Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 14;76(Pt 2):192–196. doi: 10.1107/S2056989020000055

Crystal structures of (E)-5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one and [3,4-bis(phenyl­ethyn­yl)cyclo­butane-1,2-di­yl]bis­(pyridin-2-yl­methanone)

Ivan E Ushakov a, Ivan S Odin b, Pavel A Gloukhov b, Alexander A Golovanov b, Pavel V Dorovatovskii c, Anna V Vologzhanina a,*
PMCID: PMC7001831  PMID: 32071745

Upon recrystallization from ethyl­ene glycol in daylight, (E)-5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one underwent spontaneous [2 + 2] cyclo­addition reaction while (E)-5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one remained photoinert.

Keywords: vinyl ketones with acetyl­ene fragment, cyclo­butane derivatives, photoreaction, crystal structure

Abstract

Recrystallization of (E)-5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one at room temperature from ethyl­ene glycol in daylight afforded [3,4-bis­(phenyl­ethyn­yl)cyclo­butane-1,2-di­yl)bis­(pyridin-2-yl­methanone], C32H22N2O2 (3), while (E)-5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, C17H13NO (2), remained photoinert. This is the first experimental evidence that pentenynones can be photoreactive when fixed in nearly coplanar parallel positions. During the photoreaction, the bond lengths and angles along the pentenyne chain changed significantly, while the disposition of the pyridyl ring towards the keto group was almost unchanged. The cyclo­butane ring adopts an rctt conformation.

Chemical context  

Vinyl-substituted ketones are known to take part in photo-initiated reactions both in the solid state and in solution (Hopkin et al., 1991; Vatsadze et al., 2006). Both transcis isomerization and [2 + 2] cyclo­addition reactions can be observed depending on the nature of the substituents on the alkyl chain (Vatsadze et al., 2006). Many of the compounds previously reported by us, including 1,5-di­aryl­pentenynones (Golovanov et al., 2013; Vologzhanina et al., 2014; Voronova et al., 20161) and cyclic ketones with vinyl­acetyl­ene fragments (Voronova et al., 2018) in crystals exhibit coplanar packing with a distance between the olefin fragments of less than 4.2 Å; thus, they satisfy the Schmidt (1971) criteria for a solid-state [2 + 2] cyclo­addition to occur. However, our numerous attepts to carry out [2 + 2] photo­cyclo­addition in these compounds were unsuccessful. We aimed to synthesize pyridine-substituted representatives of this family in order to fix olefin fragments in photoreactive positions using hydrogen bonding or coordination bonding as described by Nagarathinam et al. (2008). Two novel pyridine-2-yl-containing ketones, 1 and 2 (Scheme and Fig. 1), were synthesized as described below, and recrystallized from ethanol. Single-crystal XRD data for 2 could only be obtained using synchrotron radiation, while we failed to obtain a crystal structure of 1 using single-crystal or powder X-ray diffraction. Recrystallization of 1 and 2 from ethyl­ene glycol afforded, respectively, a dimerization reaction product, 3, and the initial solid phase.graphic file with name e-76-00192-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of 2 and 3, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Structural commentary  

The asymmetric unit of ketone 2 contains two independent mol­ecules (Fig. 1). Their conformations are very similar to each other as shown in Fig. 2. Both mol­ecules of 2 exhibit delocalization of charge density along the alkyl chain, as can be concluded from the bond lengths given in Table 1, the single bonds between a double and a triple bond being much shorter than the average value of 1.53–1.54 Å for a C—C bond. The corresponding values for the C=O ketone fragments in 3 are similar to those in 2, while the absence of double bonds along the alkyl chain causes shortening of the allyl bonds and elongation of single bonds. The bond lengths in the cyclo­butane ring of 3 are unequal: those corresponding to a previously ‘double’ bond are characteristic of a C—C bond (ca 1.55 Å), while the single bonds between two ‘monomers’ are elongated to 1.575 (2) Å. Only the rctt isomer of a 1,2,3,4-tetra­substituted cyclo­butane was obtained of four theoretically possible (based on XRD data).

Figure 2.

Figure 2

Conformation of the two symmetrically independent mol­ecules in 2 (red and blue) in superimposed representation.

Table 1. Selected geometry parameters (Å, °) for 2 and 3 .

The carbon atoms of the pentenynone fragment are numbered from 1 to 5. Φ1 is the dihedral angle between the pyridine ring and the ketone fragment and Φ2 is the dihedral angle between the pyridine and phenyl rings.

Bond 2 3
C1=O 1.226 (2), 1.228 (2) 1.212 (2), 1.215 (2)
C1—Cpy 1.498 (3)–1.498 (2) 1.495 (2), 1.498 (2)
C1—C2 1.474 (3)–1.477 (3) 1.509 (2), 1.513 (2)
C2=C3 1.335 (3), 1.336 (3)
Ccb—Ccb 1.549 (2), 1.554 (2)
C3—C4 1.411 (3), 1.420 (3) 1.454 (2), 1.460 (2)
C4≡C5 1.206 (3), 1.203 (3) 1.195 (2), 1.194 (2)
C5—CPh 1.426 (3), 1.430 (3) 1.441 (2), 1.439 (2)
Φ1 11.0 (1), 11.1 (1) 14.8 (1), 0.9 (1)
Φ2 7.4 (1), 5.1 (1) 84.8 (1), 47.0 (1)

The conformations of the mol­ecules of both 2 and 3 is probably affected by intra­molecular C—H⋯N contacts (Tables 2 and 3) involving the nitro­gen atoms of the pyridine-2-yl rings and hydrogen atoms of ethenyl or cyclo­butane moieties. The C—H⋯N angle does not exceed 102°; however, such a mutual disposition of the conjugated pyridine ring and a double bond was found not only in 2 and 3, but also in previously reported pyridine-2-yl-containing chalcones. The chalcones in the Cambridge Structural Database (CSD, Version 5.40, update of November 2019; Groom et al., 2016) [ABADUE (Fun et al., 2011b ), AFOPOC (Chantrapromma et al., 2013), AYUYOJ (Fun et al., 2011a ), BERXEC (Wang et al., 2004), CIBYIY (Brennan et al., 2018), COBJEJ (Prajapati et al., 2008), ENINOG (Lee et al., 2016), GARMAP (Fan & Wang, 2012), IJUSAI (Jasinski et al., 2011), IXOXOJ (Dudek et al., 2011), LANTAY (Qian et al., 2017), OGIZIP and VUZVET (Tan et al., 2016), PUKVEY (Rout & Mondal, 2015), QEMJOK and QEMJUQ (Albaladejo et al., 2018), SOXHAP (Lin et al., 2009), TISCEF (Jayarama et al., 2013) and YUQTEK (Li et al., 2010)] demonstrate similar conformations, but different crystal packing in the region of pyridyl ring. The majority of 1-phenyl-substituted chalcones and 1-phenyl-substituted pentenyn-1-ones also exhibit a nearly coplanar arrangement of the aryl and ketone fragments and thus no hindrance occurs between the hydrogen atoms of these fragments.

