Abstract
Objectives: The objective of this study was to describe whether the social environment of the territory of residence is associated with indicators of fœtal growth retardation.
Methods: All newborns (n=667,254) from 143 Centres locaux de services communautaires (CLSC) territories of Quebec, Canada, 2000–2008 were included in this study. Small for gestational age (SGA), very small for gestational age (VSGA) and SGA-preterm births were identified. Social characteristics and access to medical services of the population in the CLSCs were obtained from the Canadian Community Health Survey. Data on material deprivation, racial diversity and social isolation were obtained from the 2001 and 2006 Canadian censuses. A compromise between two methods, stepwise and best subset, was used to select variables for multivariate logistic modelling. The model was fitted on each studied outcome: SGA, VSGA and SGA among preterm births.
Results: When investigating material deprivation, racial diversity, social isolation, proportion of sedentary residents and proportion with fair or poor availability of health care services in the CLSC territories, material deprivation, racial diversity, social isolation and sedentary residents showed increased adjusted risk of SGA. Results of the model fit on VSGA birth and on SGA among preterm births were similar.
Conclusion: CLSC characteristics of material deprivation, racial diversity, social isolation as well as the contextual variable of sedentary lifestyle were associated with indicators of foetal growth retardation. Further work on features of the CLSCs could help understand how the outcome of SGA is associated with contextual factors and identify groups for intervention.
Keywords: Small for gestational age, fetal growth retardation, social environment, health behaviour, health surveys, logistic models
Résumé
Objectifs: L’objectif de cette étude était d’investiguer si l’environnement social délimité par le territoire de résidence est associé avec des indicateurs de retard de croissance fœtale.
Méthodes: Les nouveau-nés de 143 Centres locaux de services communautaires (CLSC) du Québec, Canada en 2000–2008 (n=667 254) ont été inclus. Les naissances de faible et de très faible poids pour leur âge gestationnel (SGA et VSGA) et les naissances prématurées ont été identifiées. Des caractéristiques de l’environnement social et d’accès aux services de santé sur les territoires de CLSC ont été obtenues à partir de l’Enquête sur la santé dans les collectivités canadiennes. Celles de défavorisation matérielle, d’isolement social et de diversité raciale ont été obtenues à partir des recensements canadiens de 2001 et 2006. Un compromis entre deux méthodes de sélection de variables, les méthodes pas-à-pas et du meilleur sous-ensemble, a été utilisé pour bâtir un modèle de régression logistique multivarié. Ce dernier a été ajusté sur le SGA, le VSGA et le SGA parmi les naissances prématurées.
Résultats: Lors de l’examen des variables du contexte matériel, social et racial ainsi que celles de sédentarité et d’accès aux services, les CLSC ayant une importante défavorisation matérielle, un important isolement social, une importante diversité raciale et ceux ayant une importante part de résidents sédentaires présentaient un risque ajusté de SGA accru. Les résultats sur le VSGA et sur le SGA parmi les naissances prématurées étaient similaires.
Conclusion: Les caractéristiques contextuelles de défavorisation matérielle, d’isolement social, de diversité raciale et de sédentarité ont été associées à des indicateurs de retard de croissance fœtale. Des travaux complémentaires sur les caractéristiques des CLSC pourraient aider à clarifier la façon dont le SGA est associé au contexte et à cibler des groupes prioritaires pour l’intervention.
Mots clés: faible poids pour l’âge gestationnel, retard de croissance fœtale, environnement social, comportements favorisant la santé, enquête sur la santé, modèle de régression logistique
Footnotes
Conflict of Interest: None to declare.
References
- 1.Riva M, Gauvin L, Barnett TA. Toward the next generation of research into small area effects on health: A synthesis of multilevel investigations published since July 1998. J Epidemiol Community Health. 2007;61(10):853–61. doi: 10.1136/jech.2006.050740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Rajaratnam JK, Burke JG, O’Campo P. Maternal and child health and neighborhood context: The selection and construction of area-level variables. Health Place. 2006;12(4):547–56. doi: 10.1016/j.healthplace.2005.08.008. [DOI] [PubMed] [Google Scholar]
- 3.Boyle MH, Willms JD. Place effects for areas defined by administrative boundaries. Am J Epidemiol. 1999;149(6):577–85. doi: 10.1093/oxfordjournals.aje.a009855. [DOI] [PubMed] [Google Scholar]
