Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2020 Jan;24(5):1–184. doi: 10.3310/hta24050

Implantable cardiac monitors to detect atrial fibrillation after cryptogenic stroke: a systematic review and economic evaluation.

Steven J Edwards, Victoria Wakefield, Tracey Jhita, Kayleigh Kew, Peter Cain, Gemma Marceniuk
PMCID: PMC6983910  PMID: 31944175

Abstract

BACKGROUND

Cryptogenic stroke is a stroke for which no cause is identified after standard diagnostic tests. Long-term implantable cardiac monitors may be better at diagnosing atrial fibrillation and provide an opportunity to reduce the risk of stroke recurrence with anticoagulants.

OBJECTIVES

The objectives were to assess the diagnostic test accuracy, clinical effectiveness and cost-effectiveness of three implantable monitors [BioMonitor 2-AF™ (Biotronik SE & Co. KG, Berlin, Germany), Confirm Rx™ (Abbott Laboratories, Lake Bluff, IL, USA) and Reveal LINQ™ (Medtronic plc, Minneapolis, MN, USA)] in patients who have had a cryptogenic stroke and for whom no atrial fibrillation is detected after 24 hours of external electrocardiographic monitoring.

DATA SOURCES

MEDLINE, EMBASE, The Cochrane Library, Database of Abstracts of Reviews of Effects and Health Technology Assessment databases were searched from inception until September 2018.

REVIEW METHODS

A systematic review was undertaken. Two reviewers agreed on studies for inclusion and performed quality assessment using the Cochrane Risk of Bias 2.0 tool. Results were discussed narratively because there were insufficient data for synthesis. A two-stage de novo economic model was developed: (1) a short-term patient flow model to identify cryptogenic stroke patients who have had atrial fibrillation detected and been prescribed anticoagulation treatment (rather than remaining on antiplatelet treatment) and (2) a long-term Markov model that captured the lifetime costs and benefits of patients on either anticoagulation or antiplatelet treatment.

RESULTS

One randomised controlled trial, Cryptogenic Stroke and underlying Atrial Fibrillation (CRYSTAL-AF) (Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 2014;370:2478-86), was identified, and no diagnostic test accuracy study was identified. The CRYSTAL-AF trial compared the Reveal™ XT (a Reveal LINQ predecessor) (Medtronic plc) monitor with standard of care monitoring. Twenty-six single-arm observational studies for the Reveal devices were also identified. The only data for BioMonitor 2-AF or Confirm Rx were from mixed population studies supplied by the companies. Atrial fibrillation detection in the CRYSTAL-AF trial was higher with the Reveal XT than with standard monitoring at all time points. By 36 months, atrial fibrillation was detected in 19% of patients with an implantable cardiac monitor and in 2.3% of patients receiving conventional follow-up. The 26 observational studies demonstrated that, even in a cryptogenic stroke population, atrial fibrillation detection rates are highly variable and most cases are asymptomatic; therefore, they probably would not have been picked up without an implantable cardiac monitor. Device-related adverse events, such as pain and infection, were low in all studies. The de novo economic model produced incremental cost effectiveness ratios comparing implantable cardiac monitors with standard of care monitoring to detect atrial fibrillation in cryptogenic stroke patients based on data for the Reveal XT device, which can be related to Reveal LINQ. The BioMonitor 2-AF and Confirm RX were included in the analysis by making a strong assumption of equivalence with Reveal LINQ. The results indicate that implantable cardiac monitors could be considered cost-effective at a £20,000-30,000 threshold. When each device is compared incrementally, BioMonitor 2-AF dominates Reveal LINQ and Confirm RX.

LIMITATIONS

The cost-effectiveness analysis for implantable cardiac monitors is based on a strong assumption of clinical equivalence and should be interpreted with caution.

CONCLUSIONS

All three implantable cardiac monitors could be considered cost-effective at a £20,000-30,000 threshold, compared with standard of care monitoring, for cryptogenic stroke patients with no atrial fibrillation detected after 24 hours of external electrocardiographic monitoring; however, further clinical studies are required to confirm their efficacy in cryptogenic stroke patients.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42018109216.

FUNDING

This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 5. See the NIHR Journals Library website for further project information.

Plain language summary

An abnormal heart rhythm (atrial fibrillation) is an important cause of stroke. Clots form in the heart, break off, pass into blood vessels in the head and block the blood supply to parts of the brain. This is important to diagnose because atrial fibrillation can be treated with blood-thinning drugs, which can prevent further stroke. For this reason, all patients with stroke are tested for atrial fibrillation. Unfortunately, the standard tests, which include 24 hours of outpatient external heart monitoring, may miss the condition. Implantable cardiac monitors, which are small devices placed beneath the skin of the chest that can monitor the heart for up to 4 years, may be better than the standard tests. This study compared three different implantable cardiac monitors [BioMonitor 2-AF™ (Biotronik SE & Co. KG, Berlin, Germany), Confirm Rx™ (Abbott Laboratories, Lake Bluff, IL, USA) and Reveal LINQ™ (Medtronic plc, Minneapolis, MN, USA)] to determine how effective they are at detecting atrial fibrillation in people who have had a cryptogenic stroke (a stroke for which no cause is identified), whether or not they are better than standard monitoring and whether or not they offer good value for money. No evidence was found that directly compared the three implantable monitors in cryptogenic stroke patients. The limited evidence found suggested that all three monitors had few side effects; only one monitor (Reveal LINQ) had evidence that it was better than standard monitoring. By 36 months, 19% of patients had atrial fibrillation detected by Reveal LINQ compared with only 2.3% with conventional monitoring. There was insufficient information for the other monitors. Overall, implantable monitors offer value for money when compared with standard monitoring for people who have had a cryptogenic stroke and for whom atrial fibrillation has not been detected with standard tests.


Full text of this article can be found in Bookshelf.