Table 2. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 0.95 2.52 2.832 (3) 100
C16—H16⋯N2i 0.95 2.66 3.555 (3) 158
C20—H20⋯N2i 0.95 2.71 3.465 (3) 136
C3—H3⋯O1ii 0.95 2.43 3.206 (3) 139
C19—H19⋯O2iii 0.95 2.57 3.379 (2) 143
C25—H25⋯O2iv 0.95 2.65 3.561 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (3) .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 1.00 2.45 2.835 (3) 102
C3—H3⋯O1 1.00 2.49 2.899 (2) 104
C8—H8⋯O2 1.00 2.39 2.804 (2) 104
C25—H25⋯N1i 0.95 2.60 3.445 (3) 148
C19—H19⋯N1ii 0.95 2.73 3.665 (2) 167
C20—H20⋯O1iii 0.95 2.62 3.263 (2) 125
C32—H32⋯O2iv 0.95 2.55 3.487 (2) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

As the independent mol­ecules of ketone 2 have similar conformations, their crystalline environment becomes of particular inter­est because it can rationalize why Z ≠ 1. Previously, we found that the most abundant C—H⋯O-bonded associates in the crystals of chalcones, polyenones and pentenynones include dimers, head-to-tail chains and zigzag C—H⋯O chains with the most acidic proton of a mol­ecule (Vologzhanina et al., 2014). The two independent mol­ecules of ketone 2 demonstrate two of these motifs (Fig. 3). In the C—H⋯O-connected dimers, r(C⋯O) = 3.206 (3) Å, and in the head-to-tail chains r(C⋯O) and r(C⋯N) = 3.379 (2) and 3.465 (3) Å, respectively. The corresponding C—H⋯O and C—H⋯N angles are, respectively, 139, 143 and 136°. Note, that only one of two independent mol­ecules in 2 forms head-to-tail chains via a pair of inter­molecular C—H⋯O and C—N⋯N bonds. None of the previously reported pyridine-2-yl-containing chalcones nor 3 forms such associates. Instead, the nitro­gen atoms inter­act with the hydrogen atoms of the alkyl and aryl groups. For example, in the crystal of 3, the hydrogen atoms of a pyridine-2-yl ring take part in C—H⋯N inter­actions [Fig. 3, r(C⋯N) = 3.445 (3)–3.665 (2) Å]. Oxygen atoms take part in C—H⋯O bonding with hydrogen atoms of the phenyl and pyridin-2-yl rings. In addition, in 2 and 3, numerous hydro­phobic inter­actions can be found.

Figure 3.

Figure 3

Supra­molecular aggregates in the crystals of 2 and 3. Hydrogen bonds are depicted by dashed lines.

Synthesis and crystallization  

The 5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, 1, and 5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, 2, were synthesized according to the previously described method (Golovanov et al., 2013). Single crystals of 3 were grown from solution of 1 in ethyl­ene glycol. The 1H NMR spectrum indicates the presence of a mixture of reaction products and unreacted 1. Powder XRD indicated that the solid sample of the recrystallized ketone consisted of both 1 and 3, and thus solid 3 could not be characterized by other physicochemical methods. Recrystallization of 2 from ethyl­ene glycol afforded 2 as obtained from XRD data.

For 1: yellowish needles, yield 61%, m.p. 348–351 K (from a mixture of water and ethanol). 1H NMR (300 MHz, CDCl3), δ, ppm: 8.48 s (1C, CAr, CPy), 8.09–8.16 m (2C, CAr, CPy, C2), 7.84–7.79 m (2C, CAr, CPy), 7.20–7.52 m (6C, CAr, C3). 13C NMR (75 MHz, CDCl3), δ, ppm: 188.5 (C1), 152.6, 149.0, 132.2, 131.9, 129.5, 128.6, 128.2, 128.0, 127.1, 122.1, 99.6 (C5), 88.9 (C4). Found, %: C 82.44; H 5.41. C16H11NO. Calculated, %: C 82.38; H 4.75.

For 2: yellowish needles, yield 34%, m.p. 373–374 K (from a mixture of water–ethanol. IR Spectra, ν, cm−1: 2191 (C≡C), 1649 (C=O). Found, %: C 82.44; H 5.33. C17H13NO. Calculated, %: C 82.57; H 5.30.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. Intensity data for 2 were collected at the K4.4 ‘Belok’ beamline of the Kurchatov Synchrotron Radiation Source (NRC ‘Kurchatov Institute’, Moscow, Russia) at a wavelength of 0.80248 Å using a Rayonix CCD 165 detector. Image integration was performed using iMosflm software (Battye et al., 2011). Hydrogen atoms were placed in calculated positions (0.95–1.00 Å) and refined using a riding model, with U iso(H) = 1.2U eq(C).

Table 4. Experimental details.

  (3) (2)
Crystal data
Chemical formula C32H22N2O2 C17H13NO
M r 466.51 247.28
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 120 100
a, b, c (Å) 12.272 (3), 18.720 (4), 11.425 (2) 14.859 (3), 17.747 (4), 9.995 (2)
β (°) 115.850 (3) 101.06 (3)
V3) 2362.0 (8) 2586.7 (9)
Z 4 8
Radiation type Mo Kα Synchrotron, λ = 0.80248 Å
μ (mm−1) 0.08 0.10
Crystal size (mm) 0.46 × 0.28 × 0.17 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector Mar CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014) Multi-scan (SCALA; Evans, 2006)
T min, T max 0.848, 0.903 0.997, 0.999
No. of measured, independent and observed [I > 2σ(I)] reflections 24543, 7095, 4255 23024, 5645, 4453
R int 0.079 0.077
(sin θ/λ)max−1) 0.714 0.640
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.130, 0.99 0.060, 0.157, 1.02
No. of reflections 7095 5645
No. of parameters 325 346
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.31 0.23, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2014), Marccd (Doyle, 2011), iMosflm (Battye et al., 2011), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, 2, 3. DOI: 10.1107/S2056989020000055/ff2164sup1.cif

e-76-00192-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989020000055/ff21643sup2.hkl

e-76-00192-3sup2.hkl (563.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020000055/ff21643sup4.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989020000055/ff21642sup3.hkl

e-76-00192-2sup3.hkl (449.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020000055/ff21642sup5.cml

