Skip to main content
Canadian Journal of Public Health = Revue Canadienne de Santé Publique logoLink to Canadian Journal of Public Health = Revue Canadienne de Santé Publique
. 2013 May 1;104(3):e240–e245. doi: 10.17269/cjph.104.3794

A Comparison of Two Methods for Ecologic Classification of Radon Exposure in British Columbia: Residential Observations and the Radon Potential Map of Canada

Stephen A Rauch 1, Sarah B Henderson 1,
PMCID: PMC6974098  PMID: 23823889

Abstract

Objective

To compare ecologic classification of radon exposure from observed residential concentrations in BC with classifications based on a map that shows geological radon potential, with particular attention to high-smoking populations.

Methods

First, residential radon measurements from four health agencies were used to classify 74 local health areas (LHAs) as low, moderate, or high exposure based on the number of homes with concentrations greater than 200 and 600 Bq/m3. Second, the Zone 1 (high), Zone 2 (elevated), and Zone 3 (guarded) risk categories of the radon potential map of Canada were used to make the same exposure classifications based on the populationweighted area of each zone in each LHA. Agreement was compared and quantified. Average smoking rates in each LHA were used to further assess agreement for smokers, who are a high-risk group.

Results

Both methods showed a range of exposure across LHAs. The radon potential map classified more areas as high exposure than the observed radon concentrations, and the methods agreed in 30 of 74 LHAs. The radon potential map identified much of the southern coastal region as high exposure, but 617 of the 621 observed concentrations were ≤200 Bq/m3, and no observations were >600 Bq/m3. An estimated 36% of the BC population and 35% of BC smokers live in the southern coastal region.

Conclusions

The radon potential map of Canada may communicate potential radon risk, but it was not designed for epidemiologic exposure assessment. Overall, the potential map classified 34 LHAs as higher than observed, and 10 LHAs as lower than observed. The potential map should only be used to inform exposure assessment in conjunction with observed radon concentrations.

Key Words: Radon, environmental exposure, epidemiologic methods, geographic information systems, risk assessment

Footnotes

Acknowledgements: The authors thank Health Canada, the Northern Health Authority, and the BC Lung Association for sharing their data; the Radon Environmental Management Corporation for sharing data, and for their help in reviewing and interpreting the results; and the reviewers for helping to strengthen the manuscript.

Conflict of Interest: None to declare.

References

  • 1.Committee on Health Risks of Exposure to Radon. Health Effects of Exposure to Radon: BEIR VI. Washington, DC: The National Academies Press; 1999. [PubMed] [Google Scholar]
  • 2.Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, et al. Residential radon and risk of lung cancer: A combined analysis of 7 North American case-control studies. Epidemiol. 2005;16(2):137–45. doi: 10.1097/01.ede.0000152522.80261.e3. [DOI] [PubMed] [Google Scholar]
  • 4.Zhang ZL, Sun J, Dong JY, Tian HL, Xue L, Qin LQ, et al. Residential radon and lung cancer risk: An updated meta-analysis of case-control studies. Asian Pacific J Cancer Prev. 2012;13(6):2459–65. doi: 10.7314/APJCP.2012.13.6.2459. [DOI] [PubMed] [Google Scholar]
  • 5.Saccomanno G, Huth GC, Auerbach O, Kuschner M. Relationship of radioactive radon daughters and cigarette smoking in the genesis of lung cancer in uranium miners. Cancer. 1988;62(7):1402–8. doi: 10.1002/1097-0142(19881001)62:7<1402::AID-CNCR2820620727>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  • 6.Chen J, Moir D, Whyte J. Canadian population risk of radon induced lung cancer: A reassessment based on the recent cross-Canada radon survey. Radiat Prot Dosimetry. 2012;152(1-3):9–13. doi: 10.1093/rpd/ncs147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Létourneau EG, Krewski D, Choi NW, Goddard MJ, McGregor RG, Zielinski JM, et al. Case-control study of residential radon and lung cancer in Winnipeg, Manitoba, Canada. Am J Epidemiol. 1994;140(4):310–22. doi: 10.1093/oxfordjournals.aje.a117253. [DOI] [PubMed] [Google Scholar]
  • 8.Stidley CA, Samet JM. A review of ecologic studies of lung cancer and indoor radon. Health Physics. 1993;65(3):234–51. doi: 10.1097/00004032-199309000-00001. [DOI] [PubMed] [Google Scholar]
  • 9.Evrard AS, Hémon D, Billon S, Laurier D, Jougla E, Tirmarche M, et al. Ecological association between indoor radon concentration and childhood leukaemia incidence in France, 1990–1998. Eur J Cancer Prev. 2005;14(2):147–57. doi: 10.1097/00008469-200504000-00011. [DOI] [PubMed] [Google Scholar]
  • 10.Wheeler BW, Allen J, Depledge MH, Curnow A. Radon and skin cancer in Southwest England: An ecologic study. Epidemiol. 2012;23(1):447–52. doi: 10.1097/EDE.0b013e31823b6139. [DOI] [PubMed] [Google Scholar]
  • 11.Savitz DA. Commentary: A niche for ecologic studies in environmental epidemiology. Epidemiol. 2012;23(1):53–54. doi: 10.1097/EDE.0b013e31823b5633. [DOI] [PubMed] [Google Scholar]
  • 12.Henderson S, Kosatsky T, Barn P. How to ensure that national radon survey results are useful for public health practice. Can J Public Health. 2012;103(3):231–34. doi: 10.1007/BF03403819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Radon Environmental Management Corp. Radon Potential Map of Canada. 2011. [Google Scholar]
  • 14.Health Canada. Cross-Canada Survey of Radon Concentrations in Homes: Final Report. Ottawa, ON: 2012;29.
  • 15.Health Canada. Government of Canada Radon Guideline. 2012. [Google Scholar]
  • 16.BC Stats. Population Extrapolation for Organizational Planning with Less Error (P.E.O.P.L.E.) 2012. [Google Scholar]
  • 17.Canadian Community Health Survey (CCHS): Annual Component User Guide for the 2008 Microdata Files. 2009;95.
  • 18.Canadian Community Health Survey (CCHS): Supplement to the User Guide for the British Columbia Sample Buy-in. 2011;4.
  • 19.R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2009. [Google Scholar]
  • 20.Hunter N, Muirhead CR, Miles JCH, Appleton JD. Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England. Radiat Prot Dosimetry. 2009;136(1):17–22. doi: 10.1093/rpd/ncp148. [DOI] [PubMed] [Google Scholar]
  • 21.Bertolo A, Verdi L. Validation of a geographic information system for the evaluation of the soil radon exhalation potential in South-Tyrol and Veneto (Italy) Radiat Prot Dosimetry. 2001;97(4):321–24. doi: 10.1093/oxfordjournals.rpd.a006680. [DOI] [PubMed] [Google Scholar]
  • 22.Appleton JD, Miles JCH, Young M. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data. Sci Total Environ. 2011;409(8):1572–83. doi: 10.1016/j.scitotenv.2011.01.023. [DOI] [PubMed] [Google Scholar]
  • 23.Canivez GL. Validity and diagnostic efficiency of the Kaufman Brief Intelligence Test in reevaluating students with learning disability. J Psychoeducational Assessment. 1996;14(1):4–19. doi: 10.1177/073428299601400101. [DOI] [Google Scholar]

Articles from Canadian Journal of Public Health = Revue Canadienne de Santé Publique are provided here courtesy of Springer

RESOURCES