References

  1. National Institute for Health and Care Excellence. Implantable Cardiac Monitors (BioMonitor 2-AF, Confirm Rx Insertable Cardiac Monitor and Reveal LINQ Insertable Cardiac Monitoring System) to Detect Atrial Fibrillation After Cryptogenic Stroke [GID-DG10023]. Final Scope: September 2018. URL: www.nice.org.uk/guidance/gid-dg10023/documents/final-scope (accessed 21 January 2019).
  2. Office for National Statistics. Deaths Registered in England and Wales (Series DR): 2017. Registered Deaths by Age, Sex, Selected Underlying Causes of Death and the Leading Causes of Death for Both Males and Females. 2018. URL: www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredinenglandandwalesseriesdr/2017 (accessed 2 January 2019).
  3. Newton JN, Briggs AD, Murray CJ, Dicker D, Foreman KJ, Wang H, et al. Changes in health in England, with analysis by English regions and areas of deprivation, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386:2257–74. https://doi.org/10.1016/S0140-6736(15)00195-6 doi: 10.1016/S0140-6736(15)00195-6. [DOI] [PMC free article] [PubMed]
  4. Royal College of Physicians, Sentinel Stroke National Audit Programme (SSNAP). Rising to the Challenge: The Fourth SSNAP Annual Report. 2015. URL: www.strokeaudit.org/Documents/AnnualReport/2016-17-SSNAP-Annual-Report.aspx (accessed 2 January 2019).
  5. National Institute for Health and Care Excellence. Stroke and Transient Ischaemic Attack in Over 16s: Diagnosis and Initial Management. 2019. URL: www.nice.org.uk/guidance/ng128 (accessed 9 September 2019). [PubMed]
  6. Nouh A, Hussain M, Mehta T, Yaghi S. Embolic strokes of unknown source and cryptogenic stroke: implications in clinical practice. Front Neurol 2016;7:37. https://doi.org/10.3389/fneur.2016.00037 doi: 10.3389/fneur.2016.00037. [DOI] [PMC free article] [PubMed]
  7. Zhang C, Kasner S. Diagnosis, prognosis, and management of cryptogenic stroke. F1000Res 2016;5:F1000 Faculty Rev–168. https://doi.org/10.12688/f1000research.7384.1 doi: 10.12688/f1000research.7384.1. [DOI]
  8. Burn J, Dennis M, Bamford J, Sandercock P, Wade D, Warlow C. Long-term risk of recurrent stroke after a first-ever stroke. The Oxfordshire Community Stroke Project. Stroke 1994;25:333–7. https://doi.org/10.1161/01.STR.25.2.333 doi: 10.1161/01.STR.25.2.333. [DOI] [PubMed]
  9. Mohan KM, Wolfe CD, Rudd AG, Heuschmann PU, Kolominsky-Rabas PL, Grieve AP. Risk and cumulative risk of stroke recurrence: a systematic review and meta-analysis. Stroke 2011;42:1489–94. https://doi.org/10.1161/STROKEAHA.110.602615 doi: 10.1161/STROKEAHA.110.602615. [DOI] [PubMed]
  10. National Stroke Association. Cryptogenic Stroke: Etiology, Diagnosis & Recurrent Preventive Management. 2014. URL: www.stroke.org/we-can-help/healthcare-professionals/improve-your-skills/pre-hospital-acute-stroke-programs-8 (accessed 31 July 2018).
  11. NHS. Overview: Atrial Fibrillation. 2018. URL: www.nhs.uk/conditions/atrial-fibrillation/ (accessed 2 January 2018).
  12. Public Health England. Atrial Fibrillation Prevalence Estimates in England: Application of Recent Population Estimates of AF in Sweden. 2017. URL: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/644869/atrial_fibrillation_AF_briefing.pdf (accessed 31 July 2018).
  13. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991;22:983–8. https://doi.org/10.1161/01.STR.22.8.983 doi: 10.1161/01.STR.22.8.983. [DOI] [PubMed]
  14. Choe WC, Passman RS, Brachmann J, Morillo CA, Sanna T, Bernstein RA, et al. A comparison of atrial fibrillation monitoring strategies after cryptogenic stroke (from the Cryptogenic Stroke and Underlying AF Trial). Am J Cardiol 2015;116:889–93. https://doi.org/10.1016/j.amjcard.2015.06.012 doi: 10.1016/j.amjcard.2015.06.012. [DOI] [PubMed]
  15. Ziegler PD, Rogers JD, Ferreira SW, Nichols AJ, Richards M, Koehler JL, Sarkar S. Long-term detection of atrial fibrillation with insertable cardiac monitors in a real-world cryptogenic stroke population. Int J Cardiol 2017;244:175–9. https://doi.org/10.1016/j.ijcard.2017.06.039 doi: 10.1016/j.ijcard.2017.06.039. [DOI] [PubMed]
  16. National Stroke Association. Atrial Fibrillation. URL: www.stroke.org.uk/what-is-stroke/are-you-at-risk-of-stroke/atrial-fibrillation (accessed 31 July 2018).
  17. Gladstone DJ, Dorian P, Spring M, Panzov V, Mamdani M, Healey JS, et al., Atrial premature beats predict atrial fibrillation in cryptogenic stroke: results from the EMBRACE trial. Stroke 2015;46:936–41. https://doi.org/10.1161/STROKEAHA.115.008714 doi: 10.1161/STROKEAHA.115.008714. [DOI] [PubMed]
  18. Glotzer TV, Daoud EG, Wyse DG, Singer DE, Ezekowitz MD, Hilker C, et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol 2009;2:474–80. https://doi.org/10.1161/CIRCEP.109.849638 doi: 10.1161/CIRCEP.109.849638. [DOI] [PubMed]
  19. National Institute for Health and Care Excellence. Atrial Fibrillation: Management. 2014. URL: www.nice.org.uk/guidance/cg180/chapter/1-Recommendations#diagnosis-and-assessment (accessed 31 July 2018).
  20. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016;37:2893–962. https://doi.org/10.1093/eurheartj/ehw210 doi: 10.1093/eurheartj/ehw210. [DOI] [PubMed]
  21. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010;137:263–72. https://doi.org/10.1378/chest.09-1584 doi: 10.1378/chest.09-1584. [DOI] [PubMed]
  22. National Institute for Health and Care Excellence. NICE Pathway: Preventing Stroke in People with Atrial Fibrillation. 2018. URL: http://pathways.nice.org.uk/pathways/atrial-fibrillation (accessed 21 January 2019).
  23. Biotronik SE & Co. KG. BioMonitor 2-AF/-S. 2018. URL: https://manuals.biotronik.com/wps/portal/emanuals/emanual/!ut/p/z1/04_Sj9CPykssy0xPLMnMz0vMAfIjo8ziPY0MDQy9DYy8LcI8TQwcPd2cvXyCTQ2DvQ31w8EKDHAARwP9KEL6o_ArMYAqwGNFQW6EQaajoiIA3yATlQ!!/dz/d5/L2dBISEvZ0FBIS9nQSEh/?country=GB&product=ImplCardMon/BioMonitor2/BioMon2_AF_S (accessed 31 July 2018).
  24. St. Jude Medical. Confirm Rx™ Model DM3500 Insertable Cardiac Monitor: User’s Manual. Little Canada, MN: St. Jude Medical, LLC; 2019.
  25. Medtronic plc. Reveal LINQ ICM System. 2018. URL: www.medtronic.com/us-en/patients/treatments-therapies/heart-monitors/our-monitors/reveal-linq-icm.html (accessed 31 July 2018).
  26. St. Jude Medical. Help Manual for the Following Devices: SJM Confirm™ Implantable Cardiac Monitor; Confirm Rx™ Insertable Cardiac Monitor. 2016. URL: https://manuals.sjm.com/∼/media/manuals/product-manual-pdfs/d/7/d7408b10-0c87-4066-ae6d-e4ec9716f4fa.pdf (accessed 21 January 2019).
  27. Abbott Laboratories. Cardiac Arrhythmia and Heart Failure: Product Performance Report 2018 First Edition. 2018. URL: www.cardiovascular.abbott/content/dam/bss/divisionalsites/cv/pdf/reports/1.3.7.3/2018_1stEd_05022018.pdf (accessed 21 January 2019).
  28. Sethi A BM, Garberich R, Hoffman E, Langeberg T, Abdelhadi R, Katsiyiannis W, et al. Evolution of implantable cardiac monitors: a comparison of Reveal XT and LINQ patient selection, arrhythmia detection, and clinical outcomes. J Minneapolis Heart Institute Foundation 2017;1:130–5. https://doi.org/10.21925/mplsheartjournal-D-17-00012 doi: 10.21925/mplsheartjournal-D-17-00012. [DOI]
  29. Centre for Reviews and Dissemination. CRD’s Guidance for Undertaking Reviews in Healthcare. 2011. URL: www.york.ac.uk/media/crd/Systematic_Reviews.pdf (accessed 8 November 2018).
  30. National Institute for Health and Care Excellence. Diagnostics Assessment Programme Manual. 2011. URL: www.nice.org.uk/Media/Default/About/what-we-do/NICE-guidance/NICE-diagnostics-guidance/Diagnostics-assessment-programme-manual.pdf (accessed 16 April 2019). [PubMed]
