Skip to main content
Canadian Journal of Public Health = Revue Canadienne de Santé Publique logoLink to Canadian Journal of Public Health = Revue Canadienne de Santé Publique
. 2006 Mar 1;97(2):126–131. doi: 10.1007/BF03405330

Impact of Antibiotic Administrative Restrictions on Trends in Antibiotic Resistance

D A Marshall 111,, A McGeer 211, J Gough 311, P Grootendorst 411, M Buitendyk 311, S Simonyi 111, K Green 211, B Jaszewski 511, S M MacLeod 111,611, D E Low 211
PMCID: PMC6975704  PMID: 16620000

Abstract

Context

In March 2001, in response to concerns about increasing resistance to fluoroquinolone (FQ) antibiotics, the Ontario Drug Benefit (ODB) program limited reimbursement of FQs to ODB beneficiaries defined as high risk or in whom other therapies are not tolerated.

Objective

To analyze the impact of the limited use (LU) policy changes on antibiotic resistance rates in Ontario, focussing on community-acquired pathogens.

Design

Ontario data submitted to the Canadian Bacterial Surveillance Network (CBSN) between January 1, 1998 and June 30, 2002 were analyzed for rates of resistance in various pathogen-antibiotic combinations. The effect of the LU policy on the level and rate of change of antibiotic resistance was estimated using time series models.

Results

Resistance rates for S. pneumoniae were 10-12% for penicillin, erythromycin and trimethoprim sulfamethoxazole (TMP/SMX) and less than 3% for amoxicillin and all three FQs tested. There was a statistically significant increasing trend in resistance rates of S. pneumoniae to amoxicillin and levofloxacin throughout the study period. Antibiotic resistance of S. pneumoniae to ciprofloxacin indicated a statistically significant decreasing trend over the study period with a statistically significant increase in the level of antibiotic resistance at the time of the LU policy implementation. No other indication of any statistically significant decrease in resistance rates associated with the LU policy was found.

Conclusions

Although no direct cause and effect can be proven with these observational data, there is no evidence that the limited use policy to restrict fluoroquinolones decreased antibiotic resistance in any of the pathogen-antibiotic combinations tested.

MeSH terms: Anti-bacterial agents, health policy, statistical models, reimbursement mechanisms, antibiotic resistance, drug resistance

Footnotes

Source of funding: Bayer HealthCare Inc.

