Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 3;76(Pt 2):125–131. doi: 10.1107/S2056989019017018

Synthesis and crystal structures of a bis­(3-hy­droxy-cyclo­hex-2-en-1-one) and two hexa­hydro­quinoline derivatives

Scott A Steiger a, Chun Li b, Christina Gates a, Nicholas R Natale a,*
PMCID: PMC7001840  PMID: 32071733

The syntheses and crystal structures of three compounds, 2,2′-[(2-nitro­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) (I), ethyl 4-(4-hy­droxy-3,5-di­meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (II), and ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (III), are reported.

Keywords: crystal structure, hexa­hydro­quinoline, hydrogen bonding

Abstract

The title compound I, 2,2′-[(2-nitro­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intra­molecular hydrogen bonds. The most prominent inter­molecular inter­actions in compound I are C—H⋯O hydrogen bonds, which link mol­ecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1Inline graphic1). Both title compounds II, ethyl 4-(4-hy­droxy-3,5-di­meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the di­hydro­pyridine group and an orthogonal aryl group attached to the di­hydro­pyridine. Inter­molecular N—H⋯O bonding is present in the crystal packing of both compound II and III.

Chemical context  

4-Aryl-1,4-di­hydro­pyridines (DHPs) that bind the L-type voltage-gated calcium channels (VGCC) have been applied in general medical practice for over three decades. (Zamponi, 2016). Many modifications on 1,4-DHP have been performed to obtain active compounds such as calcium-channel agonists or antagonists. (Martín et al., 1995; Rose, 1990; Rose & Dräger, 1992; Trippier et al. 2013) One such modification is fusing a cyclo­hexa­none ring to form hexa­hydro­quinolone (HHQ), in which the orientation of the carbonyl group of the ester substituent at the 5-position in the 1,4-DHP ring has been fixed. This class of compounds has been shown to have calcium-channel antagonistic activity (Aygün Cevher et al., 2019), inhibit the multidrug-resistance transporter (MDR) (Shahraki et al., 2017), as well as possess anti-inflammatory and stem-cell differentiation properties, and has been implicated in slowing neurodegenerative disorders. (Trippier et al., 2013). In the HHQ literature, specific substitution of the cyclo­hexenone ring can confer sub-type selectivity at the voltage-gated calcium channel (Schaller et al., 2018). Our group has been inter­ested in bioisosteric 4-isoxazolyl-di­hydro­pyridines at the VGCC (Schauer et al., 1986; Zamponi et al., 2003; Natale et al., 2014) and MDR (Steiger et al., 2017), and continue our studies towards understanding stereoelectronic effects, which define selectivity, as well as to explore the scope and limitations of our synthetic methodologies (Steiger et al., 2016). These inter­ests led us to continue our pursuit of crystallographic studies in this area (Steiger et al., 2014a ,b ; 2018).graphic file with name e-76-00125-scheme1.jpg

Structural commentary  

Compound I crystallizes in the triclinic P Inline graphic space group with one independent mol­ecule in the asymmetric unit (Fig. 1). As in other bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) compounds, in compound I the 1,3-ketone–enol conformation is stabilized by two inter­nal hydrogen bonds between two pairs of enols and ketones that bridge the two hy­droxy­cyclo­hexenones, in addition to the bridging carbon C7. The two hy­droxy­cyclo­hexenones are arranged along a pseudo-mirror plane formed by atoms C15, C11, C8, C7, C16, C19, and C22, which has a root-mean-square deviation (RMSD) of 0.025 Å. The phenyl ring attached to C7 flaps to one side of the above plane, with a plane normal angle of 44.34 (4)°.

Figure 1.

Figure 1

The asymmetric unit of compound I showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate intra­molecular O—H⋯O hydrogen bonds.

