Abstract
Background
Census-based measures of income derived from median income of a geographic area are often used in health research. Many national census surveys gather information on both the respondent’s individual income and the income for the entire household, giving researchers a choice of census income measures. We compared the extent to which individual respondent income and household income (both obtained from census data) are associated with outcomes in a cohort of patients with cardiac disease.
Methods
We used data from the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH), where postal codes were linked to the Postal Code Conversion File (PCCF) to determine each patient’s census Dissemination Areas (DA). DAderived median household income and median individual income were obtained from the 2001 Canadian Census and survival outcomes were then directly determined for income groupings defined by quintile. Two-year survival adjusted for age and sex was described with a proportional hazards analysis.
Results
There were 9,397 patients undergoing cardiac catheterization between January 1, 2001 and March 31, 2002, with complete DA-level median income measures. Household income quintiles yielded a wider spread of survival across quintiles (range of 2-year estimated survival, 91.8% to 95.9% for household income versus 92.8% to 95.6% for respondent income), as well as a more progressive decline in survival as income decreased. This progressive decline was not seen for the respondent income measure.
Conclusions
The greater spread and progressive decline of survival for household income relative to respondent income leads us to conclude that household income is the better socio-economic determinant of health in our data and for the outcome measure we studied.
MeSH terms: Censuses, socioeconomic status, income, survival analysis, registries
Résumé
Contexte
Les mesures basées sur le recensement du revenu dérivé du revenu médian d’un secteur géographique sont souvent employées dans la recherche de la santé. Beaucoup d’enquêtes nationales de recensement recueillent l’information sur le revenu individuel du répondant ainsi que le revenu pour le ménage entier, donnant aux chercheurs un choix de mesures de revenu. Nous avons comparé le point auquel le revenu individuel du répondant et le revenu du ménage (tous les deux obtenus à partir de données de recensement) sont associés aux résultats dans une cohorte de patients présentant pour une cathérisation cardiaque.
Méthodes
Nous avons employé des données du projet Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH), où des codes postaux ont été liés au fichier de conversion des codes postaux plus (FCCP+) pour déterminer les aires de diffusion (AD) du recensement de chaque patient. Le revenu du ménage médian dérivé des AD et le revenu individuel médian ont été obtenus à partir du recensement du Canada de 2001, et des résultats de survie ont été directement déterminés pour des groupements de revenu définis par quintile. La survie de deux ans ajustée à l’âge et au sexe a été décrite avec une analyse de risques proportionnels.
Résultats
Il y avait 9 397 patients subissant la cathérisation cardiaque entre le 1 janvier, 2001 et le 31 mars, 2002, avec des mesures médianes de revenu de niveau des AD complets. Les quintiles de revenu du ménage ont rapporté une diffusion plus large de survie à travers des quintiles (tranche de survie de 2 ans estimé varie de 91,8 % à 95,9 % pour le ménage, et de 92,8 % à 95,6 % pour le répondant), aussi bien qu’un déclin plus progressif dans la survie pendant que le revenu diminue. Ce même déclin n’a pas été vu pour la mesure de revenu du répondant.
Interprétation
La diffusion plus grande et le déclin progressif de la survie pour le revenu du ménage par rapport à celui du répondant nous mènent à conclure que le revenu du ménage représente mieux le statut socio-économique comme déterminant de la santé dans nos données, et pour le résultat que nous avons évalué.
Footnotes
Acknowledgements: APPROACH Clinical Steering Committee: Edmonton: S. Archer, M.M. Graham, W. Hui (Chair), A. Koshal, and R.T. Tsuyuki. Calgary: L.B. Mitchell, M. Traboulsi, W.A. Ghali, M.L. Knudtson and A. Maitland.
Financial support: APPROACH was funded in 1995 by the WG Weston Foundation, with ongoing support from Merck Frosst Canada Inc, Monsanto Canada Inc–Searle, Eli Lilly Canada Inc, Guidant Corporation, Boston Scientific Ltd, Hoffmann-La Roche Ltd, Johnson & Johnson Inc-Cordis, and the Province-Wide Services Committee of Alberta Health and Wellness.
Dr. Ghali is supported by a Health Scholar Award from the Alberta Heritage Foundation for Medical Research, and by a Government of Canada Research Chair in Health Services Research.
References
- 1.Statistics Canada. 2001 Census Dictionary. 2003. [Google Scholar]
- 2.US Bureau of Census. Census 2000. Washington, DC: US Bureau of Census.
- 3.UK Census. Census 2001. London, England: National Statistics.