  31. Cochrane Methods. Screening and Diagnostic Tests. Handbook for DTA Reviews. 2018. URL: https://methods.cochrane.org/sdt/handbook-dta-reviews (accessed 16 April 2019).
  32. National Institute for Health and Care Excellence. Implantable Cardiac Monitors (BioMonitor 2-AF, Confirm Rx Insertable Cardiac Monitor and Reveal LINQ Insertable Cardiac Monitoring System) to Detect Atrial Fibrillation After Cryptogenic Stroke. DAR Protocol. URL: www.nice.org.uk/guidance/gid-dg10023/documents/final-protocol (accessed 9 September 2019).
  33. Wakefield V, Edwards S, Jhita T, Kew K, Cain P. Protocol: Implantable cardiac monitors (BioMonitor 2-AF, Confirm Rx insertable cardiac monitor and Reveal LINQ Insertable Cardiac Monitoring System) to detect atrial fibrillation after cryptogenic stroke: a diagnostic assessment review. Version 2. URL: www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018109216 (accessed 21 January 2018).
  34. Pürerfellner H, Sanders P, Sarkar S, Reisfeld E, Reiland J, Koehler J, et al. Adapting detection sensitivity based on evidence of irregular sinus arrhythmia to improve atrial fibrillation detection in insertable cardiac monitors. Europace 2018;20:f321–f328. https://doi.org/10.1093/europace/eux272 doi: 10.1093/europace/eux272. [DOI] [PMC free article] [PubMed]
  35. Higgins JPT, Savović J, Page MJ, Sterne JAC, on behalf of the ROB2 Development Group. Revised Cochrane Risk-Of-Bias Tool for Randomized Trials (RoB 2). 2018. URL: https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/current-version-of-rob-2 (accessed 21 January 2018).
  36. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 doi: 10.7326/0003-4819-155-8-201110180-00009. [DOI] [PubMed]
  37. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 2014;370:2478–86. https://doi.org/10.1056/NEJMoa1313600 doi: 10.1056/NEJMoa1313600. [DOI] [PubMed]
  38. Pedersen KB, Madsen C, Sandgaard NCF, Diederichsen ACP, Bak S, Brandes A. Subclinical atrial fibrillation in patients with recent transient ischemic attack. J Cardiovasc Electrophysiol 2018;29:707–14. https://doi.org/10.1111/jce.13470 doi: 10.1111/jce.13470. [DOI] [PubMed]
  39. ClinicalTrials.gov. Rate of Atrial Fibrillation Through 12 Months in Patients With Recent Ischemic Stroke of Presumed Known Origin. URL: https://clinicaltrials.gov/ct2/show/ NCT02700945 (accessed 2 October 2019).
  40. ClinicalTrials.gov. Detection of Silent Atrial Fibrillation aFter Ischemic StrOke (SAFFO). URL: https://clinicaltrials.gov/ct2/show/ NCT02684825 (accessed 2 October 2019).
  41. ClinicalTrials.gov. Atrial Fibrillation in Cryptogenic Stroke and TIA (NOR-FIB). URL: https://clinicaltrials.gov/ct2/show/ NCT02937077 (accessed 2 October 2019).
  42. ClinicalTrials.gov. Confirm Rx™ Versus Reveal LINQ™ - Which is More Reliable in Data Transmission? A Randomized Clinical Study. URL: https://clinicaltrials.gov/ct2/show/ NCT03720639 (accessed 2 October 2019).
  43. ClinicalTrials.gov. “Cryptogenic Stroke and Atrial Fibrillation Detection Through Implantable Loop Recorder (ILR)” (CRYPTONITE). URL: https://clinicaltrials.gov/ct2/show/ NCT01025947 (accessed 2 October 2019).
  44. ClinicalTrials.gov. Detection of Occult Paroxysmal AF in Cryptogenic Stroke or TIA Patients Using an Implantable Loop Recorder and Correlation With Genetic Markers. URL: https://clinicaltrials.gov/ct2/show/ NCT02216370 (accessed 2 October 2019).
  45. ClinicalTrials.gov. Confirm Rx SMART Registry. URL: https://clinicaltrials.gov/ct2/show/ NCT03505801 (accessed 2 October 2019).
  46. ClinicalTrials.gov. Extended Rhythm SCreening for AtRial Fibrillation in Cryptogenic Stroke Patients (SCARF). URL: https://clinicaltrials.gov/ct2/show/ NCT01550042 (accessed 2 October 2019).
  47. ClinicalTrials.gov. Post-Embolic Rhythm Detection With Implantable Versus External Monitoring (PERDIEM). URL: https://clinicaltrials.gov/ct2/show/ NCT02428140 (accessed 2 October 2019).
  48. Sinha AM, Diener HC, Morillo CA, Sanna T, Bernstein RA, Di Lazzaro V, et al. Cryptogenic Stroke and underlying Atrial Fibrillation (CRYSTAL AF): design and rationale. Am Heart J 2010;160:36–41.e1. https://doi.org/10.1016/j.ahj.2010.03.032 doi: 10.1016/j.ahj.2010.03.032. [DOI] [PubMed]
  49. Brachmann J, Morillo CA, Sanna T, Di Lazzaro V, Diener HC, Bernstein RA, et al. Uncovering atrial fibrillation beyond short-term monitoring in cryptogenic stroke patients: three-year results from the Cryptogenic Stroke and underlying Atrial Fibrillation trial. Circ Arrhythm Electrophysiol 2016;9:e003333. https://doi.org/10.1161/CIRCEP.115.003333 doi: 10.1161/CIRCEP.115.003333. [DOI] [PubMed]
  50. Hindricks G, Pokushalov E, Urban L, Taborsky M, Kuck KH, Lebedev D, et al. Performance of a new leadless implantable cardiac monitor in detecting and quantifying atrial fibrillation: results of the XPECT trial. Circ Arrhythm Electrophysiol 2010;3:141–7. https://doi.org/10.1161/CIRCEP.109.877852 doi: 10.1161/CIRCEP.109.877852. [DOI] [PubMed]
  51. Thijs V, Brachmann J, Morillo C, Passman R, Sanna T, Bernstein R. Predictors for detection of atrial fibrillation in cryptogenic stroke patients: insights from insertable cardiac monitor data in the CRYSTAL AF study. Int J Stroke 2014;9:25.
  52. Asaithambi G, Monita JE, Annamalai MR, Ho BM, Marino EH, Hanson SK. Prevalence of atrial fibrillation with insertable cardiac monitors in cryptogenic stroke: a single-center experience. J Electrocardiol 2018;51:973–6. https://doi.org/10.1016/j.jelectrocard.2018.08.033 doi: 10.1016/j.jelectrocard.2018.08.033. [DOI] [PubMed]
  53. Chalfoun NT, Sagorski R, Fox J, Pieroban J, Rosema S, Khan M, et al. Detection of atrial fibrillation following acute cryptogenic stroke using the insertable cardiac monitor Reveal LINQ. Heart Rhythm 2016;1:S438–S9.
  54. Ferrara M, Milstein N, Varghese M, Bhatt A, Preminger MW, Sichrovsky T, et al. Pattern of atrial fibrillation detected during long-term ECG monitoring by implantable cardiac monitors in patients with cryptogenic stroke. Heart Rhythm 2017;14(5 Supplement 1):S158.
  55. Heckle M, Shahan E, Longserre SE, Hernandez HC, Barry N, Gopinathannair R, et al. Racial differences in the incidence of atrial fibrillation in patients with cryptogenic stroke – a two-center study. Heart Rhythm 2018;15:S512.
  56. Kotlarz-Bottcher MJ, Busch M, Frenzel M, Hummel A, Schminke U, Von Sarnowski B. Risk factors for atrial fibrillation in patients with embolic stroke of undetermined source (ESUS). Eur Stroke J 2018;3(1 Supplement 1):457.
  57. Li Y, Nantsupawat T, Olson M, Tholakanahalli V, Adabag S, Wang Z, et al. A single center experience on the clinical utility evaluation of an insertable cardiac monitor. J Electrocardiol 2018;51:583–7. https://doi.org/10.1016/j.jelectrocard.2018.05.002 doi: 10.1016/j.jelectrocard.2018.05.002. [DOI] [PubMed]
  58. Seow SC, How AK, Chan SP, Teoh HL, Lim TW, Singh D, et al. High incidence of occult atrial fibrillation in Asian patients with cryptogenic stroke. J Stroke Cerebrovasc Dis 2018;27:2182–6. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.03.019 doi: 10.1016/j.jstrokecerebrovasdis.2018.03.019. [DOI] [PubMed]
  59. Pallesen LPM, Mayer J, Barlinn K, Barlinn J, Prakapenia A, Siepmann T, et al. Real-life detection rate of insertable cardiac monitors in patients with ESUS. Stroke 2017;48(Suppl. 1):abstract no. WP230.