Both 3-hy­droxy-5,5-dimethyl-cyclo­hex-2-en-1-one rings adopt an envelope conformation, with both methyl groups C14 and C23 having an axial orientation being trans to each other. As a result of the steric effect of the neighboring atoms and groups, instead of being on the same plane as the phenyl ring, the mean plane formed by the NO2 group is rotated out of the plane of the aromatic system with an angle of 52.85 (6)°. This may indicate a possible π–π inter­action between the NO2 group and the ketone–enol C=C bond, evidenced by a short-contact N1⋯C16 distance of 2.816 (2) Å and a short distance of 2.860 Å between N1 and the midpoint of the C16=C17 double bond. The inter­action of the NO2 group and the enol C16=C17 double bond were analyzed using Hirshfeld surface analysis and qu­anti­fied using the associated two-dimensional fingerprint plot (Fig. 2), both performed with CrystalExplorer17.5 (Turner et al., 2017). The electrostatic potentials were calculated using TONTO integrated within CrystalExplorer. Hirshfeld surfaces of the NO2 group and C16=C17 mapped over curvedness are shown in Fig. 2(c). The flat yellowish surfaces confirm that an intra­molecular π–π inter­action takes place between the NO2 group and the enol double bond. This is also evidence that the π-hole inter­action can stabilize conformers when the inter­acting atom is four or five bonds away from the N atom of a nitro aromatic compound (Franconetti et al., 2019).

Figure 2.

Figure 2

(a) View of the three-dimensional Hirshfeld surface of C16—C17 mapped over electrostatic potentials, over the range of −0.0221 to 0.9216 arbitrary units. (b) The two-dimensional fingerprint plot for the C=C⋯N inter­action. (c) The Hirshfeld surfaces of NO2 and C16—C17 mapped over curvedness.

Compounds II and III both crystallized racemically in the monoclinic space group P21/n. The asymmetric unit of compound II contains two independent mol­ecules (A and B), both in the same enanti­omeric configuration. The overall unit cell is racemic with four pairs of racemates. Compound III has only one independent mol­ecule in the asymmetric unit. The displacement ellipsoid plots showing the atomic numbering of compounds II and III are presented in Figs. 3 and 4, respectively.

Figure 3.

Figure 3

The asymmetric unit of compound II showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate the C9B—H9B⋯O6A hydrogen bond and the C—H⋯ π inter­action between H7A and the C17A—C22A bond. Other hydrogen atoms have been omitted for clarity.

Figure 4.

Figure 4

The asymmetric unit of compound III showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The C—H⋯π inter­action is indicated by a dashed line.

As in the other 4-aryl-hexa­hydro­quinoline derivatives (Steiger et al., 2014a ,b ; 2018) that we have reported, compound II has a flattened boat conformation on the 1,4-DHP ring. The mean plane defined by atoms C2, C3, C5, and C10 is planar with an RMSD of 0.000 and 0.006 Å for A and B, respectively. Atoms N1 and C4 are displaced slightly from the mean plane at distances of 0.1696 (11) Å for N1A and 0.1867 (11) Å for N1B, and 0.3722 (13) Å for C4A and 0.3506 (13) Å for C4B, respectively. The 4-di­hydroxy­lmethoxyphenyl ring is almost orthogonal to the 1,4-DHP basal plane comprising atoms C2, C3, C5, and C10, making dihedral angles of 88.03 (3) and 81.05 (3)° in II A and II B, respectively. The ring puckering parameters for the cyclo­hexa­none ring (C5–C10) indicate that it adopts an envelope conformation: Q = 0.4631 Å, θ = 58.01°, and φ = 168.1681° for II A and Q = 0.4592 Å, θ = 124.10°, and φ = 344.3794° for II B.

In the mol­ecule of compound II, the orientations of the ethyl groups on the ester and of the meth­oxy groups on the phenyl rings are different in mol­ecules A and B. The hydroxyl and meth­oxy groups are mostly co-planar with the phenyl ring to which they are attached in both mol­ecules A and B. The exception is one of the methyl groups in mol­ecule A, C24A, which protrudes out of the phenyl plane with a displacement of 1.2802 (12) Å. The angle between the O6A—C24A bond and the normal to the phenyl plane is 154.38 (5)°. Similarly, the ethyl group on the ester group in mol­ecule B is co-planar with the ester atoms O2B, O3B, and C14B whereas in mol­ecule A, the ethyl group is folded with an angle of 14.94 (10)° between the C15A—C16A bond and the normal to the O2A/O3A/C14A plane with atom C16A displaced by 1.656 (3) Å from the plane. These orientations imply that these two functional groups are flexible in the structure.

