Skip to main content
Canadian Journal of Public Health = Revue Canadienne de Santé Publique logoLink to Canadian Journal of Public Health = Revue Canadienne de Santé Publique
. 1997 Jul 1;88(4):255–265. doi: 10.1007/BF03404793

Mathematical Models of Disease Transmission: A Precious Tool for the Study of Sexually Transmitted Diseases

Marie-Claude Boily 110,210,, Benoît Mâsse 110,210
PMCID: PMC6990198  PMID: 9336095

Abstract

This paper is an introduction to the mathematical epidemiology of sexually transmitted diseases (STDs) and its application to public health. After a brief introduction to transmission dynamics models, the construction of a deterministic compartmental mathematical model of HIV transmission in a population is described. As a background to STD transmission dynamics, basic reproductive rate, inter-group mixing, rate of partner change, and duration of infectivity are discussed. Use of the models illustrates the effect of sexual mixing (proportionate to highly assortative), of preventive intervention campaigns, and of HIV-chlamydia interaction on HIV prevalence in the different population groups. In particular, planned prevention campaigns can benefit the targeted intervention group but surprisingly can be disadvantageous for the general population. Through examples, mathematical models are shown to be helpful in our understanding of disease transmission, in interpretation of observed trends, in planning of prevention strategies, and in guiding data collection.

References

  • 1.Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press; 1991. [Google Scholar]
  • 2.May RM. Stability and Complexity in Models Ecosystem. New-Jersey: Princeton University Press, second edition, 1973:265.
  • 3.Anderson RM. Populations and infectious diseases: Ecology or epidemiology? J Animal Ecol. 1991;60:1–50. doi: 10.2307/5443. [DOI] [Google Scholar]
  • 4.Kingman JFC. SIAM. 1980. Mathematics of genetic diversity. CBMS-NFS regional conference series in applied mathematics; p. 34:70. [Google Scholar]
  • 5.Nokes DJ, Anderson RM. The use of mathematical models in the epidemiological study of infectious diseases and in the design of mass immunization programmes. Epidem Inf. 1988;101:1–20. doi: 10.1017/S0950268800029186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Struchiner CJ, Halloran ME, Robins JM, Spielman A. The behaviour of common measures of association used to assess a vaccination programme under complex disease transmission patterns — a computer simulation study of malaria vaccines. Int J Epidemiol. 1990;19:187–96. doi: 10.1093/ije/19.1.187. [DOI] [PubMed] [Google Scholar]
  • 7.Boily M-C, Brunham RC. The impact of HIV and other STDs on human populations. Are predictions possible? Inf Dis Clinics of North America. 1993;7(4):771–91. [PubMed] [Google Scholar]
  • 8.Anderson RM, Medley GF, May RM, Johnson AM. A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J Math Appl Med Biol. 1986;3:229–63. doi: 10.1093/imammb/3.4.229. [DOI] [PubMed] [Google Scholar]
  • 9.Anderson RM, et al. The transmission dynamics of sexually transmitted diseases: The behavioural components. In: Wasserheit J, et al., editors. Research Issues in Human and Sexually Transmitted Diseases in the AIDS Era. 1991. pp. 38–60. [Google Scholar]
  • 10.Bailey NTJ. The Mathematical Theory of Infectious Diseases and its Applications. New-York: Hafner Press; 1975. [Google Scholar]
  • 11.Tan WY, Hsu H. Some stochastic models of AIDS spread. Statistics in Medicine. 1989;8:121–36. doi: 10.1002/sim.4780080112. [DOI] [PubMed] [Google Scholar]
  • 12.Ross SM. Introduction to Probability Models. London: Academic Press; 1980. [Google Scholar]
  • 13.Pielou EC. An Introduction to Mathematical Ecology. New-York: John Wiley and Sons; 1969. [Google Scholar]