  60. Carrazco C, Golyan D, Kahen M, Black K, Libman RB, Katz JM. Prevalence and risk factors for paroxysmal atrial fibrillation and flutter detection after cryptogenic ischemic stroke. J Stroke Cerebrovasc Dis 2018;27:203–9. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.022 doi: 10.1016/j.jstrokecerebrovasdis.2017.08.022. [DOI] [PubMed]
  61. Abichandani A, Signarovitz D, Branch K, Prutzman D, Agrawal S, Sadowski L, et al. Impact of CHA2DS2VASc score on atrial fibrillation detection in patients with cryptogenic stroke. Cardiology 2016;134(Suppl. 1):229.
  62. Poli S, Diedler J, Härtig F, Götz N, Bauer A, Sachse T, et al. Insertable cardiac monitors after cryptogenic stroke – a risk factor based approach to enhance the detection rate for paroxysmal atrial fibrillation. Eur J Neurol 2016;23:375–81. https://doi.org/10.1111/ene.12843 doi: 10.1111/ene.12843. [DOI] [PubMed]
  63. Joseph K, Wanjiku S, Jumaa M, Richards M. Improved efficacy of ICM detection of atrial fibrillation in cryptogenic stroke patients with MRI-defined infarcts: preliminary results from the SPIDER registry. Stroke 2015;46(Suppl. 1):abstract no. W P194.
  64. Salahuddin H, Zaidi S, Tietjen G, Cummings J, Jumaa M. Paroxysmal atrial fibrillation detection rates in cryptogenic stroke patients selected by stroke specialists for prolonged cardiac monitoring (P1.053). Neurology 2015;84(Suppl. 14):P1.053.
  65. Christensen LM, Krieger DW, Højberg S, Pedersen OD, Karlsen FM, Jacobsen MD, et al. Paroxysmal atrial fibrillation occurs often in cryptogenic ischaemic stroke. Final results from the SURPRISE study. Eur J Neurol 2014;21:884–9. https://doi.org/10.1111/ene.12400 doi: 10.1111/ene.12400. [DOI] [PubMed]
  66. Cotter PE, Martin PJ, Ring L, Warburton EA, Belham M, Pugh PJ. Incidence of atrial fibrillation detected by implantable loop recorders in unexplained stroke. Neurology 2013;80:1546–50. https://doi.org/10.1212/WNL.0b013e31828f1828 doi: 10.1212/WNL.0b013e31828f1828. [DOI] [PMC free article] [PubMed]
  67. Etgen T, Hochreiter M, Mundel M, Freudenberger T. Insertable cardiac event recorder in detection of atrial fibrillation after cryptogenic stroke: an audit report. Stroke 2013;44:2007–9. https://doi.org/10.1161/STROKEAHA.113.001340 doi: 10.1161/STROKEAHA.113.001340. [DOI] [PubMed]
  68. Holtzman MC, Foster N, Shah D. Implantation with Reveal XT after cryptogenic stroke is a useful tool to detect previously undiagnosed atrial fibrillation. Stroke 2013;44(Suppl. 1):abstract no. TP219.
  69. Mercé J, Garcia M, Ustrell X, Pellisé A, de Castro R, Bardají A. Implantable loop recorder: a new tool in the diagnosis of cryptogenic stroke. Rev Esp Cardiol 2013;66:665–6. https://doi.org/10.1016/j.rec.2013.02.001 doi: 10.1016/j.rec.2013.02.001. [DOI] [PubMed]
  70. Müller P, Ivanov V, Kara K, Klein-Wiele O, Forkmann M, Piorkowski C, et al. Total atrial conduction time to predict occult atrial fibrillation after cryptogenic stroke. Clin Res Cardiol 2017;106:113–19. https://doi.org/10.1007/s00392-016-1029-2 doi: 10.1007/s00392-016-1029-2. [DOI] [PubMed]
  71. Reinke F, Bettin M, Ross LS, Kochhäuser S, Kleffner I, Ritter M, et al. Refinement of detecting atrial fibrillation in stroke patients: results from the TRACK-AF Study. Eur J Neurol 2018;25:631–6. https://doi.org/10.1111/ene.13538 doi: 10.1111/ene.13538. [DOI] [PubMed]
  72. Ritter MA, Kochhäuser S, Duning T, Reinke F, Pott C, Dechering DG, et al. Occult atrial fibrillation in cryptogenic stroke: detection by 7-day electrocardiogram versus implantable cardiac monitors. Stroke 2013;44:1449–52. https://doi.org/10.1161/STROKEAHA.111.676189 doi: 10.1161/STROKEAHA.111.676189. [DOI] [PubMed]
  73. Rojo-Martinez E, Sandín-Fuentes M, Calleja-Sanz AI, Cortijo-García E, García-Bermejo P, Ruiz-Piñero M, et al. [High performance of an implantable Holter monitor in the detection of concealed paroxysmal atrial fibrillation in patients with cryptogenic stroke and a suspected embolic mechanism.] Rev Neurol 2013;57:251–7. https://doi.org/10.33588/rn.5706.2013187 doi: 10.33588/rn.5706.2013187. [DOI] [PubMed]
  74. Israel C, Kitsiou A, Kalyani M, Deelawar S, Ejangue LE, Rogalewski A, et al. Detection of atrial fibrillation in patients with embolic stroke of undetermined source by prolonged monitoring with implantable loop recorders. Thromb Haemost 2017;117:1962–9. https://doi.org/10.1160/TH17-02-0072 doi: 10.1160/TH17-02-0072. [DOI] [PubMed]
  75. Nölker G, Mayer J, Boldt LH, Seidl K, VAN Driel V, Massa T, et al. Performance of an implantable cardiac monitor to detect atrial fibrillation: results of the DETECT AF study. J Cardiovasc Electrophysiol 2016;27:1403–10. https://doi.org/10.1111/jce.13089 doi: 10.1111/jce.13089. [DOI] [PubMed]
  76. Healey JS, Alings M, Ha A, Leong-Sit P, Birnie DH, de Graaf JJ, et al. Subclinical atrial fibrillation in older patients. Circulation 2017;136:1276–83. https://doi.org/10.1161/CIRCULATIONAHA.117.028845 doi: 10.1161/CIRCULATIONAHA.117.028845. [DOI] [PubMed]
  77. Biotronik SE & Co. KG. BioMonitor 2 Study Report I. Berlin: Biotronik SE & Co. KG; 2017. National Institute for Health and Care Excellence, 31 August 2018, personal communication.
  78. Ooi SY, Ng B, Singarayar S, Hellestrand K, Illes P, Mohamed U, et al. BioMonitor 2 pilot study: early experience with implantation of the Biotronik BioMonitor 2 implantable cardiac monitor. Heart Lung Circ 2018;27:1462–6. https://doi.org/10.1016/j.hlc.2017.09.005 doi: 10.1016/j.hlc.2017.09.005. [DOI] [PubMed]
  79. Biotronik SE & Co. KG. Results of the post market observation (PMO)-FIT (fast insertion tool) update for BioMonitor 2. Berlin: Biotronik SE & Co. KG; 2017. National Institute for Health and Care Excellence, 31 August 2018, personal communication.
  80. Reinsch N, Ruprecht U, Buchholz J, Diehl RR, Kälsch H, Neven K. The BioMonitor 2 insertable cardiac monitor: clinical experience with a novel implantable cardiac monitor. J Electrocardiol 2018;51:751–5. https://doi.org/10.1016/j.jelectrocard.2018.05.017 doi: 10.1016/j.jelectrocard.2018.05.017. [DOI] [PubMed]
  81. Piorkowski C, Busch M, Nölker G, Schmitt J, Roithinger FX, Young G, et al. Clinical evaluation of a small insertable cardiac monitor with a long sensing vector. 2018. National Institute for Health and Care Excellence, 31 August 2018, personal communication.
  82. Biotronik SE & Co. KG. BioMonitor 2 Study Report II. Berlin: Biotronik SE & Co. KG; 2017. National Institute for Health and Care Excellence, 31 August 2018, personal communication.
  83. Biotronik SE & Co. KG. BioInsight study final report. Berlin: Biotronik SE & Co. KG; 2017 National Institute for Health and Care Excellence, 31 August 2018, personal communication.
  84. Awad K, Weiss R, Yunus A, Bittrick JM, Nekkanti R, Houmsse M, et al. BioMonitor 2 In-office setting insertion safety and feasibility evaluation with device functionality assessment: results from the BioInsight study. 2018. National Institute for Health and Care Excellence, 31 August 2018, personal communication. doi: 10.1186/s12872-020-01439-8. [DOI] [PMC free article] [PubMed]
  85. Mittal S, Sanders P, Pokushalov E, Dekker L, Kereiakes D, Schloss EJ, et al. Safety profile of a miniaturized insertable cardiac monitor: results from two prospective trials. Pacing Clin Electrophysiol 2015;38:1464–9. https://doi.org/10.1111/pace.12752 doi: 10.1111/pace.12752. [DOI] [PubMed]
  86. Pürerfellner H, Sanders P, Pokushalov E, Di Bacco M, Bergemann T, Dekker LR, Reveal LINQ Usability Study Investigators. Miniaturized Reveal LINQ insertable cardiac monitoring system: first-in-human experience. Heart Rhythm 2015;12:1113–19. https://doi.org/10.1016/j.hrthm.2015.02.030 doi: 10.1016/j.hrthm.2015.02.030. [DOI] [PubMed]