CCDC references: 1975319, 1975318

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by the Russian Science Foundation (grant No 17–13-01442). The X-ray diffraction experiments of 2 and 3 were performed using, respectively, the K4.4 ‘Belok’ beamline of the Kurchatov Synchrotron Radiation Source and equipment of the Centre for Mol­ecular Studies of INEOS RAS.

supplementary crystallographic information

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Crystal data

C32H22N2O2 F(000) = 976
Mr = 466.51 Dx = 1.312 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.272 (3) Å Cell parameters from 4566 reflections
b = 18.720 (4) Å θ = 2.2–30.0°
c = 11.425 (2) Å µ = 0.08 mm1
β = 115.850 (3)° T = 120 K
V = 2362.0 (8) Å3 Prism, orange
Z = 4 0.46 × 0.28 × 0.17 mm

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Data collection

Bruker SMART APEX CCD area detector diffractometer 7095 independent reflections
Radiation source: sealed tube 4255 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.079
Detector resolution: 8 pixels mm-1 θmax = 30.5°, θmin = 1.8°
ω scans h = −15→17
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −26→26
Tmin = 0.848, Tmax = 0.903 l = −16→16
24543 measured reflections

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0557P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
7095 reflections Δρmax = 0.33 e Å3
325 parameters Δρmin = −0.31 e Å3
0 restraints

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14655 (11) 0.50117 (6) 0.61894 (10) 0.0224 (3)
O2 0.44626 (12) 0.53397 (6) 0.81027 (11) 0.0249 (3)
N1 0.03170 (13) 0.66755 (7) 0.47517 (13) 0.0215 (3)
N2 0.26664 (14) 0.68759 (7) 0.76527 (14) 0.0236 (3)
C1 0.14015 (15) 0.55793 (8) 0.56522 (14) 0.0167 (3)
C2 0.23152 (15) 0.57818 (8) 0.51555 (15) 0.0168 (3)
H2 0.1954 0.6114 0.4396 0.020*
C3 0.30105 (15) 0.51652 (8) 0.48769 (15) 0.0173 (3)
H3 0.3031 0.4743 0.5421 0.021*
C4 0.25950 (16) 0.49385 (8) 0.35333 (15) 0.0188 (3)
C5 0.22108 (16) 0.47470 (8) 0.24269 (16) 0.0202 (4)
C6 0.38544 (15) 0.58614 (8) 0.75844 (15) 0.0177 (3)
C7 0.35663 (15) 0.60721 (8) 0.62014 (15) 0.0175 (3)
H7 0.3676 0.6595 0.6106 0.021*
C8 0.42148 (16) 0.55980 (8) 0.55808 (15) 0.0179 (3)
H8 0.4875 0.5304 0.6245 0.021*
C9 0.46337 (16) 0.59998 (8) 0.47593 (15) 0.0198 (3)
C10 0.50391 (16) 0.63388 (8) 0.41551 (15) 0.0200 (4)
C11 0.04630 (15) 0.61189 (8) 0.55421 (15) 0.0171 (3)
C12 −0.01798 (17) 0.60341 (8) 0.62740 (17) 0.0241 (4)
H12 −0.0064 0.5624 0.6805 0.029*
C13 −0.09935 (18) 0.65600 (9) 0.62137 (19) 0.0303 (4)
H13 −0.1441 0.6521 0.6711 0.036*
C14 −0.11435 (18) 0.71411 (9) 0.54191 (18) 0.0302 (4)
H14 −0.1687 0.7514 0.5367 0.036*
C15 −0.04852 (17) 0.71700 (9) 0.46982 (17) 0.0270 (4)
H15 −0.0612 0.7565 0.4132 0.032*
C16 0.17317 (16) 0.45234 (8) 0.10882 (15) 0.0208 (4)
C17 0.06057 (18) 0.42003 (8) 0.04773 (17) 0.0282 (4)
H17 0.0149 0.4108 0.0952 0.034*
C18 0.0143 (2) 0.40106 (9) −0.08242 (17) 0.0364 (5)
H18 −0.0629 0.3789 −0.1238 0.044*
C19 0.0804 (2) 0.41430 (10) −0.15217 (18) 0.0406 (6)
H19 0.0486 0.4013 −0.2413 0.049*
C20 0.1925 (2) 0.44636 (10) −0.09211 (18) 0.0370 (5)
H20 0.2375 0.4558 −0.1402 0.044*
C21 0.23975 (19) 0.46490 (9) 0.03804 (16) 0.0274 (4)
H21 0.3177 0.4862 0.0794 0.033*
C22 0.33415 (15) 0.63164 (8) 0.83025 (15) 0.0187 (3)
C23 0.35862 (17) 0.61505 (9) 0.95735 (16) 0.0244 (4)
H23 0.4081 0.5753 1.0000 0.029*
C24 0.30935 (18) 0.65777 (10) 1.02106 (18) 0.0313 (4)
H24 0.3238 0.6477 1.1081 0.038*
C25 0.23927 (18) 0.71490 (9) 0.95603 (18) 0.0309 (4)
H25 0.2044 0.7452 0.9972 0.037*
C26 0.22022 (18) 0.72774 (9) 0.82891 (18) 0.0290 (4)
H26 0.1713 0.7674 0.7847 0.035*
C27 0.55587 (15) 0.67731 (8) 0.34887 (15) 0.0187 (3)
C28 0.56084 (16) 0.75148 (8) 0.36530 (16) 0.0224 (4)
H28 0.5309 0.7727 0.4210 0.027*
C29 0.60909 (17) 0.79383 (9) 0.30078 (18) 0.0279 (4)
H29 0.6126 0.8442 0.3126 0.033*
C30 0.65229 (18) 0.76346 (9) 0.21905 (18) 0.0292 (4)
H30 0.6837 0.7930 0.1733 0.035*
C31 0.64973 (18) 0.69037 (9) 0.20388 (17) 0.0289 (4)
H31 0.6810 0.6696 0.1490 0.035*
C32 0.60178 (17) 0.64693 (8) 0.26814 (16) 0.0227 (4)
H32 0.6002 0.5966 0.2572 0.027*