References

  • 1.Low DE. Appropriate antibiotic use: Reducing the emergence and dissemination of resistance. Int J Clin Pract. 2000;115(Suppl):106–10. [PubMed] [Google Scholar]
  • 2.Controlling antimicrobial resistance. An integrated action plan for Canadians. Can Commun Dis Rep. 1997;23(Suppl7):i–32. [PubMed] [Google Scholar]
  • 3.Health Canada. https://doi.org/www.hc-sc.gc.ca/english/antires/htm. 2003.
  • 4.Chen DK, McGeer A, de Azavedo JC, Low DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Canadian Bacterial Surveillance Network. N Engl J Med. 1999;341(4):233–39. doi: 10.1056/NEJM199907223410403. [DOI] [PubMed] [Google Scholar]
  • 5.Low DE, de Azavedo J, Weiss K, Mazzulli T, Kuhn M, Church D, et al. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in Canada during 2000. Antimicrob Agents Chemother. 2002;46(5):1295–301. doi: 10.1128/AAC.46.5.1295-1301.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Doern GV, Pfaller MA, Erwin ME, Brueggemann AB, Jones RN. The prevalence of fluoroquinolone resistance among clinically significant respiratory tract isolates of Streptococcus pneumoniae in the United States and Canada—1997 results from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis. 1998;32(4):313–16. doi: 10.1016/S0732-8893(98)00081-9. [DOI] [PubMed] [Google Scholar]
  • 7.Grossman RF. The role of fluoroquinolones in respiratory tract infections. J Antimicrob Chemother. 1997;40(SupplA):59–62. doi: 10.1093/jac/40.suppl_1.59. [DOI] [PubMed] [Google Scholar]
  • 8.Low DE. Antimicrobial drug use and resistance among respiratory pathogens in the community. Clin Infect Dis. 2001;33(Suppl3):S206–S213. doi: 10.1086/321849. [DOI] [PubMed] [Google Scholar]
  • 9.Gould IM. A review of the role of antibiotic policies in the control of antibiotic resistance. J Antimicrob Chemother. 1999;43(4):459–65. doi: 10.1093/jac/43.4.459. [DOI] [PubMed] [Google Scholar]
  • 10.Westh H, Jarlov JO, Kjersem H, Rosdahl VT. The disappearance of multiresistant Staphylococcus aureus in Denmark: Changes in strains of the 83A complex between 1969 and 1989. Clin Infect Dis. 1992;14(6):1186–94. doi: 10.1093/clinids/14.6.1186. [DOI] [PubMed] [Google Scholar]
  • 11.Seppala H, Klaukka T, Vuopio-Varkila J, Muotiala A, Helenius H, Lager K, et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N Engl J Med. 1997;337(7):441–46. doi: 10.1056/NEJM199708143370701. [DOI] [PubMed] [Google Scholar]
  • 12.Beilby J, Marley J, Walker D, Chamberlain N, Burke M. Effect of changes in antibiotic prescribing on patient outcomes in a community setting: A natural experiment in Australia. Clin Infect Dis. 2002;34(1):55–64. doi: 10.1086/338232. [DOI] [PubMed] [Google Scholar]
  • 13.Zhanel GG, Palatnick L, Nichol KA, Bellyou T, Low DE, Hoban DJ. Antimicrobial resistance in respiratory tract Streptococcus pneumoniae isolates: Results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002. Antimicrob Agents Chemother. 2003;47(6):1867–74. doi: 10.1128/AAC.47.6.1867-1874.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Antibiotic Resistance: Antibiotic reviewOntario Drug Benefit Formulary listing changes. DQTC Bulletin. 2001. [Google Scholar]
  • 15.National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing. Tenth Informational Supplement. Tenth Informational Supplement M100-S12 NCCCLS. USA: Wayne, PA; 2002. [Google Scholar]
  • 16.Brocklebank JC, Dickey DA. SAS System for Forecasting Time Series. Cary, NC: SAS Institute; 1986. [Google Scholar]
  • 17.Greenland S, Rothman KJ. Introduction to categorical statistics. In: Rothman KJ, Greenland S, editors. Modern Epidemiology. Philadelphia, PA: Lippincott-Raven; 1998. pp. 231–52. [Google Scholar]
  • 18.Greenland S, Rothman KJ. Fundamentals of epidemiologic data analysis. In: Greenland S, Rothman KJ, editors. Modern Epidemiology. Philadelphia: Lippincott William & Wilkins; 1998. pp. 201–29. [Google Scholar]
  • 19.Burke JP. Antibiotic resistance—squeezing the balloon? JAMA. 1998;280(14):1270–71. doi: 10.1001/jama.280.14.1270. [DOI] [PubMed] [Google Scholar]
  • 20.Rahal JJ, Urban C, Horn D, Freeman K, Segal-Maurer J, Maurer J, et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA. 1998;280(14):1233–37. doi: 10.1001/jama.280.14.1233. [DOI] [PubMed] [Google Scholar]
  • 21.Marshall DA, Gough J, Grootendorst P, Buitendyk M, Jaszewski B, Simonyi S, et al. Impact of administrative restrictions on antibiotic use and expenditures in Ontario: Time series analysis. J Health Services Policy and Research. 2006;11(1):13–20. doi: 10.1258/135581906775094253. [DOI] [PubMed] [Google Scholar]
  • 22.Seppala H, Nissinen A, Jarvinen H, Huovinen S, Henriksson T, Herva E, et al. Resistance to erythromycin in group A streptococci. N Engl J Med. 1992;326(5):292–97. doi: 10.1056/NEJM199201303260503. [DOI] [PubMed] [Google Scholar]
  • 23.Baquero F. J Chemother. 1999. Evolving resistance patterns of Streptococcus pneumoniae: A link with longacting macrolide consumption? pp. 35–43. [DOI] [PubMed] [Google Scholar]
  • 24.Pihlajamaki M, Kotilainen P, Kaurila T, Klaukka T, Palva E, Huovinen P. Macrolide-resistant Streptococcus pneumoniae and use of antimicrobial agents. Clin Infect Dis. 2001;33(4):483–88. doi: 10.1086/322735. [DOI] [PubMed] [Google Scholar]
  • 25.Pelton SI, Klein JO. The future of pneumococcal conjugate vaccines for prevention of pneumococcal diseases in infants and children. Pediatrics. 2002;110(4):805–14. doi: 10.1542/peds.110.4.805. [DOI] [PubMed] [Google Scholar]
  • 26.Janior C, Zeller V, Kitzis MD, Moreau NJ, Gutmann L. High-level fluoroquinolone resistance in Steptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother. 1996;40(12):2760–64. doi: 10.1128/AAC.40.12.2760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Bartlett JG, Dowell SF, Mandell LA, File TM, Jr, Musher DM, Fine MJ. Practice guidelines for the management of community-acquired pneumonia in adults. Infectious Diseases Society of America. Clin Infect Dis. 2000;31(2):347–82. doi: 10.1086/313954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Mandell LA, Marrie TJ, Grossman RF, Chow AW, Hyland RH. Summary of Canadian guidelines for the initial management of communityacquired pneumonia: An evidence-based update by the Canadian Infectious Disease Society and the Canadian Thoracic Society. Can Respir J. 2000;7(5):371–82. doi: 10.1155/2000/412616. [DOI] [PubMed] [Google Scholar]

Articles from Canadian Journal of Public Health = Revue Canadienne de Santé Publique are provided here courtesy of Springer

RESOURCES