Abstract
The main objectives of this study were to determine the geographic distribution of low birthweight rates in London, Ontario and to identify small areas within the city that have low birthweight rates not adequately explained by the areas’ socioeconomic characteristics. The following socioeconomic variables were used in a weighted, ecological, multiple regression analysis: % unwed mothers, % teen mothers, % low income, % low education, % unemployment and % immigrants. The overall variation in low birthweight rates was statistically significant and largely, but not entirely, explained by the socioeconomic characteristics of the areas. Two out of 31 census tract clusters were identified as having low birthweight rates which were higher than would be expected based on their socioeconomic profile. This methodologic approach may interest health planners as it draws attention to local factors other than socioeconomic ones which may be important when developing local strategies for low birthweight prevention.
Résumé
Les objectifs de notre étude étaient d’évaluer la répartition géographique des taux des nouveau-nés de faible poids à London, Ontario, et d’identifier de petits secteurs géographiques de la ville qui présentent des taux de nouveau-nés de faible poids que les caractéristiques socio-économiques ne suffisent pas à expliquer. Les variables socio-économiques suivantes ont été utilisées dans une analyse par régression multiple écologique et pondérée: % des mères célibataires, % des mères adolescentes, % lié au faible revenu; % lié au faible niveau de scolarité, % lié au chômage et % d’immigrants. Cette tendance générale était statistiquement significative et s’expliquait dans une large mesure, mais pas totalement, par les caractéristiques socio-économiques des secteurs géographiques. Sur les 31 groupages de secteurs de recensement, deux ont été identifiés comme ayant des taux de nouveau-nés de faible poids plus élevés que ce que l’on pourrait s’attendre de par leurs caractéristiques socio-économiques. Cette information pourrait servir à nos planificateurs en santé publique pour mettre au point des facteurs locals, autre que les facteurs socio-économiques, qui pourraient être importants dans le développement des stratégies locales de prévention des nouveau-nés de faible poids.
Footnotes
Financial support was received from the Middlesex-London Teaching Health Unit, London, Ontario.
References
- 1.McCormick MC. The contribution of low birth-weight to infant mortality and childhood morbidity. N Engl J Med. 1985;312:82–90. doi: 10.1056/NEJM198501103120204. [DOI] [PubMed] [Google Scholar]
- 2.Peron Y. Demographic and Health Indicators: Presentation and Interpretation. 1982. Indicators specific to certain stages of the life cycle; pp. 194–220. [Google Scholar]
- 3.Shah CP, Kahan MI, Krauser J. The health of children of low-income families. Can Med Assoc J. 1987;137:485–90. [PMC free article] [PubMed] [Google Scholar]
- 4.Eisner V, Brazie JV, Pratt MW, Hexter AC. The risk of low birthweight. Am J Public Health. 1979;69:887–93. doi: 10.2105/AJPH.69.9.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Westwood M, Kramer MS, Munz D, et al. Growth and development of full-term nonas-phyxiated small-for-gestational-age newborns: Follow-up through adolescence. Pediatrics. 1983;71:376–82. [PubMed] [Google Scholar]
- 6.Fryer JG, Harding RA, Macdonald MD, et al. Comparing the early mortality rates of the local authorities in England and Wales. J R Statist Soc. 1979;142:181–98. [Google Scholar]
- 7.Ashford JR, Read KLQ, Riley VC. An analysis of variations in perinatal mortality amongst local authorities in England and Wales. Int J Epidemiol. 1973;2:31–46. doi: 10.1093/ije/2.1.31. [DOI] [PubMed] [Google Scholar]
- 8.Brooks CH. Social, economic, and biologic correlates of infant mortality in city neighborhoods. J Health Soc Behav. 1980;21:2–11. doi: 10.2307/2136689. [DOI] [PubMed] [Google Scholar]
- 9.Wilkins R, Sherman GJ, Best PAF. Birth outcomes and infant mortality by income in urban Canada, 1986. Health Rep. 1991;3(1):7–31. [PubMed] [Google Scholar]
- 10.Statistics Canada, Census Canada 1986. Census Canada 1986. Reference Dictionary. 1987. [Google Scholar]
- 11.Statistics Canada, Geography Division. January 1991 Postal Code Conversion File. 1991. [Google Scholar]
- 12.SAS Institute Inc. SAS/STAT User’s Guide. Release 6.03 Edition. Cary, NC: SAS Institute Inc.; 1988. [Google Scholar]
- 13.Strategic Mapping, Inc. Learning Atlas Pro. Geographic Data Analysis and Presentation. 1991. [Google Scholar]
- 14.Snedecor GW, Cochran WG. Statistical Methods, 8th Edition. Ames, Iowa: Iowa State University Press; 1989. p. 203. [Google Scholar]
- 15.Pocock SJ, Cook DG, Beresford SAA. Regression of area mortality rates on explanatory variables: What weighting is appropriate? Appl Statist. 1981;30(3):286–95. doi: 10.2307/2346353. [DOI] [PubMed] [Google Scholar]
- 16.Chatterjee S, Price B. Regression Analysis by Example. New York, NY: John Wiley & Sons, Inc.; 1977. pp. 9–10. [Google Scholar]
- 17.Kramer MS. Determinants of low birth weight: Methodological assessment and meta-analysis. Bull WHO. 1987;65(5):663–737. [PMC free article] [PubMed] [Google Scholar]
