Skip to main content
Canadian Journal of Public Health = Revue Canadienne de Santé Publique logoLink to Canadian Journal of Public Health = Revue Canadienne de Santé Publique
. 2008 Sep 1;99(5):428–433. doi: 10.1007/BF03405255

Long-term Effects of Folic Acid Fortification and B-vitamin Supplementation on Total Folate, Homocysteine, Methylmalonic Acid and Cobalamin in Older Adults

Angeles A Garcia 115,, Andrew G Day 215, Katherine Zanibbi 115, Maria Victoria Zunzunegui 315
PMCID: PMC6975743  PMID: 19009931

Abstract

Objective

To investigate the long-term effects of the Canadian folic acid fortification program in older adults’ whole blood cell folate (folate) and cobalamin (Cbl) status, including homocysteine (tHcy) and methylmalonic acid (MMA), with and without voluntary B-vitamin intake, from 1997 to 2004.

Methods

Cohort of community-dwelling volunteer older adults. Clinical and biochemical data, including intake of B-vitamin supplements, were obtained at 2- to 2.5-year intervals and divided in 4 periods. Random coefficients (mixed effects) models were used to estimate the linear trend in folate and to compare levels of biochemical parameters between periods. All models were estimated by restricted maximum likelihood as implemented in PROC MIXED of SAS V8.2.

Results

Folate levels increased continuously at a yearly rate of 234 ng/mL (95% CI 213-254; p<0.001) and had not plateaued by the last period when 84% of subjects without B-vitamins had elevated folate. Homocysteine did not remain suppressed. Elevated tHcy was as prevalent in the last study period as in the first. No significant deficits of Cbl or increases of MMA were observed, but MMA levels tended to increase with time in subjects without B-vitamins. B-vitamin supplements significantly affected all results, reducing tHcy and MMA levels.

Conclusion

In this population, fortification with folic acid has resulted in cumulative increases of folate with no long-term reduction in tHcy or changes in Cbl or MMA. Possible deleterious effects of cumulative increases of folate, and beneficial effects of B-vitamin supplements in reducing tHcy and MMA, should be investigated.

Key words: Folate, cobalamin, homocysteine, methylmalonic acid, aged, fortification

Footnotes

owledgement: This work was supported by operating grants from the Ontario Mental Health Foundation (OMHF) and Queen’s University, Department of Medicine.