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0294 (8) 0.0176 (5) 0.0243 (6) 0.0001 (5) 0.0154 (6) 0.0028 (4)
O2 0.0310 (8) 0.0202 (6) 0.0250 (6) 0.0042 (5) 0.0136 (6) 0.0002 (5)
N1 0.0219 (9) 0.0185 (7) 0.0245 (7) 0.0011 (6) 0.0103 (7) 0.0008 (5)
N2 0.0242 (9) 0.0190 (7) 0.0269 (7) −0.0005 (6) 0.0105 (7) −0.0052 (6)
C1 0.0200 (10) 0.0153 (7) 0.0154 (7) −0.0033 (6) 0.0084 (7) −0.0035 (6)
C2 0.0211 (10) 0.0136 (7) 0.0182 (7) 0.0017 (6) 0.0109 (7) 0.0010 (6)
C3 0.0228 (10) 0.0126 (7) 0.0203 (8) 0.0007 (6) 0.0130 (7) −0.0006 (6)
C4 0.0223 (10) 0.0140 (7) 0.0239 (8) −0.0001 (6) 0.0136 (7) 0.0006 (6)
C5 0.0233 (10) 0.0159 (7) 0.0245 (8) 0.0015 (6) 0.0133 (8) 0.0007 (6)
C6 0.0206 (10) 0.0142 (7) 0.0198 (7) −0.0042 (6) 0.0102 (7) −0.0039 (6)
C7 0.0216 (10) 0.0125 (7) 0.0218 (8) −0.0005 (6) 0.0125 (7) −0.0015 (6)
C8 0.0218 (10) 0.0150 (7) 0.0205 (8) 0.0005 (6) 0.0126 (7) 0.0000 (6)
C9 0.0215 (10) 0.0164 (7) 0.0231 (8) 0.0004 (6) 0.0114 (7) −0.0030 (6)
C10 0.0217 (10) 0.0173 (7) 0.0212 (8) 0.0010 (6) 0.0096 (7) −0.0025 (6)
C11 0.0177 (10) 0.0141 (7) 0.0196 (8) −0.0034 (6) 0.0083 (7) −0.0034 (6)
C12 0.0290 (11) 0.0183 (8) 0.0311 (9) −0.0010 (7) 0.0189 (8) −0.0010 (7)
C13 0.0284 (12) 0.0279 (9) 0.0449 (11) −0.0024 (8) 0.0255 (10) −0.0047 (8)
C14 0.0235 (12) 0.0241 (9) 0.0448 (11) 0.0035 (7) 0.0167 (9) −0.0025 (8)
C15 0.0268 (12) 0.0201 (8) 0.0324 (10) 0.0024 (7) 0.0115 (8) 0.0041 (7)
C16 0.0316 (12) 0.0130 (7) 0.0191 (8) 0.0045 (6) 0.0122 (8) 0.0008 (6)
C17 0.0356 (13) 0.0203 (8) 0.0275 (9) −0.0002 (7) 0.0127 (9) −0.0025 (7)
C18 0.0452 (15) 0.0226 (9) 0.0277 (10) 0.0036 (8) 0.0032 (9) −0.0061 (7)
C19 0.0704 (18) 0.0258 (10) 0.0180 (9) 0.0156 (10) 0.0121 (10) −0.0015 (7)
C20 0.0578 (16) 0.0339 (10) 0.0260 (9) 0.0149 (10) 0.0246 (10) 0.0060 (8)
C21 0.0369 (13) 0.0244 (9) 0.0240 (9) 0.0076 (8) 0.0162 (9) 0.0051 (7)
C22 0.0206 (10) 0.0155 (7) 0.0224 (8) −0.0058 (6) 0.0115 (7) −0.0071 (6)
C23 0.0282 (12) 0.0238 (8) 0.0251 (9) −0.0019 (7) 0.0152 (8) −0.0044 (7)
C24 0.0352 (13) 0.0381 (10) 0.0260 (9) −0.0031 (8) 0.0184 (9) −0.0091 (8)
C25 0.0293 (12) 0.0304 (9) 0.0374 (10) −0.0038 (8) 0.0187 (9) −0.0169 (8)
C26 0.0275 (12) 0.0219 (8) 0.0378 (10) 0.0016 (7) 0.0144 (9) −0.0079 (7)
C27 0.0174 (10) 0.0189 (7) 0.0198 (8) 0.0005 (6) 0.0083 (7) 0.0017 (6)
C28 0.0209 (11) 0.0198 (8) 0.0248 (9) 0.0022 (7) 0.0084 (8) −0.0008 (6)
C29 0.0249 (11) 0.0150 (8) 0.0378 (10) 0.0012 (7) 0.0081 (9) 0.0057 (7)
C30 0.0258 (12) 0.0293 (9) 0.0354 (10) 0.0011 (7) 0.0161 (9) 0.0136 (8)
C31 0.0308 (12) 0.0337 (10) 0.0288 (9) 0.0061 (8) 0.0192 (9) 0.0060 (8)
C32 0.0285 (11) 0.0178 (8) 0.0249 (9) 0.0033 (7) 0.0146 (8) 0.0020 (6)

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Geometric parameters (Å, º)