  • 14.Boily M-C. Anderson RM. Human immunodeficiency virus transmission and the role of other sexually transmitted diseases: Measures of association and study design. Sex Trans Dis. 1994;23(4):1–21. doi: 10.1097/00007435-199607000-00012. [DOI] [PubMed] [Google Scholar]
  • 15.Garnett GP. Anderson RM. Factors controlling the spread of HIV in heterosexual communities in developing countries: Patterns of mixing between different age and sexual activity classes. Phil Trans R Soc Lond B. 1993;342:137–59. doi: 10.1098/rstb.1993.0143. [DOI] [PubMed] [Google Scholar]
  • 16.Brookmeyer R, Gail MH. AIDS Epidemiology — A Quantitative Approach. New York: Oxford University Press; 1994. Risk factors for infection and the probability of HIV transmission; pp. 19–50. [Google Scholar]
  • 17.Mastro TD, Satten GA, Nopkesorn T, et al. Probability of female-to-male transmission of HIV-1 in Thailand. Lancet. 1994;343:204–7. doi: 10.1016/S0140-6736(94)90990-3. [DOI] [PubMed] [Google Scholar]
  • 18.De V I f t E S G o H T o HIV. A longitudinal study of human immunodeficiency virus transmission by heterosexual partners. N Engl J Med. 1994;331:341–46. doi: 10.1056/NEJM199408113310601. [DOI] [PubMed] [Google Scholar]
  • 19.European Study Group on heterosexual transmission of HIV. Comparison of female to male and male to female transmission of HIV in 563 stable couples. Br Med J. 1992;304:809–13. doi: 10.1136/bmj.304.6830.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Jewell NP, Shiboski SC. Statistical analysis of HIV infectivity based on partner studies. Biometrics. 1990;46:1133–50. doi: 10.2307/2532454. [DOI] [PubMed] [Google Scholar]
  • 21.Pedersen C, Neilsen CM, Vestergaard BF, Gerstoft J, Krogsgaard K, Nielsen JO. Temporal relation of antigenaemia and loss of antibodies to core antigens to development of clinical disease in HIV infectionies in applied mathematics. SIAM. 1983;45:70. doi: 10.1136/bmj.295.6598.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hoppensteadt FC. Mathematical Methods of Population Biology. New-York: Cambridge University Press; 1982. p. 149. [Google Scholar]
  • 24.Renshaw E. Modelling Biological Populations in Space and Time. New-York: Cambridge University Press; 1991. p. 402. [Google Scholar]
  • 25.Hethcote HW, Yorke JA. Gonorrhoea transmission dynamics and control. In: Levin S, editor. Lecture Notes in Biomathematics. New York: Springer-Verlag; 1984. p. 56:99. [Google Scholar]
  • 26.Schechter MT, Le N, Craib KJP, et al. Use of Markov models to estimate the waiting times in a modified WHO staging system for HIV infection. J AIDS and Human Retrovirology. 1995;8:474–79. doi: 10.1097/00042560-199504120-00007. [DOI] [PubMed] [Google Scholar]
  • 27.Hendriks JCM, Medley G v, Griensven GJP, Coutinho RA, et al. The treatment free incubation period of AIDS in a cohort of homosexual men. AIDS. 1993;7:231–40. doi: 10.1097/00002030-199302000-00012. [DOI] [PubMed] [Google Scholar]
  • 28.Farewell VT, Coates RA, Fanning MM, Macfadden DK, et al. The probability of progression to AIDS in a cohort of male sexual contacts of men with HIV disease. Int J Epidemiol. 1992;21:131–35. doi: 10.1093/ije/21.1.131. [DOI] [PubMed] [Google Scholar]
  • 29.Taylor JJG, Munoz A, Bass SM, et al. Estimating the distribution of times from HIV seroconver-sion to AIDS using multiple imputation. J Acquired Immune Deficiency Syndromes. 1990;4:69–75. [Google Scholar]
  • 30.Bachetti P. Estimating the incubation period of AIDS by comparing population infection and diagnosis patterns. J Am Statist Ass. 1990;412:1002–8. doi: 10.1080/01621459.1990.10474970. [DOI] [Google Scholar]
  • 31.Longini IM, Jr, Clark WS, Gardner LI, Brundage J. The dynamics of CD4+ T-lymphocyte decline in HIV infected individuals: A Markov modeling approach. Statistics in Medicine. 1989;4:1141–47. [PubMed] [Google Scholar]