Although compounds II and III share the same structural features, such as the envelope conformation of the cyclo­hexa­none ring and the pseudo-axial position of the 4-aryl group, they exhibit differences, especially in the conformation of the 1,4-DHP ring. In compound III, atoms N1 and C4 are only slightly displaced from C2/C3/C5/C10 mean plane at distances of 0.107 (2) and 0.092 (2) Å, respectively. There is a short contact of 1.88 Å between hydrogen atoms H4 and H27. A C—H⋯π contact of 2.47 Å also exists between C19—H19 and the C5—C10 bond.

In compound III, the anthracenyl group bis­ects the basal plane of the 1,4-DHP ring, with N1⋯C4—C17—C18 torsion angle of 2.09 (15)°. As a result of the elongated aromatic system, the ethyl group on the ester is stabilized in a folded position by a weak C—H⋯π inter­action between C16—H16B and C25–C30 ring, with an H16-to-plane distance of 2.82 Å. The O=C—O ester group is no longer co-planar with the 1,4-DHP basal plane and the O2—C14—C3—C2 torsion angle is −25.10 (19)°.

Supra­molecular features  

In compound I, C15—H15B⋯O3i and C20—H20B⋯O5ii and hydrogen bonds (Table 1) between the same enanti­omers form a two-dimensional network parallel to (001), with one chain running along the a-axis direction and the other along the b-axis direction (Fig. 5). Other inter­molecular O—H inter­actions such as C10—H10B⋯O5ii and C2—H2⋯O1i between a pair of enanti­omers form a chain of alternating enanti­omers (Fig. 6)

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5 0.97 (3) 1.62 (3) 2.5570 (16) 162 (3)
O6—H6⋯O4 1.08 (4) 1.58 (4) 2.6437 (19) 166 (3)
C2—H2⋯O1i 0.95 2.63 3.538 (2) 160
C10—H10B⋯O5ii 0.99 2.65 3.6138 (19) 165
C15—H15B⋯O3iii 0.98 2.58 3.505 (2) 157
C18—H18B⋯O1 1.04 (2) 2.67 (2) 3.381 (2) 125.5 (16)
C20—H20B⋯O5iv 0.99 2.43 3.332 (2) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 5.

Figure 5

The packing of compound I showing the two-dimensional network parallel to the (001) plane. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.

Figure 6.

Figure 6

The packing of compound I showing a chain of alternating enanti­omers. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.

In compound II, there is a C9B—H9B⋯O6A hydrogen bond between mol­ecules A and B, with distance of 2.59 Å and a C—H⋯ π inter­action between C7B—H7A and the C17A—C22A bond with a distance of 2.6715 (6) Å. Links alternating between the two independent mol­ecules form a column through hydrogen bonds N1A—H1A⋯O1B ii and N1B—H1⋯O1A i, which run along the b-axis direction. This column branches out through the O4A—H4C⋯O1A i and C24A—H24E⋯O4B v hydrogen bonds to another parallel column, forming a sheet perpendicular to (101) (Fig. 7). Weak C23B—H23B⋯O2B vi and C15B—H15A⋯O5B iii inter­actions link the B mol­ecules into a chain along the a-axis direction. A similar chain of A mol­ecules is formed through weak C12A—H12D⋯O2A′ inter­actions (Fig. 8). Other hydrogen bonds are listed in the Table 2.

Figure 7.

Figure 7

The packing of compound II showing an array of columns along the b axis formed by hydrogen bonds. Atoms involved in hydrogen bonds are labeled. H atoms not involved in hydrogen bonds are omitted for clarity. Mol­ecules A and B are colored in orange and lime, respectively. Mol­ecules colored in magenta are the enanti­omers of mol­ecule A, and those colored in teal are the enanti­omers of mol­ecule B.

Figure 8.