O1—C1 1.2123 (18) C15—H15 0.9500
O2—C6 1.2148 (19) C16—C17 1.386 (3)
N1—C11 1.3387 (19) C16—C21 1.397 (2)
N1—C15 1.333 (2) C17—H17 0.9500
N2—C22 1.341 (2) C17—C18 1.387 (2)
N2—C26 1.334 (2) C18—H18 0.9500
C1—C2 1.509 (2) C18—C19 1.385 (3)
C1—C11 1.495 (2) C19—H19 0.9500
C2—H2 1.0000 C19—C20 1.378 (3)
C2—C3 1.549 (2) C20—H20 0.9500
C2—C7 1.575 (2) C20—C21 1.384 (3)
C3—H3 1.0000 C21—H21 0.9500
C3—C4 1.454 (2) C22—C23 1.384 (2)
C3—C8 1.566 (2) C23—H23 0.9500
C4—C5 1.195 (2) C23—C24 1.385 (2)
C5—C16 1.441 (2) C24—H24 0.9500
C6—C7 1.513 (2) C24—C25 1.370 (3)
C6—C22 1.498 (2) C25—H25 0.9500
C7—H7 1.0000 C25—C26 1.388 (3)
C7—C8 1.554 (2) C26—H26 0.9500
C8—H8 1.0000 C27—C28 1.399 (2)
C8—C9 1.460 (2) C27—C32 1.395 (2)
C9—C10 1.194 (2) C28—H28 0.9500
C10—C27 1.439 (2) C28—C29 1.380 (2)
C11—C12 1.386 (2) C29—H29 0.9500
C12—H12 0.9500 C29—C30 1.381 (3)
C12—C13 1.382 (2) C30—H30 0.9500
C13—H13 0.9500 C30—C31 1.378 (2)
C13—C14 1.377 (3) C31—H31 0.9500
C14—H14 0.9500 C31—C32 1.387 (2)
C14—C15 1.384 (2) C32—H32 0.9500
C15—N1—C11 116.77 (14) C17—C16—C5 121.14 (15)
C26—N2—C22 116.48 (15) C17—C16—C21 119.21 (16)
O1—C1—C2 121.04 (14) C21—C16—C5 119.63 (17)
O1—C1—C11 120.81 (14) C16—C17—H17 119.9
C11—C1—C2 118.03 (13) C16—C17—C18 120.23 (18)
C1—C2—H2 111.2 C18—C17—H17 119.9
C1—C2—C3 117.15 (12) C17—C18—H18 119.9
C1—C2—C7 116.08 (12) C19—C18—C17 120.2 (2)
C3—C2—H2 111.2 C19—C18—H18 119.9
C3—C2—C7 88.33 (12) C18—C19—H19 120.0
C7—C2—H2 111.2 C20—C19—C18 119.94 (17)
C2—C3—H3 109.2 C20—C19—H19 120.0
C2—C3—C8 89.43 (11) C19—C20—H20 119.9
C4—C3—C2 117.61 (14) C19—C20—C21 120.24 (19)
C4—C3—H3 109.2 C21—C20—H20 119.9
C4—C3—C8 120.76 (13) C16—C21—H21 119.9
C8—C3—H3 109.2 C20—C21—C16 120.2 (2)
C5—C4—C3 177.49 (18) C20—C21—H21 119.9
C4—C5—C16 179.10 (19) N2—C22—C6 116.52 (14)
O2—C6—C7 122.18 (14) N2—C22—C23 123.73 (14)
O2—C6—C22 120.37 (14) C23—C22—C6 119.75 (15)
C22—C6—C7 117.44 (13) C22—C23—H23 120.7
C2—C7—H7 112.8 C22—C23—C24 118.50 (16)
C6—C7—C2 114.14 (13) C24—C23—H23 120.7
C6—C7—H7 112.8 C23—C24—H24 120.7
C6—C7—C8 113.24 (13) C25—C24—C23 118.70 (16)
C8—C7—C2 88.89 (11) C25—C24—H24 120.7
C8—C7—H7 112.8 C24—C25—H25 120.6
C3—C8—H8 112.1 C24—C25—C26 118.82 (16)
C7—C8—C3 88.48 (12) C26—C25—H25 120.6
C7—C8—H8 112.1 N2—C26—C25 123.76 (17)
C9—C8—C3 117.03 (13) N2—C26—H26 118.1
C9—C8—C7 113.14 (12) C25—C26—H26 118.1
C9—C8—H8 112.1 C28—C27—C10 119.56 (14)
C10—C9—C8 175.96 (18) C32—C27—C10 121.30 (14)
C9—C10—C27 176.81 (17) C32—C27—C28 119.14 (15)
N1—C11—C1 117.01 (14) C27—C28—H28 119.9
N1—C11—C12 123.50 (15) C29—C28—C27 120.17 (16)
C12—C11—C1 119.46 (14) C29—C28—H28 119.9
C11—C12—H12 120.8 C28—C29—H29 119.8
C13—C12—C11 118.50 (15) C28—C29—C30 120.35 (15)
C13—C12—H12 120.8 C30—C29—H29 119.8
C12—C13—H13 120.6 C29—C30—H30 120.0
C14—C13—C12 118.78 (16) C31—C30—C29 119.96 (16)
C14—C13—H13 120.6 C31—C30—H30 120.0
C13—C14—H14 120.7 C30—C31—H31 119.8
C13—C14—C15 118.58 (16) C30—C31—C32 120.49 (16)
C15—C14—H14 120.7 C32—C31—H31 119.8
N1—C15—C14 123.84 (16) C27—C32—H32 120.1
N1—C15—H15 118.1 C31—C32—C27 119.87 (15)
C14—C15—H15 118.1 C31—C32—H32 120.1

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···N1 1.00 2.45 2.835 (3) 102
C3—H3···O1 1.00 2.49 2.899 (2) 104
C8—H8···O2 1.00 2.39 2.804 (2) 104
C25—H25···N1i 0.95 2.60 3.445 (3) 148
C19—H19···N1ii 0.95 2.73 3.665 (2) 167
C20—H20···O1iii 0.95 2.62 3.263 (2) 125
C32—H32···O2iv 0.95 2.55 3.487 (2) 168

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+1.

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Crystal data

C17H13NO Dx = 1.270 Mg m3
Mr = 247.28 Melting point: 373 K
Monoclinic, P21/c Synchrotron radiation, λ = 0.80248 Å
a = 14.859 (3) Å Cell parameters from 148 reflections
b = 17.747 (4) Å θ = 3.5–25.6°
c = 9.995 (2) Å µ = 0.10 mm1
β = 101.06 (3)° T = 100 K
V = 2586.7 (9) Å3 Plate, yellow
Z = 8 0.02 × 0.02 × 0.01 mm
F(000) = 1040

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Data collection

Mar CCD diffractometer 4453 reflections with I > 2σ(I)
phi scans Rint = 0.077
Absorption correction: multi-scan (SCALA; Evans, 2006) θmax = 30.9°, θmin = 3.3°
Tmin = 0.997, Tmax = 0.999 h = −18→18
23024 measured reflections k = −22→22
5645 independent reflections l = −12→12

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.057P)2 + 1.189P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.23 e Å3
5645 reflections Δρmin = −0.21 e Å3
346 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.051 (4)