  • 32.Lui K-J, Darrow WW, Rutherford GW. A model-based estimate of the mean incubation period for AIDS in homosexual men. Science. 1988;240:1333–35. doi: 10.1126/science.3163848. [DOI] [PubMed] [Google Scholar]
  • 33.Anzala Wambugu P, Plummer FA. Incubation time to symptomatic disease and AIDS in women with known duration of infection. 1991. [Google Scholar]
  • 34.Heesterbeek JAP, Diekmann O, Metz JAJ. On the definition and the computation of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28:365–82. doi: 10.1007/BF00178324. [DOI] [PubMed] [Google Scholar]
  • 35.Heesterbeek JAP, Diekmann O, Dietz K. The basic reproduction ratio for sexually transmitted diseases, 1: Theoretical considerations. Math Biosc. 1991;107:325–39. doi: 10.1016/0025-5564(91)90012-8. [DOI] [PubMed] [Google Scholar]
  • 36.Anderson RM. Discussion: The Kermack McKendrick epidemic threshold theorem. Bull Mathematical Biology. 1991;53(1/2):3–32. doi: 10.1016/S0092-8240(05)80039-4. [DOI] [PubMed] [Google Scholar]
  • 37.Anderson RM, May RM. The invasion, persistence and spread of infectious diseases within animal and plants communities. Philos Trans R Soc Lond. 1986;B314:533–70. doi: 10.1098/rstb.1986.0072. [DOI] [PubMed] [Google Scholar]
  • 38.Leigh BC, Temple MT, Trocki KF. The sexual behavior of US adults: results from a national survey. Am J Public Health. 1993;83(10):1400–8. doi: 10.2105/AJPH.83.10.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Anderson JE, Dahlberg LL. High-risk sexual behavior in the general population. Results from a national survey, 1988–1990. Sex Trans Dis. 1992;19(6):320–25. doi: 10.1097/00007435-199211000-00004. [DOI] [PubMed] [Google Scholar]
  • 40.Johnson AM, Wadsworth J, Wellings K, et al. Sexual lifestyles and HIV risk. Nature. 1992;360:410–12. doi: 10.1038/360410a0. [DOI] [PubMed] [Google Scholar]
  • 41.ACSF investigators. AIDS and sexual behaviour in France. Nature. 1992;360:407–9. doi: 10.1038/360407a0. [DOI] [PubMed] [Google Scholar]
  • 42.Konings E, Anderson RM, Morley D, O’Riordan T, Meegan M. Rates of sexual partner change among two pastoralist southern Nilotic groups in East Africa. AIDS. 1989;3(4):245–46. [PubMed] [Google Scholar]
  • 43.Kingman JFC. Mathematics of Genetic Diversity. Oxford: University of Oxford; 1980. [Google Scholar]
  • 44.May RM, Anderson RM. Spatial heterogeneity and the design of immunisation programmes. Math Biosci. 1984;72:83–111. doi: 10.1016/0025-5564(84)90063-4. [DOI] [Google Scholar]
  • 45.Brunham RC, Plummer AA. A general model of sexually transmitted disease epidemiology and its implications for control. Sex Trans Dis. 1990;74(6):1339–52. doi: 10.1016/s0025-7125(16)30484-9. [DOI] [PubMed] [Google Scholar]
  • 46.Garnett GP, Anderson RM. Contact tracing and the estimation of sexual mixing patterns: The epidemiology of gonococcal infection. Sex Trans Dis. 1993;20(4):181–91. doi: 10.1097/00007435-199307000-00001. [DOI] [PubMed] [Google Scholar]
  • 47.May RM, Anderson RM. The transmission dynamics of human immunodeficiency virus (HIV) Phil Trans R Soc Lond B. 1988;321:565–607. doi: 10.1098/rstb.1988.0108. [DOI] [PubMed] [Google Scholar]
  • 48.Blower SM, McLean AR. Mixing ecology and epidemiology. Proc R Soc Lond B. 1991;245:187–92. doi: 10.1098/rspb.1991.0108. [DOI] [PubMed] [Google Scholar]
  • 49.Koopman J, Simon C, Jacques J, et al. Sexual partner selectiveness effects on homosexual HIV transmission dynamics. J AIDS. 1988;1:486–504. [PubMed] [Google Scholar]
  • 50.Jacquez JA, Simon CP, Koopman J. Structured mixing:Heterogeneous mixing by definition of activity groups. Biomathematics. 1989;83:301–15. doi: 10.1007/978-3-642-93454-4_15. [DOI] [Google Scholar]