  87. Sanders P, Pürerfellner H, Pokushalov E, Sarkar S, Di Bacco M, Maus B, et al. Performance of a new atrial fibrillation detection algorithm in a miniaturized insertable cardiac monitor: results from the Reveal LINQ Usability Study. Heart Rhythm 2016;13:1425–30. https://doi.org/10.1016/j.hrthm.2016.03.005 doi: 10.1016/j.hrthm.2016.03.005. [DOI] [PubMed]
  88. Drummond MF, O’Brien B, Stoddart GL, Torrance GW. Methods for the Economic Evaluation of Health Care Programmes. 2nd edn. Oxford: Oxford University Press; 1997.
  89. De Angelis G, Cimon K, Sinclair A, Farrah K, Cairns J, Baranchuk A, et al. Monitoring for Atrial Fibrillation in Discharged Stroke and Transient Ischemic Attack Patients: A Clinical and Cost-Effectiveness Analysis and Review of Patient Preferences. CADTH Optimal Use Report, No. 5.2b. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2016. [PubMed]
  90. Diamantopoulos A, Sawyer LM, Lip GY, Witte KK, Reynolds MR, Fauchier L, et al. Cost-effectiveness of an insertable cardiac monitor to detect atrial fibrillation in patients with cryptogenic stroke. Int J Stroke 2016;11:302–12. https://doi.org/10.1177/1747493015620803 doi: 10.1177/1747493015620803. [DOI] [PubMed]
  91. Maervoet J, Bossers N, Borge RP, Schollbauer V, Van Engen A, Smala A. Clinical and economic value of device-based detection of atrial fibrillation in patients with cryptogenic stroke. Value Health 2017;20:A584. https://doi.org/10.1016/j.jval.2017.08.1053 doi: 10.1016/j.jval.2017.08.1053. [DOI]
  92. Quiroz M, Wolff C, Eggington S. Insertable cardiac monitor versus standard of care for detection of atrial fibrillation in patients following cryptogenic stroke: a Dutch cost-effectiveness analysis. Value Health 2017;20:A588. https://doi.org/10.1016/j.jval.2017.08.1075 doi: 10.1016/j.jval.2017.08.1075. [DOI]
  93. Thijs V, Guarnieri C, Makino K, Tilden D, Huynh M. Cost-effectiveness of long-term continuous monitoring with an insertable cardiac monitor to detect atrial fibrillation in patients with cryptogenic stroke: an Australian payer perspective. J Neurol Neurosurg Psychiatry 2018;89:e6. https://doi.org/10.1136/jnnp-2018-ANZAN.12 doi: 10.1136/jnnp-2018-ANZAN.12. [DOI]
  94. Dorian P, Kongnakorn T, Phatak H, Rublee DA, Kuznik A, Lanitis T, et al. Cost-effectiveness of apixaban vs. current standard of care for stroke prevention in patients with atrial fibrillation. Eur Heart J 2014;35:1897–906. https://doi.org/10.1093/eurheartj/ehu006 doi: 10.1093/eurheartj/ehu006. [DOI] [PMC free article] [PubMed]
  95. Lip GY, Kongnakorn T, Phatak H, Kuznik A, Lanitis T, Liu LZ, et al. Cost-effectiveness of apixaban versus other new oral anticoagulants for stroke prevention in atrial fibrillation. Clin Ther 2014;36:192–210.e20. https://doi.org/10.1016/j.clinthera.2013.12.011 doi: 10.1016/j.clinthera.2013.12.011. [DOI] [PubMed]
  96. Ariesen MJ, Claus SP, Rinkel GJ, Algra A. Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke 2003;34:2060–5. https://doi.org/10.1161/01.STR.0000080678.09344.8D doi: 10.1161/01.STR.0000080678.09344.8D. [DOI] [PubMed]
  97. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139–51. https://doi.org/10.1056/NEJMoa0905561 doi: 10.1056/NEJMoa0905561. [DOI] [PubMed]
  98. Easton JD, Lopes RD, Bahit MC, Wojdyla DM, Granger CB, Wallentin L, et al. Apixaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of the ARISTOTLE trial. Lancet Neurol 2012;11:503–11. https://doi.org/10.1016/S1474-4422(12)70092-3 doi: 10.1016/S1474-4422(12)70092-3. [DOI] [PubMed]
  99. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981–92. https://doi.org/10.1056/NEJMoa1107039 doi: 10.1056/NEJMoa1107039. [DOI] [PubMed]
  100. Hankey GJ, Patel MR, Stevens SR, Becker RC, Breithardt G, Carolei A, et al. Rivaroxaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of ROCKET AF. Lancet Neurol 2012;11:315–22. https://doi.org/10.1016/S1474-4422(12)70042-X doi: 10.1016/S1474-4422(12)70042-X. [DOI] [PubMed]
  101. Office for National Statistics. National Life Tables: England. 2018. URL: www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables (accessed 16 January 2019).
  102. Luengo-Fernandez R, Gray AM, Bull L, Welch S, Cuthbertson F, Rothwell PM, Oxford Vascular Study. Quality of life after TIA and stroke: ten-year results of the Oxford Vascular Study. Neurology 2013;81:1588–95. https://doi.org/10.1212/WNL.0b013e3182a9f45f doi: 10.1212/WNL.0b013e3182a9f45f. [DOI] [PMC free article] [PubMed]
  103. Sullivan PW, Slejko JF, Sculpher MJ, Ghushchyan V. Catalogue of EQ-5D scores for the United Kingdom. Med Decis Making 2011;31:800–4. https://doi.org/10.1177/0272989X11401031 doi: 10.1177/0272989X11401031. [DOI] [PubMed]
  104. Department of Health and Social Care. NHS Reference Costs 2012 to 2013. URL: www.gov.uk/government/publications/nhs-reference-costs-2012-to-2013.
  105. Duarte R, Stainthorpe A, Greenhalgh J, Richardson M, Nevitt S, Mahon J, et al. Lead-I ECG for detecting atrial fibrillation in patients with an irregular pulse using single time point testing: a systematic review and economic evaluation. Health Technol Assess 2020;24(3). doi: 10.3310/hta24030. [DOI] [PMC free article] [PubMed]
  106. Sterne JA, Bodalia PN, Bryden PA, Davies PA, López-López JA, Okoli GN, et al. Oral anticoagulants for primary prevention, treatment and secondary prevention of venous thromboembolic disease, and for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis and cost-effectiveness analysis. Health Technol Assess 2017;21(9). https://doi.org/10.3310/hta21090 doi: 10.3310/hta21090. [DOI] [PMC free article] [PubMed]
  107. Welton NJ, McAleenan A, Thom HH, Davies P, Hollingworth W, Higgins JP, et al. Screening strategies for atrial fibrillation: a systematic review and cost-effectiveness analysis. Health Technol Assess 2017;21(29). https://doi.org/10.3310/hta21290 doi: 10.3310/hta21290. [DOI] [PubMed]
  108. Joint Formulary Committee. British National Formulary (online). London: BMJ Group and Pharmaceutical Press; 2015. URL: www.medicinescomplete.com (accessed 30 November 2018).
  109. Department of Health and Social Care. NHS Reference Costs. 2018. URL: www.gov.uk/government/collections/nhs-reference-costs (accessed 15 February 2019).
  110. Office for National Statistics. Consumer Price Inflation Index for Medical Services (DKC3). 2018. URL: www.ons.gov.uk/economy/inflationandpriceindices/timeseries/dkc3/mm23 (accessed 12 December 2018).
  111. National institute for Health and Care Excellence. Rivaroxaban for the Prevention of Stroke and Systemic Embolism in People with Atrial Fibrillation. Technology appraisal guidance [TA256]; 2012. URL: www.nice.org.uk/guidance/ta256 (accessed 19 February 2018).
  112. Alvarez-Sabín J, Santamarina E, Maisterra O, Jacas C, Molina C, Quintana M. Long-term treatment with citicoline prevents cognitive decline and predicts a better quality of life after a first ischemic stroke. Int J Mol Sci 2016;17:390. https://doi.org/10.3390/ijms17030390 doi: 10.3390/ijms17030390. [DOI] [PMC free article] [PubMed]
  113. Bach JP, Riedel O, Pieper L, Klotsche J, Dodel R, Wittchen HU. Health-related quality of life in patients with a history of myocardial infarction and stroke. Cerebrovasc Dis 2011;31:68–76. https://doi.org/10.1159/000319027 doi: 10.1159/000319027. [DOI] [PubMed]
  114. Bushnell CD, Reeves MJ, Zhao X, Pan W, Prvu-Bettger J, Zimmer L, et al. Sex differences in quality of life after ischemic stroke. Neurology 2014;82:922–31. https://doi.org/10.1212/WNL.0000000000000208 doi: 10.1212/WNL.0000000000000208. [DOI] [PMC free article] [PubMed]