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.08252 (11) 0.41331 (9) 0.08638 (13) 0.0493 (4)
N1 0.19600 (11) 0.39239 (9) 0.42804 (15) 0.0383 (4)
C1 0.11482 (13) 0.43098 (12) 0.20438 (18) 0.0379 (4)
C2 0.12405 (13) 0.51037 (11) 0.24820 (19) 0.0380 (4)
H2 0.1567 0.5228 0.3367 0.046*
C3 0.08643 (14) 0.56483 (12) 0.1634 (2) 0.0409 (5)
H3 0.0526 0.5493 0.0773 0.049*
C4 0.09180 (14) 0.64305 (12) 0.1887 (2) 0.0420 (5)
C5 0.09537 (14) 0.71075 (12) 0.1993 (2) 0.0413 (5)
C6 0.10213 (14) 0.79075 (12) 0.20949 (19) 0.0394 (4)
C7 0.07036 (14) 0.83675 (12) 0.0969 (2) 0.0418 (5)
H7 0.0431 0.8147 0.0122 0.050*
C8 0.07839 (14) 0.91450 (12) 0.1084 (2) 0.0414 (5)
H8 0.0561 0.9450 0.0311 0.050*
C9 0.11833 (14) 0.94863 (12) 0.2305 (2) 0.0412 (5)
C10 0.14997 (15) 0.90211 (13) 0.3424 (2) 0.0467 (5)
H10 0.1776 0.9242 0.4269 0.056*
C11 0.14194 (15) 0.82508 (13) 0.3329 (2) 0.0458 (5)
H11 0.1636 0.7948 0.4108 0.055*
C12 0.12884 (16) 1.03274 (12) 0.2434 (2) 0.0494 (5)
H12A 0.1932 1.0464 0.2476 0.074*
H12B 0.1094 1.0496 0.3268 0.074*
H12C 0.0908 1.0571 0.1643 0.074*
C13 0.14687 (13) 0.37043 (11) 0.30695 (18) 0.0353 (4)
C14 0.12604 (14) 0.29623 (12) 0.2729 (2) 0.0408 (5)
H14 0.0903 0.2835 0.1865 0.049*
C15 0.15839 (15) 0.24046 (12) 0.3676 (2) 0.0449 (5)
H15 0.1445 0.1889 0.3479 0.054*
C16 0.21129 (15) 0.26184 (12) 0.4913 (2) 0.0431 (5)
H16 0.2359 0.2251 0.5575 0.052*
C17 0.22753 (15) 0.33754 (12) 0.51642 (19) 0.0426 (5)
H17 0.2634 0.3516 0.6020 0.051*
O2 0.45764 (10) 0.31523 (8) 0.50791 (12) 0.0395 (3)
N2 0.35093 (11) 0.37903 (9) 0.18087 (14) 0.0342 (4)
C18 0.42385 (13) 0.31321 (11) 0.38578 (17) 0.0327 (4)
C19 0.41012 (13) 0.24154 (10) 0.30956 (17) 0.0331 (4)
H19 0.3996 0.2414 0.2128 0.040*
C20 0.41275 (13) 0.17693 (10) 0.37887 (18) 0.0342 (4)
H20 0.4235 0.1806 0.4755 0.041*
C21 0.40113 (13) 0.10337 (10) 0.32236 (17) 0.0339 (4)
C22 0.39020 (13) 0.03862 (11) 0.28721 (17) 0.0343 (4)
C23 0.37756 (13) −0.03916 (10) 0.25127 (17) 0.0328 (4)
C24 0.41627 (13) −0.09465 (10) 0.34423 (17) 0.0343 (4)
H24 0.4510 −0.0804 0.4304 0.041*
C25 0.40418 (13) −0.17024 (11) 0.31134 (18) 0.0362 (4)
H25 0.4313 −0.2073 0.3751 0.043*
C26 0.35279 (13) −0.19286 (11) 0.18589 (18) 0.0354 (4)
C27 0.31461 (13) −0.13723 (11) 0.09343 (18) 0.0369 (4)
H27 0.2800 −0.1516 0.0072 0.044*
C28 0.32623 (13) −0.06173 (11) 0.12495 (17) 0.0354 (4)
H28 0.2993 −0.0248 0.0607 0.042*
C29 0.33893 (15) −0.27549 (11) 0.1537 (2) 0.0435 (5)
H29A 0.3925 −0.3039 0.2002 0.065*
H29B 0.3313 −0.2831 0.0551 0.065*
H29C 0.2840 −0.2933 0.1849 0.065*
C30 0.39586 (12) 0.38512 (10) 0.31068 (16) 0.0312 (4)
C31 0.41532 (13) 0.45334 (11) 0.37716 (18) 0.0355 (4)
H31 0.4450 0.4547 0.4702 0.043*
C32 0.39093 (14) 0.51947 (11) 0.30610 (19) 0.0386 (4)
H32 0.4052 0.5671 0.3482 0.046*
C33 0.34521 (14) 0.51431 (11) 0.17197 (19) 0.0380 (4)
H33 0.3273 0.5585 0.1200 0.046*
C34 0.32614 (13) 0.44366 (11) 0.11495 (18) 0.0368 (4)
H34 0.2935 0.4409 0.0235 0.044*

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0589 (9) 0.0542 (9) 0.0279 (7) 0.0043 (7) −0.0087 (6) −0.0013 (6)
N1 0.0397 (9) 0.0449 (9) 0.0267 (8) 0.0005 (7) −0.0026 (6) −0.0014 (6)
C1 0.0361 (10) 0.0482 (11) 0.0266 (9) 0.0012 (8) −0.0009 (7) −0.0001 (7)
C2 0.0393 (10) 0.0440 (11) 0.0280 (9) 0.0010 (8) −0.0005 (7) 0.0017 (7)
C3 0.0403 (11) 0.0461 (11) 0.0337 (10) −0.0007 (9) 0.0005 (8) 0.0029 (8)
C4 0.0401 (11) 0.0479 (12) 0.0352 (10) 0.0009 (9) 0.0000 (8) 0.0059 (8)
C5 0.0391 (10) 0.0472 (12) 0.0352 (10) 0.0002 (9) 0.0012 (8) 0.0050 (8)
C6 0.0374 (10) 0.0442 (11) 0.0354 (10) −0.0003 (8) 0.0037 (8) 0.0025 (8)
C7 0.0420 (11) 0.0485 (12) 0.0317 (9) −0.0002 (9) −0.0015 (8) 0.0006 (8)
C8 0.0400 (11) 0.0465 (11) 0.0350 (10) 0.0017 (9) 0.0010 (8) 0.0052 (8)
C9 0.0354 (10) 0.0480 (12) 0.0396 (10) −0.0015 (9) 0.0060 (8) −0.0007 (8)
C10 0.0486 (12) 0.0568 (13) 0.0318 (10) −0.0047 (10) 0.0003 (8) −0.0014 (9)
C11 0.0475 (12) 0.0549 (13) 0.0319 (10) −0.0025 (10) −0.0007 (8) 0.0056 (9)
C12 0.0462 (12) 0.0478 (12) 0.0528 (13) −0.0038 (10) 0.0064 (10) −0.0031 (10)
C13 0.0343 (9) 0.0441 (10) 0.0260 (9) −0.0002 (8) 0.0015 (7) −0.0005 (7)
C14 0.0398 (11) 0.0451 (11) 0.0349 (10) 0.0007 (9) 0.0005 (8) −0.0049 (8)
C15 0.0483 (12) 0.0402 (11) 0.0445 (11) 0.0016 (9) 0.0048 (9) −0.0016 (8)
C16 0.0470 (12) 0.0460 (11) 0.0352 (10) 0.0058 (9) 0.0049 (8) 0.0051 (8)
C17 0.0474 (11) 0.0478 (11) 0.0284 (9) 0.0054 (9) −0.0029 (8) 0.0010 (8)
O2 0.0535 (8) 0.0405 (7) 0.0211 (6) −0.0012 (6) −0.0019 (5) −0.0009 (5)
N2 0.0402 (9) 0.0382 (8) 0.0221 (7) −0.0011 (7) 0.0007 (6) −0.0018 (6)
C18 0.0361 (9) 0.0384 (10) 0.0226 (8) −0.0007 (8) 0.0028 (7) −0.0010 (7)
C19 0.0392 (10) 0.0357 (10) 0.0222 (8) −0.0007 (8) 0.0008 (7) −0.0007 (7)
C20 0.0379 (10) 0.0372 (10) 0.0253 (8) −0.0006 (8) 0.0001 (7) −0.0003 (7)
C21 0.0374 (10) 0.0366 (10) 0.0249 (8) 0.0011 (8) −0.0013 (7) 0.0039 (7)
C22 0.0354 (9) 0.0396 (10) 0.0256 (8) 0.0016 (8) 0.0004 (7) 0.0037 (7)
C23 0.0361 (9) 0.0350 (9) 0.0260 (8) 0.0002 (8) 0.0026 (7) −0.0001 (7)
C24 0.0367 (10) 0.0383 (10) 0.0251 (8) 0.0004 (8) −0.0009 (7) 0.0008 (7)
C25 0.0392 (10) 0.0366 (10) 0.0306 (9) 0.0029 (8) 0.0009 (7) 0.0029 (7)
C26 0.0359 (10) 0.0377 (10) 0.0322 (9) −0.0022 (8) 0.0051 (7) −0.0033 (7)
C27 0.0395 (10) 0.0432 (11) 0.0258 (8) −0.0019 (8) 0.0011 (7) −0.0045 (7)
C28 0.0391 (10) 0.0397 (10) 0.0246 (8) 0.0006 (8) −0.0008 (7) 0.0023 (7)
C29 0.0457 (11) 0.0401 (11) 0.0435 (11) −0.0023 (9) 0.0056 (9) −0.0064 (8)
C30 0.0348 (9) 0.0359 (10) 0.0215 (8) −0.0012 (7) 0.0018 (7) −0.0014 (6)
C31 0.0407 (10) 0.0375 (10) 0.0256 (8) −0.0021 (8) 0.0000 (7) −0.0031 (7)
C32 0.0458 (11) 0.0354 (10) 0.0327 (9) −0.0022 (8) 0.0024 (8) −0.0047 (7)
C33 0.0438 (11) 0.0376 (10) 0.0309 (9) 0.0010 (8) 0.0031 (8) 0.0049 (7)
C34 0.0436 (11) 0.0404 (10) 0.0239 (8) 0.0029 (8) −0.0001 (7) 0.0003 (7)

