Abstract
The interactions between humans and the ocean are significant, and necessitate more comprehensive study on an international scale. The world’s oceans provide great health benefits to humans ranging from food and nutritional resources, to recreational opportunities and new treatments for human disease. However, recently, human health effects from exposure to substances present in the marine ecosystem such as synthetic organic chemicals (e.g., chlorobiphenyls, chlorinated dioxins and some industrial solvents), polycyclic aromatic hydrocarbons (PAHs), metals (both introduced and anthropogenic), marine toxins, and pathogens have been recorded and are of great concern. This paper reviews our state of knowledge of the interactions between oceans and human health and proposes indicators and a research strategy to investigate and monitor these relationships more closely. Four approaches to gathering information on indicators included here are: biomarkers; cellular pathology; physiological and behavioural responses; and changes in populations. All hold the potential to enhance our understanding of marine environmental quality and far-reaching effects on human health. Monitoring systems that include the rapid assessment of contaminants in the ecosystem and subsequent risk to human populations, with appropriate internationally distributed data bases, need to be developed and validated. Such tools would provide early detection of potential environmental threats, and enhance the ability to prevent human illness.
Résumé
Les interactions entre les humains et les océans sont importantes, et il faut en faire une étude plus approfondie à l’échelle mondiale. Sur le plan de la santé, les humains tirent grandement profit des océans, que ce soit de la nourriture et des ressources nutritionnelles, des activités récréatives et de nouveaux traitements contre les maladies. Cependant, on a signalé récemment, et on se préoccupe beaucoup, des effets sur la santé liés à l’exposition aux substances toxiques présentes dans l’écosystème marin comme les produits chimiques organiques de synthèse (p. ex. les chlorobiphényles, les dioxines chlorées et certains solvants industriels), les hydrocarbures aromatiques polycycliques (HAP), les métaux (d’origine naturelle et anthropique), les toxines marines et les agents pathogènes. Les auteurs examinent l’état des connaissances sur ces interactions et proposent des indicateurs et une stratégie de recherche pour les étudier et les surveiller de plus près. Ils mentionnent quatre approches pour la cueillette de renseignements sur les indicateurs: les biomarqueurs, la cytopathologie, les réactions physiologiques et comportementales ainsi que les changements dans les populations. Ces approches peuvent améliorer la compréhension de la qualité de l’environnement marin et des effets lourds de conséquence pour la santé humaine. Il faut construire et valider des réseaux de surveillance qui permettent de mesurer rapidement les contaminants dans un écosystème et d’en évaluer les risques pour la santé humaine; ces réseaux doivent être reliés à des bases de données à l’échelle mondiale. De tels outils faciliteraient la détection précoce de menaces potentielles pour l’environnement et amélioreraient la prévention des maladies chez les humains.
Footnotes
Much of the text of this paper forms the basis for another paper published in Environmental Health Perspectives. The focus of the current paper is on the meeting discussions and conclusions regarding indicators for ocean and human health.
References
- 1.Knap A, Dewailly E, Furgal C, Galvin J, Baden D, Bowen RE, et al. Indicators of ocean health and human health: Developing a research and monitoring framework. Environ Health Perspect. 2002;110(9):839–45. doi: 10.1289/ehp.02110839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Colwell RR. Global climate change and infectious disease: The cholera paradigm. Science. 1996;274:2025–31. doi: 10.1126/science.274.5295.2025. [DOI] [PubMed] [Google Scholar]
- 3.Myers GJ, Davidson PW, Palumbo D, Shamlaye C, Cox C, Cernichiari E, Clarkson TW. Secondary analysis from the Seychelles Child Development Study: The Child Behavior Checklist. Environ Res. 2000;84(1):12–19. doi: 10.1006/enrs.2000.4085. [DOI] [PubMed] [Google Scholar]
- 4.Jacobson JL, Jacobsen SW. Evidence for PCBs as neurodevelopmental toxicants in humans. Neurotoxicity. 1997;18(2):415–24. [PubMed] [Google Scholar]
- 5.Rogan WJ, Gladen BC, Hung KL, Koong SL, Shiy LY, Taylor JS, et al. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science. 1988;241:334–36. doi: 10.1126/science.3133768. [DOI] [PubMed] [Google Scholar]
- 6.Baden DG, Fleming LE, Bean JA. Marine toxins. Handbook of Clinical Neurology. 1995;65:141–75. [Google Scholar]
- 7.Chlordane contamination in selected freshwater finfish of New Jersey. Bull Environ Contam Toxicol. 1997;58(1):142–49. doi: 10.1007/s001289900312. [DOI] [PubMed] [Google Scholar]
- 8.Steuerwald U, Weihe P, Jorgensen PJ, Bjerve K, Brock J, Heinzow B, et al. Maternal seafood diet, methylmercury exposure, and neonatal neurologic function. J Pediatrics. 2000;136(5):599–605. doi: 10.1067/mpd.2000.102774. [DOI] [PubMed] [Google Scholar]
- 9.Baden DG, Fleming LE, Bean JA. Marine toxins. In: de Wolff FA, editor. Handbook of Clinical Neurology, Vol 21. Amsterdam: Elsevier Science; 1995. pp. 141–75. [Google Scholar]
- 10.Burkholder JM. Implications of harmful micro-algae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecol Applic. 1998;8:S37–S62. doi: 10.2307/2641362. [DOI] [Google Scholar]
- 11.Jacobson JL, Jacobson SW. Intellectual impairment in children exposed to polychlorinated biphenyl in utero. N Engl J Med. 1996;335(11):783–89. doi: 10.1056/NEJM199609123351104. [DOI] [PubMed] [Google Scholar]
- 12.Rogan WJ, Gladen BC, McKinney JD, Carreras N, Hardy P, Thullus J, et al. Neonatal effects of transplacental exposure to PCBs and DDE. J Pediatr. 1986;109(2):335–41. doi: 10.1016/S0022-3476(86)80397-3. [DOI] [PubMed] [Google Scholar]
- 13.Davidson PW, Meyers GJ, Cox C, Axtell C, Shamlaye C, Sloane-Reeves J, et al. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment. JAMA. 1988;280(8):701–7. doi: 10.1001/jama.280.8.701. [DOI] [PubMed] [Google Scholar]
- 14.Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, et al. Cognitive deficit in 7 year old children with prenatal exposure to methyl-mercury. Neurotoxicol Teratol. 1997;19(6):417–28. doi: 10.1016/S0892-0362(97)00097-4. [DOI] [PubMed] [Google Scholar]