  • 51.Anderson RM, Ng TW, Boily MC, May RM. The influence of different sexual-contact patterns between age classes on the predicted demographic impact of AIDS in developing countries. Ann New York Acad Sci. 1989;569:240–74. doi: 10.1111/j.1749-6632.1989.tb27374.x. [DOI] [PubMed] [Google Scholar]
  • 52.Haralosottir S, Gupta S, Anderson RM. Preliminary studies of sexual networks in a male homosexual community in Iceland. J AIDS. 1992;5:374–81. [PubMed] [Google Scholar]
  • 53.Service SK, Blower SM. HIV transmission in sexual networks: an empirical analysis. Proc R Soc Lond B. 1995;260:237–44. doi: 10.1098/rspb.1995.0086. [DOI] [PubMed] [Google Scholar]
  • 54.Renton A, Whitaker L, Ison C, Wadsworth J, Harris J R. Estimating the sexual mixing patterns in the general population from those in people acquiring gonorrhoea infection: theoretical foundation and empirical findings. Journal of Epidemiology & Community Health. 1995;49(2):205–213. doi: 10.1136/jech.49.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Gupta S, Anderson RM, May RM. Networks of sexual contacts: Implications for the pattern of spread of HIV. AIDS. 1989;3:807–17. doi: 10.1097/00002030-198912000-00005. [DOI] [PubMed] [Google Scholar]
  • 56.Boily M-C. Anderson RM. Sexual contact patterns between men and women and the spread of HIV-1 in urban centres in Africa. IMA J Math App Med Biol. 1991;8:221–47. doi: 10.1093/imammb/8.4.221. [DOI] [PubMed] [Google Scholar]
  • 57.Boily M-C, Desai KN, Garnett GP. IMA J Math App Med Biol. 1997. The impact of chlamydia infection on HIV transmission in the heterosexual population of the United-States. [Google Scholar]
  • 58.Garnett GP, Swinton J, Brunham C, Anderson RM. Gonococcal infection, infertility, and population growth: The influence of heterogeneity in sexual behaviour. IMA J Math App Med Biol. 1992;9:127–44. doi: 10.1093/imammb/9.2.127. [DOI] [PubMed] [Google Scholar]
  • 59.Whitaker L, Renton AM. A theoretical problem of interpreting the recently reported increase in homosexual gonorrhoea. Eur J Epidemiol. 1992;8(2):187–91. doi: 10.1007/BF00144798. [DOI] [PubMed] [Google Scholar]
  • 60.Potterat J. The role of social networks in STD transmission and the implications for prevention. Institute of Medicine workshop: Understanding the relationship of STD control to HIV prevention in the United States; 1995. [Google Scholar]
  • 61.Thompson Fullilove M. Risk behaviors and STD/HIV transmission. Institute of Medicine workshop: Understanding the relationship of STD control to HIV prevention in the United States; 1995. [Google Scholar]
  • 62.Boily M-C, Anderson RM. Assessing change in sexual behaviour using mathematical models: the impact of sexual mixing (Part A); 1990. [Google Scholar]
  • 63.Anderson RM, May RM, Boily M-C, et al. The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS. Nature. 1991;352:581–87. doi: 10.1038/352581a0. [DOI] [PubMed] [Google Scholar]
  • 64.May RM, Anderson RM. Heterogeneities, cofac-tors and other aspects of the transmission dynamics of HIV/AIDS. AIDS Journal. 1989;2:33–67. [Google Scholar]
  • 65.Kault DA. Modelling the effects of AIDS on gonorrhea epidemiology. Mathl Comput Modelling. 1992;16(11):3–14. doi: 10.1016/0895-7177(92)90101-P. [DOI] [Google Scholar]
  • 66.Van Blower SM, Griensven GJP. Effect of differential mortality on risk behavior change in cohort studies. J Acquired Immune Deficiency Syndromes. 1993;6(12):1364–67. [PubMed] [Google Scholar]
  • 67.Evans BG, Catchpole MA, Heptonstall J, et al. Sexually transmitted diseases and HIV-1 infection among homosexual men in England and Wales. BMJ. 1993;306:426–28. doi: 10.1136/bmj.306.6875.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Van de Laar MJW, van den Pickering J, van Hoek JAR, Griensven GJP, et al. Declining gonorrhoea rates in The Netherlands, 1976-88: consequences for the AIDS epidemic. Genitourin Med. 1990;66:148–55. doi: 10.1136/sti.66.3.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Handsfield HH, Krekeler B, Nicola RM. Trends in gonorrhoea in homosexually active men, King county, Washington. MMWR. 1989;38:762–64. [PubMed] [Google Scholar]
