Abstract
Widespread recognition is given to the idea that an individual’s health is influenced by the ways an individual works, rests and plays as well as genetic endowments. More recently, some researchers have suggested that the relationships between individual ‘characteristics’ and health are influenced by the context or community of the individual. Although the notion of the community as a determinant of health is not new, the incorporation of the community in empirical research on the determinants of health has been based on simple statistical models that fail to reflect the complex nature of the individual-community interface. In this paper we use the methods developed in educational research to show how separate statistical models for variations in health between communities and between individuals can be combined to provide a multi-level model for the determinants of health of populations.
Résumé
L’idée que la santé d’un individu est influencée par son travail, ses loisirs et ses plaisirs, et par son bagage génétique, est généralement acceptée. Récemment, des chercheurs ont suggéré que la relation entre santé et caractéristiques des individus dépend du milieu de vie ou de la communauté de résidence. Depuis longtemps, on reconnaît en santé publique que la communauté est un déterminant de la santé. Dans les recherches empiriques, la communauté a été considérée comme toutes les autres variables individuelles dans des modèles statistiques qui ne traduisent pas la complexité de la relation individu-communauté. Les procédures statistiques développées dans les sciences de l’éducation proposent des modèles qui combinent les variations des états de santé dues aux caractéristiques des individus et à celles de la communauté. Un modèle multi-niveaux pour l’analyse des déterminants de la santé de population est décrit et proposé.
References
- 1.Hancock T. Lalonde and beyond: Looking back at a new perspective on the health of Canadians. Health Prom. 1986;1:93–100. doi: 10.1093/heapro/1.1.93. [DOI] [PubMed] [Google Scholar]
- 2.Gunning-Schepers L, Hagen J. Avoidable burden of illness: How much can prevention contribute to health? Soc Sci Med. 1987;24:945–51. doi: 10.1016/0277-9536(87)90287-5. [DOI] [PubMed] [Google Scholar]
- 3.World Health Organization, HealthWelfare Canada, Canadian Public Health Association. Ottawa Charter for Health Promotion. Ottawa: Health and Welfare Canada; 1986. [Google Scholar]
- 4.Sagan L. The Health of Nations. New York: Basic Books; 1987. [Google Scholar]
- 5.Evans R, Stoddart G. Producing health, consuming health care. Soc Sci Med. 1990;31:1347–63. doi: 10.1016/0277-9536(90)90074-3. [DOI] [PubMed] [Google Scholar]
- 6.Birch S, Stoddart G, Béland F. Centre for Health Economics and Policy Analysis Working Paper 97–9. Ontario: McMaster University, Hamilton; 1997. Modelling the community as a determinant of health. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Diez-Roux A. Bringing context back into epidemiology: Variables and fallacies in multilevel analysis. Am J Public Health. 1998;88:216–22. doi: 10.2105/AJPH.88.2.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Duncan C, Jones K, Moon G. Do places matter? A multi-level analysis of regional variations in health-related behaviour in Britain. Soc Sci Med. 1993;37:725–33. doi: 10.1016/0277-9536(93)90366-C. [DOI] [PubMed] [Google Scholar]
- 9.Newachek P. Access to ambulatory care for poor persons. Health Serv Res. 1988;23:401–19. [PMC free article] [PubMed] [Google Scholar]
- 10.Turner B. Economic context and the health effects of unemployment. J Health Soc Behav. 1995;36:213–29. doi: 10.2307/2137339. [DOI] [PubMed] [Google Scholar]
- 11.Aitken M, Longford N. Statistical modelling in school effectiveness studies. J Royal Statistical Society. 1986;149:1–43. doi: 10.2307/2981882. [DOI] [Google Scholar]
- 12.Rice N, Leyland A. Multi-level models: Applications to health data. J Health Serv Res Pol. 1996;1:154–64. doi: 10.1177/135581969600100307. [DOI] [PubMed] [Google Scholar]
- 13.Goldstein H. Multilevel Models in Educational and Social Research. London: Charles Griffin; 1987. [Google Scholar]
- 14.Goldstein H. Non-linear multilevel models, with an application to discrete response data. Biometrika. 1991;78:45–51. doi: 10.1093/biomet/78.1.45. [DOI] [Google Scholar]
- 15.Goldstein H. Multilevel cross-classified models. Sociological Methods and Research. 1994;22:364–75. doi: 10.1177/0049124194022003005. [DOI] [Google Scholar]
- 16.Jones K, Duncan C. People and places: The multi-level model as a general framework for the quantitative analysis of geographical data; 1994. [Google Scholar]
- 17.Blaxter M. Health and Lifestyles. London: Tavistock/Routledge; 1990. [Google Scholar]
- 18.Jones K, Duncan C. Individuals and their ecologies: Analysing the geography of chronic illness within a multi level modelling framework. Health and Place. 1995;1:27–40. doi: 10.1016/1353-8292(95)00004-6. [DOI] [Google Scholar]
- 19.Kristiansen I, Holtedahl K. Effect of the remuneration system on the general practitioner’s choice between surgery consultations and home visits. J Epidemiol Commun Health. 1993;47:481–84. doi: 10.1136/jech.47.6.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Kristiansen I, Mooney G. The general practitioner’s use of time: Is it influenced by the remuneration system? Soc Sci Med. 1993;37:393–99. doi: 10.1016/0277-9536(93)90269-A. [DOI] [PubMed] [Google Scholar]
- 21.Scott A, Shiell A. Do fee descriptors influence treatment choices in general practice? A multilevel discrete choice model. Aberdeen: University of Aberdeen, Health Economics Research Unit; 1995. [DOI] [PubMed] [Google Scholar]
- 22.Scott A, Shiell A. A multi-level logit model of the effect of competition on general practitioners’behaviour; 1995. pp. 20–22. [Google Scholar]
- 23.Carr-Hill R, Hardman G, Martin S, et al. A formula for distributing NHS revenues based on small area use of hospital beds. York, UK: University of York, Centre for Health Economics; 1994. [Google Scholar]