- 4.Diez Roux AV. Neighborhoods and health: Where are we and where do we go from here? Rev Epidemiol Santé Publique. 2007;55(1):13–21. doi: 10.1016/j.respe.2006.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Laraia BA, Messer L, Kaufman JS, Dole N, Caughy M, O’Campo P, et al. Direct observation of neighborhood attributes in an urban area of the US south: Characterizing the social context of pregnancy. Int J Health Geogr. 2006;5:11. doi: 10.1186/1476-072X-5-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.World Health Organization. Report of a Technical Consultation. Geneva, Switzerland: WHO; 2003. Promoting optimal fetal development. [Google Scholar]
- 7.Canadian Perinatal Surveillance System CPSS. Canadian perinatal health report, 2008 edition. Ottawa, ON: Public Health Agency of Canada; 2008. [Google Scholar]
- 8.Auger N, Giraud J, Daniel M. The joint influence of area income, income inequality, and immigrant density on adverse birth outcomes: A population-based study. BMC Public Health. 2009;9:237. doi: 10.1186/1471-2458-9-237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Nkansah-Amankra S, Dhawain A, Hussey JR, Luchok KJ. Maternal social support and neighborhood income inequality as predictors of low birth weight and preterm birth outcome disparities: Analysis of South Carolina pregnancy risk assessment and monitoring system survey, 2000–2003. Maternal Child Health J. 2010;14(5):774–85. doi: 10.1007/s10995-009-0508-8. [DOI] [PubMed] [Google Scholar]
- 10.Nkansah-Amankra S. Neighborhood contextual factors, maternal smoking, and birth outcomes: Multilevel analysis of the South Carolina PRAMS survey, 2000–2003. J Womens Health (Larchmt) 2010;19(8):1543–52. doi: 10.1089/jwh.2009.1888. [DOI] [PubMed] [Google Scholar]
- 11.Luo ZC, Wilkins R, Kramer MS. Effect of neighbourhood income and maternal education on birth outcomes: A population-based study. CMAJ. 2006;174(10):1415–20. doi: 10.1503/cmaj.051096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Schaefer-McDaniel N, Dunn JR, Minian N, Katz D. Rethinking measurement of neighborhood in the context of health research. Soc Sci Med. 2010;71(4):651–56. doi: 10.1016/j.socscimed.2010.03.060. [DOI] [PubMed] [Google Scholar]
- 13.Culhane JF, Elo IT. Neighborhood context and reproductive health. Am J Obstet Gynecol. 2005;192(5Suppl):S22–S29. doi: 10.1016/j.ajog.2005.01.071. [DOI] [PubMed] [Google Scholar]
- 14.Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstetrics Gynecol. 1996;87(2):163–68. doi: 10.1016/0029-7844(95)00386-X. [DOI] [PubMed] [Google Scholar]
- 15.Kramer MS, Platt RW, Wen SW, Joseph KS, Allen A, Abrahamowicz M, et al. A new and improved population-based Canadian reference for birth weight for gestational age. Pediatrics. 2001;108(2):E35. doi: 10.1542/peds.108.2.e35. [DOI] [PubMed] [Google Scholar]
- 16.Béland Y. Canadian community health survey — methodological overview. Health Rep. 2002;13(3):9–14. [PubMed] [Google Scholar]
- 17.Thomas S, Wannell B. Combining cycles of the Canadian Community Health Survey. Health Rep. 2009;20(1):53–58. [PubMed] [Google Scholar]
- 18.Lapointe F, Courtemanche R. Avis méthodologique pour la combinaison de plusieurs cycles de l’Enquête sur la santé dans les collectivités canadiennes. 2010. [Google Scholar]
- 19.Statistics Canada. Profile for Canada, Provinces, Territories, Census Divisions, Census Subdivisions and Dissemination Areas, 2006 Census. 2011. [Google Scholar]
- 20.SAS Institute Inc. SAS/STAT 9.2 User’s Guide. Second ed. Cary, NC: SAS Institute Inc.; 2009. The MI Procedure. [Google Scholar]
- 21.Truxillo C. Maximum Likelihood Parameter Estimation with Incomplete Data. 2005;30:111–30. [Google Scholar]
- 22.SAS Institute Inc. SAS/STAT 9.2 User’s Guide. Second ed. Cary, NC: SAS Institute Inc.; 2009. The Factor Procedure. [Google Scholar]
- 23.Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining Inference and Prediction. 2nd ed. New York, NY: Springer Science; 2009. [Google Scholar]
- 24.Shtatland ES, Cain E, Barton MB. The perils of stepwise logistic regression and how to escape them using information criteria and the output delivery system. 2001;26:222–26. [Google Scholar]
- 25.Institut National de Santé Publique du Québec. Proportion de la population ayant déménagé un an auparavant selon le type d’immigration, le Québec et ses régions (CLSC fusionnés), 1996, 2001 et 2006. 2010. [Google Scholar]
- 26.Pampalon R, Hamel D, Gamache P, Raymond G. A deprivation index for health planning in Canada. Chronic Dis Can. 2009;29(4):178–91. [PubMed] [Google Scholar]
- 27.Jarman B, Townsend P, Carstairs V. Deprivation indices. BMJ. 1991;303(6801):523. doi: 10.1136/bmj.303.6801.523-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Braveman PA, Cubbin C, Egerter S, Chideya S, Marchi KS, Metzler M, et al. Socioeconomic status in health research: One size does not fit all. JAMA. 2005;294(22):2879–88. doi: 10.1001/jama.294.22.2879. [DOI] [PubMed] [Google Scholar]
- 29.Heck KE, Schoendorf KC, Chavez GF. The influence of proximity of prenatal services on small-for-gestational-age birth. J Community Health. 2002;27(1):15–31. doi: 10.1023/A:1013828226004. [DOI] [PubMed] [Google Scholar]