  115. Chang WH, Sohn MK, Lee J, Kim DY, Lee SG, Shin YI, et al. Predictors of functional level and quality of life at 6 months after a first-ever stroke: the KOSCO study. J Neurol 2016;263:1166–77. https://doi.org/10.1007/s00415-016-8119-y doi: 10.1007/s00415-016-8119-y. [DOI] [PubMed]
  116. Christensen MC, Mayer S, Ferran JM. Quality of life after intracerebral hemorrhage: results of the Factor Seven for Acute Hemorrhagic Stroke (FAST) trial. Stroke 2009;40:1677–82. https://doi.org/10.1161/STROKEAHA.108.538967 doi: 10.1161/STROKEAHA.108.538967. [DOI] [PubMed]
  117. Ghatnekar O, Eriksson M, Glader EL. Mapping health outcome measures from a stroke registry to EQ-5D weights. Health Qual Life Outcomes 2013;11:34. https://doi.org/10.1186/1477-7525-11-34 doi: 10.1186/1477-7525-11-34. [DOI] [PMC free article] [PubMed]
  118. Golicki D, Niewada M, Buczek J, Karlińska A, Kobayashi A, Janssen MF, Pickard AS. Validity of EQ-5D-5L in stroke. Qual Life Res 2015;24:845–50. https://doi.org/10.1007/s11136-014-0834-1 doi: 10.1007/s11136-014-0834-1. [DOI] [PMC free article] [PubMed]
  119. Golicki D, Niewada M, Karlińska A, Buczek J, Kobayashi A, Janssen MF, Pickard AS. Comparing responsiveness of the EQ-5D-5L, EQ-5D-3L and EQ VAS in stroke patients. Qual Life Res 2015;24:1555–63. https://doi.org/10.1007/s11136-014-0873-7 doi: 10.1007/s11136-014-0873-7. [DOI] [PMC free article] [PubMed]
  120. Haacke C, Althaus A, Spottke A, Siebert U, Back T, Dodel R. Long-term outcome after stroke: evaluating health-related quality of life using utility measurements. Stroke 2006;37:193–8. https://doi.org/10.1161/01.STR.0000196990.69412.fb doi: 10.1161/01.STR.0000196990.69412.fb. [DOI] [PubMed]
  121. Hallinen T, Soini EJ, Linna M, Saarni SI. Cost-effectiveness of apixaban and warfarin in the prevention of thromboembolic complications among atrial fibrillation patients. Springerplus 2016;5:1354. https://doi.org/10.1186/s40064-016-3024-5 doi: 10.1186/s40064-016-3024-5. [DOI] [PMC free article] [PubMed]
  122. Lindgren P, Glader EL, Jönsson B. Utility loss and indirect costs after stroke in Sweden. Eur J Cardiovasc Prev Rehabil 2008;15:230–3. https://doi.org/10.1097/HJR.0b013e3282f37a22 doi: 10.1097/HJR.0b013e3282f37a22. [DOI] [PubMed]
  123. Lopez-Bastida J, Oliva Moreno J, Worbes Cerezo M, Perestelo Perez L, Serrano-Aguilar P, Montón-Álvarez F. Social and economic costs and health-related quality of life in stroke survivors in the Canary Islands, Spain. BMC Health Serv Res 2012;12:315. https://doi.org/10.1186/1472-6963-12-315 doi: 10.1186/1472-6963-12-315. [DOI] [PMC free article] [PubMed]
  124. Lunde L. Can EQ-5D and 15D be used interchangeably in economic evaluations? Assessing quality of life in post-stroke patients. Eur J Health Econ 2013;14:539–50. https://doi.org/10.1007/s10198-012-0402-y doi: 10.1007/s10198-012-0402-y. [DOI] [PubMed]
  125. Mar J, Begiristain JM, Arrazola A. Cost-effectiveness analysis of thrombolytic treatment for stroke. Cerebrovasc Dis 2005;20:193–200. https://doi.org/10.1159/000087204 doi: 10.1159/000087204. [DOI] [PubMed]
  126. Mar J, Masjuan J, Oliva-Moreno J, Gonzalez-Rojas N, Becerra V, Casado MÁ, et al. Outcomes measured by mortality rates, quality of life and degree of autonomy in the first year in stroke units in Spain. Health Qual Life Outcomes 2015;13:36. https://doi.org/10.1186/s12955-015-0230-8 doi: 10.1186/s12955-015-0230-8. [DOI] [PMC free article] [PubMed]
  127. Pickard AS, Johnson JA, Feeny DH. Responsiveness of generic health-related quality of life measures in stroke. Qual Life Res 2005;14:207–19. https://doi.org/10.1007/s11136-004-3928-3 doi: 10.1007/s11136-004-3928-3. [DOI] [PubMed]
  128. Pickard AS, Johnson JA, Feeny DH, Shuaib A, Carriere KC, Nasser AM. Agreement between patient and proxy assessments of health-related quality of life after stroke using the EQ-5D and Health Utilities Index. Stroke 2004;35:607–12. https://doi.org/10.1161/01.STR.0000110984.91157.BD doi: 10.1161/01.STR.0000110984.91157.BD. [DOI] [PubMed]
  129. van Eeden M, van Heugten C, van Mastrigt GA, van Mierlo M, Visser-Meily JM, Evers SM. The burden of stroke in the Netherlands: estimating quality of life and costs for 1 year poststroke. BMJ Open 2015;5:e008220. https://doi.org/10.1136/bmjopen-2015-008220 doi: 10.1136/bmjopen-2015-008220. [DOI] [PMC free article] [PubMed]
  130. Xie J, Wu EQ, Zheng ZJ, Croft JB, Greenlund KJ, Mensah GA, Labarthe DR. Impact of stroke on health-related quality of life in the noninstitutionalized population in the United States. Stroke 2006;37:2567–72. https://doi.org/10.1161/01.STR.0000240506.34616.10 doi: 10.1161/01.STR.0000240506.34616.10. [DOI] [PubMed]
  131. Berg J, Lindgren P, Nieuwlaat R, Bouin O, Crijns H. Factors determining utility measured with the EQ-5D in patients with atrial fibrillation. Qual Life Res 2010;19:381–90. https://doi.org/10.1007/s11136-010-9591-y doi: 10.1007/s11136-010-9591-y. [DOI] [PubMed]
  132. Roalfe AK, Bryant TL, Davies MH, Hackett TG, Saba S, Fletcher K, et al. A cross-sectional study of quality of life in an elderly population (75 years and over) with atrial fibrillation: secondary analysis of data from the Birmingham Atrial Fibrillation Treatment of the Aged study. Europace 2012;14:1420–7. https://doi.org/10.1093/europace/eus102 doi: 10.1093/europace/eus102. [DOI] [PubMed]
  133. Wang K, Li H, Kwong WJ, Antman EM, Ruff CT, Giugliano RP, et al. Impact of spontaneous extracranial bleeding events on health state utility in patients with atrial fibrillation: results from the ENGAGE AF-TIMI 48 trial. J Am Heart Assoc 2017;6:e006703. https://doi.org/10.1161/JAHA.117.006703 doi: 10.1161/JAHA.117.006703. [DOI] [PMC free article] [PubMed]
  134. Dolan P. Modelling valuations for EuroQol health states. Med Care 1997;35:1095–108. https://doi.org/10.1097/00005650-199711000-00002 doi: 10.1097/00005650-199711000-00002. [DOI] [PubMed]
  135. Nieuwlaat R, Capucci A, Camm AJ, Olsson SB, Andresen D, Davies DW, et al. Atrial fibrillation management: a prospective survey in ESC member countries: the Euro Heart Survey on Atrial Fibrillation. Eur Heart J 2005;26:2422–34. https://doi.org/10.1093/eurheartj/ehi505 doi: 10.1093/eurheartj/ehi505. [DOI] [PubMed]
  136. Creager MA. Results of the CAPRIE trial: efficacy and safety of clopidogrel. Clopidogrel versus aspirin in patients at risk of ischaemic events. Vasc Med 1998;3:257–60. https://doi.org/10.1177/1358836X9800300314 doi: 10.1177/1358836X9800300314. [DOI] [PubMed]
  137. Hao Q, Tampi M, O’Donnell M, Foroutan F, Siemieniuk RA, Guyatt G. Clopidogrel plus aspirin versus aspirin alone for acute minor ischaemic stroke or high risk transient ischaemic attack: systematic review and meta-analysis. BMJ 2018;363:k5108. https://doi.org/10.1136/bmj.k5108 doi: 10.1136/bmj.k5108. [DOI] [PMC free article] [PubMed]
  138. Cameron C, Coyle D, Richter T, Kelly S, Gauthier K, Steiner S, et al. Systematic review and network meta-analysis comparing antithrombotic agents for the prevention of stroke and major bleeding in patients with atrial fibrillation. BMJ Open 2014;4:e004301. https://doi.org/10.1136/bmjopen-2013-004301 doi: 10.1136/bmjopen-2013-004301. [DOI] [PMC free article] [PubMed]
  139. EBM DataLab University of Oxford. Explore England’s Prescribing Data. URL: https://openprescribing.net (accessed 11 December 2018).
  140. Curtis L, Burns A. Unit Costs of Health and Social Care 2018. URL: www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/ (accessed 15 February 2019).