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Geometric parameters (Å, º)

O1—C1 1.226 (2) O2—C18 1.228 (2)
N1—C13 1.346 (2) N2—C30 1.345 (2)
N1—C17 1.337 (2) N2—C34 1.339 (2)
C1—C2 1.474 (3) C18—C19 1.476 (2)
C1—C13 1.498 (3) C18—C30 1.498 (2)
C2—H2 0.9500 C19—H19 0.9500
C2—C3 1.335 (3) C19—C20 1.336 (3)
C3—H3 0.9500 C20—H20 0.9500
C3—C4 1.411 (3) C20—C21 1.420 (3)
C4—C5 1.206 (3) C21—C22 1.203 (3)
C5—C6 1.426 (3) C22—C23 1.430 (3)
C6—C7 1.397 (3) C23—C24 1.400 (2)
C6—C11 1.401 (3) C23—C28 1.402 (2)
C7—H7 0.9500 C24—H24 0.9500
C7—C8 1.388 (3) C24—C25 1.385 (3)
C8—H8 0.9500 C25—H25 0.9500
C8—C9 1.390 (3) C25—C26 1.396 (3)
C9—C10 1.397 (3) C26—C27 1.396 (3)
C9—C12 1.504 (3) C26—C29 1.507 (3)
C10—H10 0.9500 C27—H27 0.9500
C10—C11 1.374 (3) C27—C28 1.380 (3)
C11—H11 0.9500 C28—H28 0.9500
C12—H12A 0.9800 C29—H29A 0.9800
C12—H12B 0.9800 C29—H29B 0.9800
C12—H12C 0.9800 C29—H29C 0.9800
C13—C14 1.380 (3) C30—C31 1.385 (2)
C14—H14 0.9500 C31—H31 0.9500
C14—C15 1.390 (3) C31—C32 1.384 (3)
C15—H15 0.9500 C32—H32 0.9500
C15—C16 1.385 (3) C32—C33 1.385 (3)
C16—H16 0.9500 C33—H33 0.9500
C16—C17 1.379 (3) C33—C34 1.384 (3)
C17—H17 0.9500 C34—H34 0.9500
C17—N1—C13 116.36 (17) C34—N2—C30 116.40 (16)
O1—C1—C2 121.82 (18) O2—C18—C19 121.85 (16)
O1—C1—C13 119.30 (19) O2—C18—C30 119.62 (16)
C2—C1—C13 118.88 (15) C19—C18—C30 118.53 (14)
C1—C2—H2 120.0 C18—C19—H19 120.5
C3—C2—C1 119.97 (17) C20—C19—C18 118.97 (16)
C3—C2—H2 120.0 C20—C19—H19 120.5
C2—C3—H3 116.7 C19—C20—H20 116.8
C2—C3—C4 126.59 (19) C19—C20—C21 126.41 (17)
C4—C3—H3 116.7 C21—C20—H20 116.8
C5—C4—C3 174.8 (2) C22—C21—C20 173.42 (19)
C4—C5—C6 178.1 (2) C21—C22—C23 177.61 (18)
C7—C6—C5 121.09 (18) C24—C23—C22 119.68 (16)
C7—C6—C11 118.38 (19) C24—C23—C28 118.69 (17)
C11—C6—C5 120.53 (18) C28—C23—C22 121.63 (16)
C6—C7—H7 119.9 C23—C24—H24 119.8
C8—C7—C6 120.28 (18) C25—C24—C23 120.40 (16)
C8—C7—H7 119.9 C25—C24—H24 119.8
C7—C8—H8 119.3 C24—C25—H25 119.5
C7—C8—C9 121.42 (18) C24—C25—C26 121.03 (17)
C9—C8—H8 119.3 C26—C25—H25 119.5
C8—C9—C10 117.8 (2) C25—C26—C27 118.29 (17)
C8—C9—C12 121.87 (19) C25—C26—C29 120.02 (17)
C10—C9—C12 120.29 (19) C27—C26—C29 121.68 (17)
C9—C10—H10 119.3 C26—C27—H27 119.4
C11—C10—C9 121.41 (19) C28—C27—C26 121.22 (17)
C11—C10—H10 119.3 C28—C27—H27 119.4
C6—C11—H11 119.7 C23—C28—H28 119.8
C10—C11—C6 120.67 (19) C27—C28—C23 120.36 (17)
C10—C11—H11 119.7 C27—C28—H28 119.8
C9—C12—H12A 109.5 C26—C29—H29A 109.5
C9—C12—H12B 109.5 C26—C29—H29B 109.5
C9—C12—H12C 109.5 C26—C29—H29C 109.5
H12A—C12—H12B 109.5 H29A—C29—H29B 109.5
H12A—C12—H12C 109.5 H29A—C29—H29C 109.5
H12B—C12—H12C 109.5 H29B—C29—H29C 109.5
N1—C13—C1 117.00 (17) N2—C30—C18 116.97 (15)
N1—C13—C14 123.73 (18) N2—C30—C31 123.55 (16)
C14—C13—C1 119.26 (16) C31—C30—C18 119.47 (15)
C13—C14—H14 120.7 C30—C31—H31 120.5
C13—C14—C15 118.67 (18) C32—C31—C30 119.03 (17)
C15—C14—H14 120.7 C32—C31—H31 120.5
C14—C15—H15 120.8 C31—C32—H32 120.9
C16—C15—C14 118.4 (2) C31—C32—C33 118.19 (17)
C16—C15—H15 120.8 C33—C32—H32 120.9
C15—C16—H16 120.7 C32—C33—H33 120.6
C17—C16—C15 118.59 (19) C34—C33—C32 118.83 (17)
C17—C16—H16 120.7 C34—C33—H33 120.6
N1—C17—C16 124.19 (18) N2—C34—C33 123.94 (16)
N1—C17—H17 117.9 N2—C34—H34 118.0
C16—C17—H17 117.9 C33—C34—H34 118.0