  • 70.Forsyth JRL, Sherrand J, Traynor P. Resurgent gonorrhoea in homosexual men. Lancet. 1990;336:878. doi: 10.1016/0140-6736(90)92382-R. [DOI] [PubMed] [Google Scholar]
  • 71.Aral SO. Heterosexual transmission of HIV: The role of other sexually transmitted infections and behaviour in its epidemiological prevention and control. Rev Publ Health. 1993;14:451–67. doi: 10.1146/annurev.pu.14.050193.002315. [DOI] [PubMed] [Google Scholar]
  • 72.Wald A, Corey L, Handsfield HH, Holmes KK. Influence of HIV infection on manifestations and natural history of other sexually transmitted diseases. Annu Rev Publ Health. 1993;14:19–42. doi: 10.1146/annurev.pu.14.050193.000315. [DOI] [PubMed] [Google Scholar]
  • 73.Wasserheit JN. Interrelationships between immunodeficiency virus infection and other sexually transmitted diseases. Sex Trans Dis. 1992;19(2):61–65. doi: 10.1097/00007435-199219020-00001. [DOI] [PubMed] [Google Scholar]
  • 74.Laga M, Nzilambi N, Goeman J. The interrelationships of sexually transmitted diseases and HIV infection: implication for the control of both epidemics in Africa. AIDS. 1991;5(suppl1):S55–S65. [PubMed] [Google Scholar]
  • 75.Laga M, Diallo MO, Buv A. Inter-relationship of sexually transmitted diseases and HIV: Where are we now? AIDS. 1994;8(suppl1):S119–S124. [Google Scholar]
  • 76.Grosskurth H, Mosha F, Todd J, et al. Impact of improved treatement of sexually transmitted diseases on HIV infection in rural Tanzania: randomised controlled trial. Lancet. 1995;346:530–36. doi: 10.1016/S0140-6736(95)91380-7. [DOI] [PubMed] [Google Scholar]
  • 77.Kaplan EH, Brandeau M editors, editors. Modeling the AIDS Epidemic. Planning, Policy, and Prediction. New York: Raven Press; 1994. [Google Scholar]
  • 78.Isham V, Medley G. Models for Infectious Human Diseases: Their Structure and Relation to Data. New York: Cambridge University Press; 1996. [Google Scholar]
  • 79.Grenfell B, Dobson A. Ecology of Infectious Diseases in Natural Populations. New York: Cambridge University Press; 1995. [Google Scholar]
  • 80.Murray JD. Mathematical Biology. New York: Springer-Verlag; 1993. [Google Scholar]
  • 81.Jager JC, Ruitenberg E editors, editors. Statistical Analysis and Mathematical Modelling of AIDS. Oxford: Oxford University Press; 1988. [PubMed] [Google Scholar]
  • 82.Halloran ME, Struchiner CJ. Study designs for dependent happenings. Epidemiology. 1991;2(5):331–38. doi: 10.1097/00001648-199109000-00004. [DOI] [PubMed] [Google Scholar]
  • 83.Halloran ME, Haber M, Longini IM, Struchiner CJ. Direct and indirect effects in vaccine efficacy and effectiveness. Am J Epidemiol. 1991;4:323–31. doi: 10.1093/oxfordjournals.aje.a115884. [DOI] [PubMed] [Google Scholar]
  • 84.Dufour A, Boily M-C, Alary M. The impact of different STD treatment schedules on HIV infection in sub-saharan Africa. XIth International Conference on AIDS, Vancouver, Canada, July 7–12, 1996.
  • 85.Somsé P, Chapko MK, Hawkins RV. Multiple sexual partners: Results of a national HIV/AIDS survey in the Central African Republic. AIDS. 1993;74:579–83. doi: 10.1097/00002030-199304000-00019. [DOI] [PubMed] [Google Scholar]
  • 86.Garnett GP, Hughes JP, Anderson RM, et al. Sexual mixing pattern of patients attending sexually transmitted disease clinics. Sex Trans Dis. 1996;23:248–57. doi: 10.1097/00007435-199605000-00015. [DOI] [PubMed] [Google Scholar]

Articles from Canadian Journal of Public Health = Revue Canadienne de Santé Publique are provided here courtesy of Springer

RESOURCES