- 4.Kephart G, Thomas VS, MacLean DR. Socioeconomic differences in the use of physician services in Nova Scotia. Am J Public Health. 1998;88(5):800–3. doi: 10.2105/AJPH.88.5.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Blanchard JF, Moses S, Greenaway C, Orr P, Hammond GW, Brunham RC. Am J Public Health. 1998. The evolving epidemiology of chlamydial and gonococcal infections in response to control programs in Winnipeg, Canada; pp. 1496–502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Cairney J, Arnold R. Socioeconomic position, lifestyle and health among Canadians aged 18 to 64: A multi-condition approach. Can J Public Health. 1998;89(3):208–12. doi: 10.1007/BF03404476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Mustard CA, Roos NP. Variation in health care use by socioeconomic status in Winnipeg, Canada: Does the system work well? Yes and, no. Milbank Q. 1997;75(1):89–111. doi: 10.1111/1468-0009.00045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Diez-Roux AV, Merkin SS, Arnett D, Chambless L, Massing M, Nieto FJ, et al. Neighborhood of residence and incidence of coronary heart disease. N Engl J Med. 2001;345(2):99–106. doi: 10.1056/NEJM200107123450205. [DOI] [PubMed] [Google Scholar]
- 9.Veenstra G. Economy, community and mortality in British Columbia, Canada. Soc Sci Med. 2003;56:1807–16. doi: 10.1016/S0277-9536(02)00178-8. [DOI] [PubMed] [Google Scholar]
- 10.Wolfson M. Income inequality and mortality among working-age people in Canada and the, US. Health Reports. 1999;11(3):77–82. [PubMed] [Google Scholar]
- 11.Galea S, Ahern J, Vlahov D, Coffin PO, Fuller C, Leon AC, Tardiff K. Income distribution and risk of fatal drug overdose in New York City neighborhoods. Drug Alcohol Depend. 2003;70:139–48. doi: 10.1016/S0376-8716(02)00342-3. [DOI] [PubMed] [Google Scholar]
- 12.Wen M, Browning CR, Cagney KA. Poverty, affluence, and income inequality: Neighborhood economic structure and its implications for health. Soc Sci Med. 2003;57:843–60. doi: 10.1016/S0277-9536(02)00457-4. [DOI] [PubMed] [Google Scholar]
- 13.Wilson K, Elliott S, Law M, Eyles J, Jerrett M, Keller-Olaman S. Linking perceptions of neighborhood to health in Hamilton, Canada. J Epidemiol Community Health. 2004;58:192–98. doi: 10.1136/jech.2003.014308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Lipton RB, Drum M, Li S, Choi H. Social environment and year of birth influence type 1 diabetes risk for African-American and Latino children. Diabetes Care. 1999;22(1):78–85. doi: 10.2337/diacare.22.1.78. [DOI] [PubMed] [Google Scholar]
- 15.Pomerantz W. J. Relationship between socioeconomic factors and severe childhood injuries. Journal of Urban Health: Bulletin of the New York Academy of Medicine. 2001;78(1):141–151. doi: 10.1093/jurban/78.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kaufman JS, Dole N, Savitz DA, Herring AH. Modeling community-level effects on preterm birth. AEP. 2003;13(5):377–84. doi: 10.1016/s1047-2797(02)00480-5. [DOI] [PubMed] [Google Scholar]
- 17.Sin DD, Svenson LW, Man SFP. Do area-based markers of poverty accurately measure personal poverty? Can J Public Health. 2001;92(3):184–87. doi: 10.1007/BF03404301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Alter DA, Naylor CD, Austin P, Tu JV. Effects of socioeconomic status on access to invasive cardiac procedures and on mortality after acute myocardial infarction. N Engl J Med. 1999;341(18):1359–67. doi: 10.1056/NEJM199910283411806. [DOI] [PubMed] [Google Scholar]
- 19.Alter DA, Austin P, Naylor CD, Tu JV. Factoring socioeconomic status into cardiac performance profiling for hospitals. Med Care. 2002;40(1):60–67. doi: 10.1097/00005650-200201000-00008. [DOI] [PubMed] [Google Scholar]
- 20.Alter DA, Naylor CD, Austin P, Chan BTB, Tu JV. Geography and service supply do not explain socioeconomic gradients in angiography use after acute myocardial infarction. CMAJ. 2003;68(3):261–64. [PMC free article] [PubMed] [Google Scholar]
- 21.Ghali WA, Knudtson M o b o t A Investigators. Overview of the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease. Can J Cardiol. 2000;16(10):1225–30. [PubMed] [Google Scholar]
- 22.Statistics Canada. Census of Canada 2001. Alberta info [computer files].
- 23.Southern DA, Ghali WA, Faris PD, Norris CM, Galbraith PD, Graham MM, Knudtson ML. Misclassification of income quintiles derived from area-based measures: A comparison of enumeration area and forward sortation area. Can J Public Health. 2002;93(6):465–69. doi: 10.1007/BF03405041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Statistics Canada Geography Division. Postal Code Conversion File. 2003. [Google Scholar]
- 25.Ghali WA, Quan H, Brant R, van Melle G, Norris CM, Faris PD, et al. Comparison of 2 methods for calculating adjusted survival curves from proportional hazards models. JAMA. 2001;286:1494–97. doi: 10.1001/jama.286.12.1494. [DOI] [PubMed] [Google Scholar]
- 26.Bonney N. Gender, household and social class. Br J Sociol. 1988;39(1):28–46. doi: 10.2307/590992. [DOI] [Google Scholar]