  141. Kanters TA, Wolff C, Boyson D, Kouakam C, Dinh T, Hakkaart L, Rutten-Van Mölken MP. Cost comparison of two implantable cardiac monitors in two different settings: Reveal XT in a catheterization laboratory vs. Reveal LINQ in a procedure room. Europace 2016;18:919–24. https://doi.org/10.1093/europace/euv217 doi: 10.1093/europace/euv217. [DOI] [PubMed]
  142. Joint Formulary Committee. British National Formulary (online). 2018. URL: www.medicinescomplete.com (accessed 30 November 2018).
  143. Luengo-Fernandez R, Yiin GS, Gray AM, Rothwell PM. Population-based study of acute- and long-term care costs after stroke in patients with AF. Int J Stroke 2013;8:308–14. https://doi.org/10.1111/j.1747-4949.2012.00812.x doi: 10.1111/j.1747-4949.2012.00812.x. [DOI] [PMC free article] [PubMed]
  144. Caro JJ, Nord E, Siebert U, McGuire A, McGregor M, Henry D, et al. The efficiency frontier approach to economic evaluation of health-care interventions. Health Econ 2010;19:1117–27. https://doi.org/10.1002/hec.1629 doi: 10.1002/hec.1629. [DOI] [PubMed]
  145. National Institute for Health and Care Excellence. Guide to the Methods of Technology Appraisal 2013. URL: www.nice.org.uk/process/pmg9/chapter/foreword (accessed 18 December 2018). [PubMed]
  146. Team RC. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2016.
  147. Venables WN, Ripley BD. Modern Applied Statistics with S. 4th edn. New York, NY: Springer; 2002. https://doi.org/10.1007/978-0-387-21706-2 doi: 10.1007/978-0-387-21706-2. [DOI]
  148. Medtronic Cardiac Rhythm and Heart Failure. Study of Continuous Cardiac Monitoring to Assess Atrial Fibrillation After Cryptogenic Stroke (CRYSTAL-AF). 2014. URL: https://clinicaltrials.gov/ct2/show/results/ NCT00924638 (accessed 19 November 2019).
  149. Passman RS, Morillo CA, Brachmann J, Sanna T, Di Lazzaro V, Bernstein R, et al. A comparison of monitoring strategies for the detection of atrial fibrillation after cryptogenic stroke: results from the CRYSTAL AF study. Heart Rhythm 2014;1:S17.
  150. Kammersgaard LP, Olsen TS. Cardiovascular risk factors and 5-year mortality in the Copenhagen Stroke Study. Cerebrovasc Dis 2006;21:187–93. https://doi.org/10.1159/000090531 doi: 10.1159/000090531. [DOI] [PubMed]
  151. Saposnik G, Fang J, O’Donnell M, Hachinski V, Kapral MK, Hill MD, et al. Escalating levels of access to in-hospital care and stroke mortality. Stroke 2008;39:2522–30. https://doi.org/10.1161/STROKEAHA.107.507145 doi: 10.1161/STROKEAHA.107.507145. [DOI] [PubMed]
  152. Fang MC, Go AS, Chang Y, Borowsky LH, Pomernacki NK, Udaltsova N, et al. Thirty-day mortality after ischemic stroke and intracranial hemorrhage in patients with atrial fibrillation on and off anticoagulants. Stroke 2012;43:1795–9. https://doi.org/10.1161/STROKEAHA.111.630731 doi: 10.1161/STROKEAHA.111.630731. [DOI] [PMC free article] [PubMed]
  153. Soliman EZ, Safford MM, Muntner P, Khodneva Y, Dawood FZ, Zakai NA, et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern Med 2014;174:107–14. https://doi.org/10.1001/jamainternmed.2013.11912 doi: 10.1001/jamainternmed.2013.11912. [DOI] [PMC free article] [PubMed]
  154. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146:857–67. https://doi.org/10.7326/0003-4819-146-12-200706190-00007 doi: 10.7326/0003-4819-146-12-200706190-00007. [DOI] [PubMed]
  155. Stroke Risk in Atrial Fibrillation Working Group. Independent predictors of stroke in patients with atrial fibrillation: a systematic review. Neurology 2007;69:546–54. https://doi.org/10.1212/01.wnl.0000267275.68538.8d doi: 10.1212/01.wnl.0000267275.68538.8d. [DOI]
  156. Xian Y, Wu J, O'Brien EC, Fonarow GC, Olson DM, Schwamm LH, et al. Real world effectiveness of warfarin among ischemic stroke patients with atrial fibrillation: observational analysis from Patient-Centered Research into Outcomes Stroke Patients Prefer and Effectiveness Research (PROSPER) study. BMJ 2015;351:h3786. https://doi.org/10.1136/bmj.h3786 doi: 10.1136/bmj.h3786. [DOI] [PMC free article] [PubMed]
  157. Mant J, Hobbs FD, Fletcher K, Roalfe A, Fitzmaurice D, Lip GY, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet 2007;370:493–503. https://doi.org/10.1016/S0140-6736(07)61233-1 doi: 10.1016/S0140-6736(07)61233-1. [DOI] [PubMed]
  158. An J, Niu F, Lang DT, Jazdzewski KP, Le PT, Rashid N, et al. Stroke and bleeding risk associated with antithrombotic therapy for patients with nonvalvular atrial fibrillation in clinical practice. J Am Heart Assoc 2015;4. https://doi.org/10.1161/JAHA.115.001921 doi: 10.1161/JAHA.115.001921. [DOI] [PMC free article] [PubMed]
  159. Go AS, Hylek EM, Chang Y, Phillips KA, Henault LE, Capra AM, et al. Anticoagulation therapy for stroke prevention in atrial fibrillation: how well do randomized trials translate into clinical practice? JAMA 2003;290:2685–92. https://doi.org/10.1001/jama.290.20.2685 doi: 10.1001/jama.290.20.2685. [DOI] [PubMed]
  160. The Stroke Prevention in Atrial Fibrillation Investigators. Bleeding during antithrombotic therapy in patients with atrial fibrillation. The Stroke Prevention in Atrial Fibrillation Investigators. Arch Intern Med 1996;156:409–16. https://doi.org/10.1001/archinte.156.4.409 doi: 10.1001/archinte.156.4.409. [DOI] [PubMed]
  161. Diener HC, Connolly SJ, Ezekowitz MD, Wallentin L, Reilly PA, Yang S, et al. Dabigatran compared with warfarin in patients with atrial fibrillation and previous transient ischaemic attack or stroke: a subgroup analysis of the RE-LY trial. Lancet Neurol 2010;9:1157–63. https://doi.org/10.1016/S1474-4422(10)70274-X doi: 10.1016/S1474-4422(10)70274-X. [DOI] [PubMed]
  162. Krueger H, Lindsay P, Cote R, Kapral MK, Kaczorowski J, Hill MD. Cost avoidance associated with optimal stroke care in Canada. Stroke 2012;43:2198–206. https://doi.org/10.1161/STROKEAHA.111.646091 doi: 10.1161/STROKEAHA.111.646091. [DOI] [PubMed]
  163. Bjorck F, Renlund H, Svensson PJ, Sjalander A. Warfarin persistence among stroke patients with atrial fibrillation. Thromb Res 2015;136:744–8. https://doi.org/10.1016/j.thromres.2015.07.028 doi: 10.1016/j.thromres.2015.07.028. [DOI] [PubMed]
  164. Singh SM, Micieli A, Wijeysundera HC. Economic evaluation of percutaneous left atrial appendage occlusion, dabigatran, and warfarin for stroke prevention in patients with nonvalvular atrial fibrillation. Circulation 2013;127:2414–23. https://doi.org/10.1161/CIRCULATIONAHA.112.000920 doi: 10.1161/CIRCULATIONAHA.112.000920. [DOI] [PubMed]
  165. Mittmann N, Seung SJ, Hill MD, Phillips SJ, Hachinski V, Cote R, et al. Impact of disability status on ischemic stroke costs in Canada in the first year. Can J Neurol Sci 2012;39:793–800. https://doi.org/10.1017/S0317167100015638 doi: 10.1017/S0317167100015638. [DOI] [PubMed]
  166. Cohen D, Manuel DG, Tugwell P, Sanmartin C, Ramsay T. Direct healthcare costs of acute myocardial infarction in Canada’s elderly across the continuum of care. J Econ Ageing 2014;3:44–9. https://doi.org/10.1016/j.jeoa.2014.05.002 doi: 10.1016/j.jeoa.2014.05.002. [DOI]
  167. Drugs Funded by Ontario Drug Benefit (ODB) Program: e-formulary. Toronto, ON: Ontario Ministry of Health and Long-Term Care; 2015. URL: http://www.health.gov.on.ca/en/pro/programs/drugs/odbf_eformulary.aspx
  168. Ontario Drug Benefit Program: Dispensing Fees. Toronto, ON: Ontario Ministry of Health and Long-Term Care; 2015. URL: http://www.health.gov.on.ca/en/public/programs/drugs/programs/odb/opdp_dispensing_fees.aspx