References

  • 1.Canada Gazette Part II. SOR/98-550. 1998;132(24):3029–33. [Google Scholar]
  • 2.Ray JG, Vermeulen MJ, Boss SC, Cole DEC. Declining rate of folate insufficiency among adults following increased folic acid food fortification in Canada. Can J Public Health. 2002;93(4):249–53. doi: 10.1007/BF03405010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Selhub J, Jacques PF, Bostom AG, Wilson PW, Rosenberg IH. Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification. Public Health Rev. 2000;28(1–4):117–45. [PubMed] [Google Scholar]
  • 4.Choumenkovitch SF, Jacques PF, Nadeau MR, Wilson PW, Rosenberg IH, Selhub J. Folic acid fortification increases red blood cell folate concentrations in the Framingham study. J Nutr. 2001;131(12):3277–80. doi: 10.1093/jn/131.12.3277. [DOI] [PubMed] [Google Scholar]
  • 5.Hirsch S, de la Maza P, Barrera G, Gattas V, Petermann M, Bunout D. The Chilean flour folic acid fortification program reduces serum homocysteine levels and masks vitamin-B12 deficiency in elderly people. J Nutr. 2002;132(2):289–91. doi: 10.1093/jn/132.2.289. [DOI] [PubMed] [Google Scholar]
  • 6.Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med. 1999;340(19):1449–54. doi: 10.1056/NEJM199905133401901. [DOI] [PubMed] [Google Scholar]
  • 7.Ray JG, Cole DEC, Boss SC. An Ontario-wide study of vitamin B12, serum folate, and red cell folate levels in relation to plasma homocysteine: Is a preventable public health issue on the rise? Clin Biochem. 2000;33(5):337–43. doi: 10.1016/S0009-9120(00)00083-7. [DOI] [PubMed] [Google Scholar]
  • 8.Jacques PF, Rosenberg IH, Rogers G, Selhub J, Bowman BA, Gunter EW, et al. Serum total homocysteine concentrations in adolescent and adult Americans: Results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr. 1999;69(3):482–84. doi: 10.1093/ajcn/69.3.482. [DOI] [PubMed] [Google Scholar]
  • 9.Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA. 2002;288(16):2015–22. doi: 10.1001/jama.288.16.2015. [DOI] [PubMed] [Google Scholar]
  • 10.Graham IM, Daly LE, Refsum HM, Robinson K, Brattström LE, Ueland PM, et al. Plasma homocysteine as a risk factor for vascular disease. The European concerted action project. JAMA. 1997;277(22):1775–81. doi: 10.1001/jama.1997.03540460039030. [DOI] [PubMed] [Google Scholar]
  • 11.Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83. doi: 10.1056/NEJMoa011613. [DOI] [PubMed] [Google Scholar]
  • 12.van Meurs JBJ, Dhonukshe-Rutten RAM, Pluijm SMF, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteo-porotic fracture. N Engl J Med. 2004;350(20):2033–41. doi: 10.1056/NEJMoa032546. [DOI] [PubMed] [Google Scholar]
  • 13.McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med. 2004;350(20):2042–49. doi: 10.1056/NEJMoa032739. [DOI] [PubMed] [Google Scholar]
  • 14.Garcia A, Haron Y, Evans L, Smith MG, Freedman M, Roman GC. Metabolic markers of cobalamin deficiency and cognitive function in normal older adults. J Am Geriatr Soc. 2004;52(1):66–71. doi: 10.1111/j.1532-5415.2004.52012.x. [DOI] [PubMed] [Google Scholar]
  • 15.Garcia A, Haron Y, Pulman K, Hua L, Freedman M. Increases in homocysteine are related to worsening of Stroop scores in healthy elderly persons: A prospective follow-up study. J Gerontol A: Med Sci. 2004;59(12):1323–27. doi: 10.1093/gerona/59.12.1323. [DOI] [PubMed] [Google Scholar]
  • 16.Ray JG. Folic acid fortification in Canada. Nutr Rev. 2004;62(6Pt2):S35–39. doi: 10.1111/j.1753-4887.2004.tb00072.x. [DOI] [PubMed] [Google Scholar]
  • 17.Allen RH, Stabler SP, Savage DG, Lindenbaum J. Diagnosis of cobalamin deficiency I: Usefulness of serum methylmalonic acid and total homocys-teine concentrations. Am J Hematol. 1990;34(2):90–98. doi: 10.1002/ajh.2830340204. [DOI] [PubMed] [Google Scholar]
  • 18.Stabler SP, Lindenbaum J, Allen RH. The use of homocysteine and other metabolites in the specific diagnosis of vitamin B-12 deficiency. J Nutr. 1996;126(4Suppl):1266S–72S. doi: 10.1093/jn/126.suppl_4.1266S. [DOI] [PubMed] [Google Scholar]
  • 19.Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74(368):829–36. doi: 10.1080/01621459.1979.10481038. [DOI] [Google Scholar]
  • 20.SAS Institute Inc. The MIXED procedure. SAS/STAT users guide, version 8. Cary, NC: SAS Institute Inc.; 1999. pp. 2083–226. [Google Scholar]
  • 21.Dunnett CW. New table for multiple comparisons with a control. Biometrics. 1964;20(3):482–91. doi: 10.2307/2528490. [DOI] [Google Scholar]
  • 22.Choumenkovitch SF, Selhub J, Wilson PW, Rader JI, Rosenberg IH, Jacques PF. Folic acid intake from fortification in the United States exceeds predictions. J Nutr. 2002;132(9):2792–98. doi: 10.1093/jn/132.9.2792. [DOI] [PubMed] [Google Scholar]
  • 23.Quinlivan EP, Gregory JF., III Effect of food fortification on folic acid intake in the United States. Am J Clin Nutr. 2003;77(1):221–25. doi: 10.1093/ajcn/77.1.221. [DOI] [PubMed] [Google Scholar]
  • 24.Sisk ER, Lockner DW, Wold R, Waters DL, Baumgartner RN. The impact of folic acid fortification of enriched grains on an elderly population: The New Mexico aging process study. J Nutr Health Aging. 2004;8(3):140–43. [PubMed] [Google Scholar]
  • 25.Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS. Folic acid for the prevention of colorectal adenomas: A randomized clinical trial. JAMA. 2007;297(21):2351–59. doi: 10.1001/jama.297.21.2351. [DOI] [PubMed] [Google Scholar]
  • 26.Mason JB, Dickstein A, Jacques PF, Haggarty P, Selhub J, Dallal G, et al. A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: A hypothesis. Cancer Epidemiol Biomarkers Prev. 2007;16(7):1325–29. doi: 10.1158/1055-9965.EPI-07-0329. [DOI] [PubMed] [Google Scholar]
  • 27.Arabelovic S, Sam G, Dallal GE, Jacques PF, Selhub J, Rosenberg IH, et al. Preliminary evidence shows that folic acid fortification of the food supply is associated with higher methotrex-ate dosing in patients with rheumatoid arthritis. J Am Coll Nutr. 2007;26(5):453–55. doi: 10.1080/07315724.2007.10719635. [DOI] [PubMed] [Google Scholar]
  • 28.Morris MS, Jacques PF, Rosenberg IH, Selhub J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am J Clin Nutr. 2007;85(1):193–200. doi: 10.1093/ajcn/85.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Malinow MR, Duell PB, Hess DL, Anderson PH, Kruger WD, Phillipson BE, et al. Reduction of plasma homocysteine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N Engl J Med. 1998;338(15):1009–15. doi: 10.1056/NEJM199804093381501. [DOI] [PubMed] [Google Scholar]
  • 30.Tucker KL, Olson B, Bakun P, Dallal GE, Selhub J, Rosenberg IH. Breakfast cereal fortified with folic acid, vitamin B-6, and vitamin B-12 increases vitamin concentrations and reduces homocysteine concentrations: A randomized trial. Am J Clin Nutr. 2004;79(5):805–11. doi: 10.1093/ajcn/79.5.805. [DOI] [PubMed] [Google Scholar]
  • 31.Robertson J, Iemolo F, Stabler SP, Allen RH, Spence JD. Vitamin B12, homocysteine and carotid plaque in the era of folic acid fortification of enriched cereal grain products. CMAJ. 2005;172(12):1569–73. doi: 10.1503/cmaj.045055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Ray JG, Vermeulen MJ, Langman LJ, Boss SC, Cole DEC. Persistence of vitamin B12 deficiency among elderly women after folic acid fortification. Clin Biochem. 2003;36(5):387–91. doi: 10.1016/S0009-9120(03)00061-4. [DOI] [PubMed] [Google Scholar]

Articles from Canadian Journal of Public Health = Revue Canadienne de Santé Publique are provided here courtesy of Springer

RESOURCES