Abstract
Objectives
The adverse effects of hot weather on public health are of increasing concern. A surveillance system using 911 medical dispatch data for the detection of heat-related illness (HRI) could provide new information on the impact of excessive heat on the population. This paper describes how we identified medical dispatch call codes, called “determinants”, that could represent HRI events.
Methods
Approximately 500 medical dispatch determinants were reviewed in focus groups composed of Emergency Medical Services (EMS) paramedics, dispatchers, physicians, and public health epidemiologists. Each group was asked to select those determinants that might adequately represent HRI. Selections were then assessed empirically using correlations with daily mean temperature over the study period (June 1–August 31, 2005).
Results
The focus groups identified 12 determinant groupings and ranked them according to specificity for HRI. Of these, “Heat/cold exposure” was deemed the most specific. The call determinant groupings with the clearest positive associations with daily mean temperature empirically were “Heat/cold exposure” (Spearman’s correlation coefficient (SCC) 0.71, p<0.0001) and “Unknown problem (man down)” (SCC 0.21, p=0.04). Within each grouping, the determinant “Unknown status (3rd party caller)” showed significant associations, SCC=0.34 (p=0.001) and SCC=0.22 (p=0.03) respectively.
Conclusions
Clinically-informed expertise and empirical evidence both contributed to identification of a group of 911 medical dispatch call determinants that plausibly represent HRI events. Once evaluated prospectively, these may be used in public health surveillance to better understand environmental health impacts on human populations and inform targeted public health interventions.
Key words: Heat stress disorders, emergency medical services, temperature, environment, public health, surveillance
Résumé
Objectifs
On se préoccupe de plus en plus des effets indésirables du temps chaud sur la santé publique. Un système de surveillance qui détecterait les maladies associées à la chaleur (MAC) d’après les données du service d’urgence 911 pourrait fournir de nouvelles informations sur l’impact de la chaleur excessive dans la population. Nous décrivons ici la méthode que nous avons employée pour sélectionner les codes d’appel aux secours médicaux (que nous appelons les « déterminants ») qui pourraient correspondre à des MAC.
Méthode
Quelque 500 déterminants de la répartition des secours médicaux ont été examinés dans des groupes de discussion composés d’ambulanciers paramédicaux, de répartiteurs, de médecins et d’épidémiologistes en santé publique travaillant dans le domaine des secours médicaux d’urgence. Chaque groupe devait sélectionner les déterminants qui correspondaient selon eux à des MAC. Leurs choix ont ensuite été évalués expérimentalement en établissant des corrélations avec la température quotidienne moyenne sur la période de l’étude (du 1er juin au 31 août 2005).
Résultats
Les participants ont sélectionné 12 groupes de déterminants et les ont classés selon leur degré de correspondance spécifique aux MAC. De ces groupes, « Exposition au froid/à la chaleur » a été jugé le plus spécifique. Les groupes qui, expérimentalement, présentaient les associations positives les plus claires avec la température moyenne quotidienne étaient « Exposition au froid/à la chaleur » (coefficient de corrélation de Spearman (CCS) de 0,71, p<0,0001) et « Problème inconnu (personne gisante) » (CCS=0,21, p=0,04). Dans chacun des deux groupes, le déterminant « État inconnu (appelant tierce personne) » présentait une association significative, soit CCS=0,34 (p=0,001) et CCS=0,22 (p=0,03), respectivement.
Conclusion
L’expérience clinique d’experts et les données empiriques ont toutes deux contribué à la sélection d’un groupe de déterminants pour la répartition des secours médicaux d’urgence du service 911 pouvant raisonnablement servir d’indicateurs de MAC. Lorsqu’ils auront fait l’objet d’une évaluation prospective, ces déterminants pourront être utilisés à des fins de surveillance de la santé publique pour mieux comprendre les effets de l’environnement sur la santé des populations humaines et pour étayer des mesures d’intervention ciblées en santé publique.