  169. Canadian Institute for Health Information (CIHI). National Health Expenditure Trends, 1975 to 2014. Ottawa: CIHI; 2014.
  170. Fassbender K, Fainsinger RL, Carson M, Finegan BA. Cost trajectories at the end of life: the Canadian experience. J Pain Symptom Manage 2009;38:75–80. https://doi.org/10.1016/j.jpainsymman.2009.04.007 doi: 10.1016/j.jpainsymman.2009.04.007. [DOI] [PubMed]
  171. Tanuseputro P, Wodchis WP, Fowler R, Walker P, Bai YQ, Bronskill SE, et al. The health care cost of dying: a population-based retrospective cohort study of the last year of life in Ontario, Canada. PLoS ONE 2015;10:e0121759. https://doi.org/10.1371/journal.pone.0121759 doi: 10.1371/journal.pone.0121759. [DOI] [PMC free article] [PubMed]
  172. Dorman P, Dennis M, Sandercock P. Are the modified “simple questions” a valid and reliable measure of health related quality of life after stroke? United Kingdom Collaborators in the International Stroke Trial. J Neurol Neurosurg Psychiatry 2000;69:487–93. https://doi.org/10.1136/jnnp.69.4.487 doi: 10.1136/jnnp.69.4.487. [DOI] [PMC free article] [PubMed]
  173. Gage BF, Cardinalli AB, Owens DK. The effect of stroke and stroke prophylaxis with aspirin or warfarin on quality of life. Arch Intern Med 1996;156:1829–36. https://doi.org/10.1001/archinte.1996.00440150083009 doi: 10.1001/archinte.1996.00440150083009. [DOI] [PubMed]
  174. Smith DW, Davies EW, Wissinger E, Huelin R, Matza LS, Chung K. A systematic literature review of cardiovascular event utilities. Expert Rev Pharmacoecon Outcomes Res 2013;13:767–90. https://doi.org/10.1586/14737167.2013.841545 doi: 10.1586/14737167.2013.841545. [DOI] [PubMed]
  175. Bohmer E, Kristiansen IS, Arnesen H, Halvorsen S. Health-related quality of life after myocardial infarction, does choice of method make a difference? Scand Cardiovasc J 2014;48:216–22. https://doi.org/10.3109/14017431.2014.923581 doi: 10.3109/14017431.2014.923581. [DOI] [PubMed]
  176. Bager P, Dahlerup JF. Patient-reported outcomes after acute nonvariceal upper gastrointestinal hemorrhage. Scand J Gastroenterol 2014;49:909–16. https://doi.org/10.3109/00365521.2014.910544 doi: 10.3109/00365521.2014.910544. [DOI] [PubMed]
  177. Office for National Statistics. National Life Tables, 2011–2013. Newport: Office for National Statistics; 2014. URL: www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/2014-09-25
  178. Huybrechts KF, Caro JJ, Xenakis JJ, Vemmos KN. The prognostic value of the modified Rankin Scale score for long-term survival after first-ever stroke. Results from the Athens Stroke Registry. Cerebrovasc Dis 2008;26:381–7. https://doi.org/10.1159/000151678 doi: 10.1159/000151678. [DOI] [PubMed]
  179. Brønnum-Hansen H, Davidsen M, Thorvaldsen P, Danish MSG. Long-term survival and causes of death after stroke. Stroke 2001;32:2131–6. https://doi.org/10.1161/hs0901.094253 doi: 10.1161/hs0901.094253. [DOI] [PubMed]
  180. Diener HC, Eikelboom J, Connolly SJ, Joyner CD, Hart RG, Lip GY, et al. Apixaban versus aspirin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a predefined subgroup analysis from AVERROES, a randomised trial. Lancet Neurol 2012;11:225–31. https://doi.org/10.1016/S1474-4422(12)70017-0 doi: 10.1016/S1474-4422(12)70017-0. [DOI] [PubMed]
  181. Ntaios G, Papavasileiou V, Diener HC, Makaritsis K, Michel P. Nonvitamin-K-antagonist oral anticoagulants in patients with atrial fibrillation and previous stroke or transient ischemic attack: a systematic review and meta-analysis of randomized controlled trials. Stroke 2012;43:3298–304. https://doi.org/10.1161/STROKEAHA.112.673558 doi: 10.1161/STROKEAHA.112.673558. [DOI] [PubMed]
  182. European Atrial Fibrillation Trial (EAFT) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:1255–62. https://doi.org/10.1016/0140-6736(93)92358-Z doi: 10.1016/0140-6736(93)92358-Z. [DOI] [PubMed]
  183. Pisters R, Lane DA, Marin F, Camm AJ, Lip GY. Stroke and thromboembolism in atrial fibrillation. Circ J 2012;76:2289–304. https://doi.org/10.1253/circj.CJ-12-1036 doi: 10.1253/circj.CJ-12-1036. [DOI] [PubMed]
  184. Gage BF, van Walraven C, Pearce L, Hart RG, Koudstaal PJ, Boode BS, Petersen P. Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin. Circulation 2004;110:2287–92. https://doi.org/10.1161/01.CIR.0000145172.55640.93 doi: 10.1161/01.CIR.0000145172.55640.93. [DOI] [PubMed]
  185. Mohan KM, Crichton SL, Grieve AP, Rudd AG, Wolfe CD, Heuschmann PU. Frequency and predictors for the risk of stroke recurrence up to 10 years after stroke: the South London Stroke Register. J Neurol Neurosurg Psychiatry 2009;80:1012–18. https://doi.org/10.1136/jnnp.2008.170456 doi: 10.1136/jnnp.2008.170456. [DOI] [PubMed]
  186. Ara R and Brazier JE. Populating an economic model with health state utility values: moving toward better practice. Value Health 2010;13:509–18. https://doi.org/10.1111/j.1524-4733.2010.00700.x doi: 10.1111/j.1524-4733.2010.00700.x. [DOI] [PubMed]
  187. Greiner W, Weijnen T, Neuwenhuizen M, Oppe S, Badia X, Busschbach J, et al. A single European currency for EQ-5D health states. Eur J Health Econom 2003;4:222–31. https://doi.org/10.1007/s10198-003-0182-5 doi: 10.1007/s10198-003-0182-5. [DOI] [PubMed]
  188. Rockville, MD: Agency for Healthcare Research and Quality. Calculating the U.S. Population-based EQ-5D Index Score. 2005. URL: http://www.ahrq.gov/rice/EQ5Dscore.htm
  189. Shaw JW, Johnson JA, Coons SJ. US valuation of the EQ-5D health states: development and testing of the D2 valuation model. Med Care 2005;43:203–20. https://doi.org/10.1097/00005650-200503000-00003 doi: 10.1097/00005650-200503000-00003. [DOI] [PubMed]
  190. Luo N, Johnson JA, Shaw JW, Feeny D, Coons SJ. Self-reported health status of the general adult US population as assessed by the EQ-5D and Health Utilities Index. Med Care 2005;43:1078–86. https://doi.org/10.1097/01.mlr.0000182493.57090.c1 doi: 10.1097/01.mlr.0000182493.57090.c1. [DOI] [PubMed]
  191. Golicki D, Jakubczyk M, Niewada M, Wrona W, Busschbach JJ. Valuation of EQ-5D health states in Poland: First TTO-based social value set in Central and Eastern Europe. Value Health 2010;13:289–97. https://doi.org/10.1111/j.1524-4733.2009.00596.x doi: 10.1111/j.1524-4733.2009.00596.x. [DOI] [PubMed]
  192. Golicki D, Niewada M, van Hout B, Janssen MF, Pickard AS. Interim EQ-5D-5L value set for Poland: First crosswalk value set in Central and Eastern Europe. Value Health Reg Issues 2014;4:19–23. https://doi.org/10.1016/j.vhri.2014.06.001 doi: 10.1016/j.vhri.2014.06.001. [DOI] [PubMed]
  193. van Hout B, Janssen MF, Feng YS, Kohlmann T, Busschbach J, Golicki D, et al. Interim scoring for the EQ-5D-5L: Mapping the EQ-5D-5L to EQ-5D-3L value sets. Value Health 2012;15:708–15. https://doi.org/10.1016/j.jval.2012.02.008 doi: 10.1016/j.jval.2012.02.008. [DOI] [PubMed]
  194. Heistaro S (ed). Methodology report. Health 2000 survey. Publications of the National Public Health Institute B26. Helsinki; 2008.
  195. Badía X, Roset M, Montserrat S, Herdman M, Segura A. La versión española del EuroQol: descripción y aplicaciones. Med Clin 1999;112:S79–86. [PubMed]
  196. Lamers LM, Stalmeier PF, McDonnell J, Krabbe PF, van Busschbach JJ. [Measuring the quality of life in economic evaluations: the Dutch EQ-5D tariff]. Ned Tijdschr Geneeskd 2005;149:1574–8. [PubMed]
  197. The EuroQol Group. Euro-Qol: a new facility for measurement of health-related quality of life. Health Policy 1990;16:199–208. https://doi.org/10.1016/0168-8510(90)90421-9 doi: 10.1016/0168-8510(90)90421-9. [DOI] [PubMed]

RESOURCES