(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···N1 0.95 2.52 2.832 (3) 100
C16—H16···N2i 0.95 2.66 3.555 (3) 158
C20—H20···N2i 0.95 2.71 3.465 (3) 136
C3—H3···O1ii 0.95 2.43 3.206 (3) 139
C19—H19···O2iii 0.95 2.57 3.379 (2) 143
C25—H25···O2iv 0.95 2.65 3.561 (2) 161

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y+1, −z; (iii) x, −y+1/2, z−1/2; (iv) −x+1, −y, −z+1.

Funding Statement

This work was funded by Russian Science Foundation grant 17-13-01442 to Anna V. Vologzhanina.

References

  1. Albaladejo, M. J., González-Soria, M. J. & Alonso, F. (2018). Green Chem. 20, 701–712.
  2. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
  3. Brennan, C., Housecroft, C. E., Constable, E. C., Neuburger, M. & Prescimone, A. (2018). CSD Communication (refcode CIBYIY). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc205qfc
  4. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1076–o1077. [DOI] [PMC free article] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.
  8. Dudek, M., Clegg, J. K., Glasson, C. R. K., Kelly, N., Gloe, K., Gloe, K., Kelling, A., Buschmann, H., Jolliffe, K. A., Lindoy, L. F. & Meehan, G. V. (2011). Cryst. Growth Des. 11, 1697–1704.
  9. Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
  10. Fan, C.-B. & Wang, X.-M. (2012). Acta Cryst. E68, o417. [DOI] [PMC free article] [PubMed]
  11. Fun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011b). Acta Cryst. E67, o2789–o2790. [DOI] [PMC free article] [PubMed]
  12. Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011a). Acta Cryst. E67, o2406–o2407. [DOI] [PMC free article] [PubMed]
  13. Golovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49, 1264–1269.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Hopkin, S. E., Muir, M. & Theocharis, Ch. R. (1991). J. Chem. Soc., Dalton Trans. 2. pp. 1131–1135.
  16. Jasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o352–o353. [DOI] [PMC free article] [PubMed]
  17. Jayarama, A., Ravindra, H. J., Menezes, A. P., Dharmaprakash, S. M. & Ng, S. W. (2013). J. Mol. Struct. 1051, 285–291.
  18. Lee, S.-L., Tan, A. L., Young, D. J., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 849–853. [DOI] [PMC free article] [PubMed]
  19. Li, X. (2010). Acta Cryst. E66, o1613. [DOI] [PMC free article] [PubMed]
  20. Lin, S., Jia, R., Zhang, X., Wang, Z. & Yuan, Y. (2009). Acta Cryst. E65, o1161. [DOI] [PMC free article] [PubMed]
  21. Nagarathinam, M., Peedikakkal, A. M. P. & Vittal, J. J. (2008). Chem. Commun. pp. 5277. [DOI] [PubMed]
  22. Prajapati, R., Mishra, L., Grabowski, S. J., Govil, G. & Dubey, S. K. (2008). J. Mol. Struct. 879, 1–6.
  23. Qian, Z., Li, D., Xie, T., Zhang, X., He, Y., Ai, Y. & Zhang, G. (2017). CrystEngComm, 19, 2283–2287.
  24. Rout, K. C. & Mondal, B. (2015). Inorg. Chim. Acta, 437, 54–58.
  25. Schmidt, G. M. J. (1971). Pure. Apll. Chem. 27, 647–678.
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Tan, J., Zhang, Y., Zhang, M., Tian, X., Wang, Y., Li, S., Wang, C., Zhou, H., Yang, J., Tian, Y. & Wu, J. (2016). J. Mater. Chem. C. 4, 3256–3267.
  29. Vatsadze, S. Z., Manaenkova, M. A., Sviridenkova, N. V., Zyk, N. V., Krut’ko, D. P., Churakov, A. V., Antipin, M. Yu., Howard, J. A. K. & Lang, H. (2006). Russ. Chem. Bull. 55, 1184–1194.
  30. Vologzhanina, A. V., Golovanov, A. A., Gusev, D. M., Odin, I. S., Apreyan, R. A. & Suponitsky, K. Yu. (2014). Cryst. Growth Des. 14, 4402–4410.
  31. Voronova, E. D., Golovanov, A. A., Odin, I. S., Anisimov, M. A., Dorovatovskii, P. V., Zubavichus, Y. V. & Vologzhanina, A. V. (2018). Acta Cryst. C74, 1674–1683. [DOI] [PubMed]
  32. Voronova, E. D., Golovanov, A. A., Suponitsky, K. Yu., Fedyanin, I. V. & Vologzhanina, A. V. (2016). Cryst. Growth Des. 16, 3859–3868.
  33. Wang, P., Moorefield, G. R. & Newkome, G. R. (2004). Org. Lett. 6, 1197–1200. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 2, 3. DOI: 10.1107/S2056989020000055/ff2164sup1.cif

e-76-00192-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989020000055/ff21643sup2.hkl

e-76-00192-3sup2.hkl (563.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020000055/ff21643sup4.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989020000055/ff21642sup3.hkl

e-76-00192-2sup3.hkl (449.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020000055/ff21642sup5.cml

CCDC references: 1975319, 1975318

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES