and other variables on pedestrian safety in Maine. Accid Anal Prev. 2004;36(4):533–42. doi: 10.1016/S0001-4575(03)00059-9. [DOI] [PubMed] [Google Scholar]
- 29.Toronto Centre for Active Transportation. Complete Streets by Design; Toronto Streets Redesigned for All Ages and Abilities. 2012. [Google Scholar]
- 30.Hess PM. Avenues or arterials: The struggle to change street building practices in Toronto, Canada. J Urban Des. 2009;14(1):1–28. doi: 10.1080/13574800802451049. [DOI] [Google Scholar]