Mots clés: troubles liés au stress thermique, secours médicaux d’urgence, température, environnement, santé publique, surveillance
References
- 1.Robine JM. The excess mortality in summer 2003: Results of the Canicule Project; 2007. [Google Scholar]
- 2.Whitman S, Good G, Donoghue ER, Benbow N, Shou W, Mou S. Mortality in Chicago attributed to the July 1995 heat wave. Am J Public Health. 1997;87:1515–18. doi: 10.2105/AJPH.87.9.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Pengelly LD, Campbell ME, Cheng CS, Fu C, Gingrich SE, Macfarlane R. Anatomy of heat waves and mortality in Toronto: Lessons for public health protection. Can J Public Health. 2007;98(5):364–68. doi: 10.1007/BF03405420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Toronto Public Health. Combined Impact of Extreme Heat and Air Pollution on Mortality. 2005. [Google Scholar]
- 5.Angus J. An evaluation of Toronto’s heat watch warning system [thesis] Toronto, ON: University of Toronto; 2007. [Google Scholar]
- 6.Health Canada. Pyramid of Health Effects. Health Effects from Air Pollution. 2006. [Google Scholar]
- 7.Barrow MW, Clark KA. Heat-related illness. Am Fam Phys. 1998;58(3):749–56. [PubMed] [Google Scholar]
- 8.Glazer JL. Management of heatstroke and heat exhaustion. Am Fam Phys. 2005;71(11):2133–40. [PubMed] [Google Scholar]
- 9.Wexler RK. Am Fam Phys. 2002. Evaluation and treatment of heat-related illness; pp. 65^(11)–14. [PubMed] [Google Scholar]
- 10.Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002;346(25):1978–88. doi: 10.1056/NEJMra011089. [DOI] [PubMed] [Google Scholar]
- 11.Semenza JC. Acute renal failure during heat waves. Am J Prev Med. 1999;17(1):97. doi: 10.1016/S0749-3797(99)00066-5. [DOI] [PubMed] [Google Scholar]
- 12.Simon HB. Hyperthermia. N Engl J Med. 1993;329:483–87. doi: 10.1056/NEJM199308123290708. [DOI] [PubMed] [Google Scholar]
- 13.Basu R, Samet JM. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol Rev. 2002;24(2):190–202. doi: 10.1093/epirev/mxf007. [DOI] [PubMed] [Google Scholar]
- 14.Sosin DM. Syndromic surveillance: The case for skillful investment. Biosecur Bioterror. 2003;1:247–53. doi: 10.1089/153871303771861441. [DOI] [PubMed] [Google Scholar]
- 15.Babin S, Magruder S, Hakre S, Coberly J, Lombardo JS. Understanding the data: Health indicators in disease surveillance. In: Lombardo JS, Buckeridge DL, editors. Disease Surveillance: A Public Health Informatics Approach. Hoboken, NJ: John Wiley & Sons; 2007. [Google Scholar]
- 16.Leonardi GS, Hajat S, Kovats RS, Smith GE, Cooper D, Gerard E. Syndromic surveillance use to detect the early effects of heat-waves: An analysis of NHS direct data in England. Sozial-Und Praventivmedizin. 2006;51:194–201. doi: 10.1007/s00038-006-5039-0. [DOI] [PubMed] [Google Scholar]
- 17.Cerutti B, Tereanu C, Domenighetti G, Cantoni E, Gaia M, Bolgiani I, et al. Temperature related mortality and ambulance service interventions during the heat waves of 2003 in Ticino (Switzerland) Sozial-Und Praventivmedizin. 2006;51:185–93. doi: 10.1007/s00038-006-0026-z. [DOI] [PubMed] [Google Scholar]
- 18.Dolney TJ, Sheridan SC. The relationship between extreme heat and ambulance response calls for the city of Toronto, Ontario, Canada. Environ Res. 2005;101:94–103. doi: 10.1016/j.envres.2005.08.008. [DOI] [PubMed] [Google Scholar]
- 19.Beaton DE, Bombardier C, Cole DC, Hogg-Johnson S, Van Eerd D. A pattern recognition approach to the development of a classification system for upper-limb musculoskeletal disorders of workers. Scand J Work Environ Health. 2007;33(2):131–39. doi: 10.5271/sjweh.1116. [DOI] [PubMed] [Google Scholar]
- 20.Rea E. World Youth Day, Toronto, Canada. Report for Toronto Public Health. 2004. [Google Scholar]
- 21.Brucker G. Vulnerable populations: Lessons learnt from the summer 2003 heat waves in Europe. Eurosurveillance. 2005;10(7):147. doi: 10.2807/esm.10.07.00551-en. [DOI] [PubMed] [Google Scholar]
- 22.Klinenberg E. Dying alone. Ethnography. 2001;2(4):501–31. doi: 10.1177/14661380122231019. [DOI] [Google Scholar]
- 23.Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders D, Howe HL, et al. Heat-related deaths during the July 1995 heat wave in Chicago. NEJM. 1996;335:84–90. doi: 10.1056/NEJM199607113350203. [DOI] [PubMed] [Google Scholar]
- 24.Beitel AJ, Olson KL, Reis B, Mandl K. Use of emergency department chief complaint and diagnostic codes for identifying respiratory illness in a pediatric population. Pediatr Emerg Care. 2004;20(6):355–60. doi: 10.1097/01.pec.0000133608.96957.b9. [DOI] [PubMed] [Google Scholar]
- 25.Berger M, Shiau R, Weintraub JM. Review of syndromic surveillance: Implications for waterborne disease detection. J Epidemiol Community Health. 2006;60(6):543–50. doi: 10.1136/jech.2005.038539. [DOI] [PMC free article] [PubMed] [Google Scholar]