Figure 8

The packing of compound II showing the chains formed by A and B mol­ecules along the a axis. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4C⋯O1A i 0.848 (17) 1.937 (17) 2.6948 (9) 148.0 (16)
N1A—H1A⋯O1B ii 0.880 (15) 1.890 (15) 2.7666 (10) 174.1 (13)
C7A—H7C⋯O6B ii 0.99 2.67 3.4510 (12) 136
C12A—H12D⋯O2A iii 0.98 2.60 3.5237 (12) 157
C13A—H13D⋯O1B ii 0.98 2.59 3.3590 (12) 136
C16A—H16D⋯O4A iv 0.98 2.65 3.3136 (13) 126
C24A—H24E⋯O4B v 0.98 2.43 3.3105 (13) 149
N1B—H1⋯O1A i 0.888 (15) 2.166 (15) 2.9479 (10) 146.6 (12)
C7B—H7B⋯O2A 0.99 2.69 3.4992 (11) 139
C9B—H9B⋯O6A 0.99 2.59 3.5751 (11) 172
C15B—H15A⋯O5B iii 0.99 2.60 3.4993 (12) 151
C23B—H23B⋯O2B vi 0.98 2.55 3.4277 (13) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

In compound III, an N1—H1⋯O1i hydrogen bond (Table 3) alternating between two enanti­omers results in a zigzag chain of racemic mol­ecules running perpendicular to the (101) plane. The C13—H13B⋯O2ii hydrogen bond cross-links a pair of enanti­omers from different chains and forms a sheet of mol­ecules parallel to (10Inline graphic) (Fig. 9). As a consequence of close packing, several short contacts are observed, i.e. an edge-to-edge π–π contact of 2.7636 (15) Å between C21 and C21ii, H4⋯C29i = 2.76 Å and H7A⋯H24i = 2.60 Å (symmetry codes as in Table 3).

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 1.94 (2) 2.7776 (16) 154.2 (18)
C13—H13B⋯O2ii 0.98 2.65 3.409 (2) 134
C19—H19⋯N1 0.95 2.48 3.4148 (19) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 9.

Figure 9

The packing of compound III. Cross-linked zigzag chains of alternating enanti­omers form a sheet. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.

Database survey  

A search for aryl­bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) compounds in the Cambridge Structural Database (CSD Version 5.40, update of August 2019; Groom et al., 2016) gave 29 hits, among which are two NO2-phenyl­bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) compounds. One is NO2 substituted at the para position (CSD refcode IRODID; Yao et al., 2005) while the other is NO2 substituted at the meta position (VUZYIZ; Palakshi Reddy et al., 2010) and both exhibit a similar structural configuration to that of compound I. However, with less steric effects surrounding the nitro group, both the p- and m-NO2 groups are tilted only slightly from the aromatic ring with torsion angles between the N=O and C=C bonds of ca 8.25 and 4.58°, respectively. In contrast, in compound I (an o-NO2 group), the torsion angle is 49.68 (6)°. The database search also found 20 4-aryl-hexa­hydro­quinoline-3-carboxyl­ate derivatives. All of them display the same common structural features as compounds II and III in this report, such as the flat-boat conformation of the 1,4-DHP ring, the envelope conformation of the fused cyclo­hexa­none ring, and the substituted phenyl ring at the pseudo-axial position and orthogonal to the 1,4-DHP ring.

Synthesis and crystallization  

The synthesis was performed as outlined in the scheme. An oven-dried 100 ml round-bottom flask equipped with a magnetic stir bar was charged with 10 mmol of dimedone, 10 mmol of ethyl aceto­acetate and 5 mol% of ytterbium(III) tri­fluoro­methane­sulfonate (Wang et al., 2005). The mixture was then taken up in 30 ml of absolute ethanol, capped and placed under an inert atmosphere of argon, after which the solution was allowed to stir at room temperature for 20 min. The appropriate corresponding benzaldehyde (10 mmol) and 10 mmol of ammonium acetate were added to the stirring solution, the solution was allowed to stir at room temperature for 48 h. Reaction progress was monitored via TLC. Once the reaction was complete, excess solvent was removed via rotary evaporation. The solution was then purified via silica column chromatography. The title compound was recrystallized by slow evaporation from hexane and ethyl acetate (v:v = 3:1).

2,2′-[(2-Nitro­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­meth­yl­cyclo­hex-2-enone) (I). 1H NMR (CDCl3) δ ppm 7.99 (d, J = 7.8 Hz, 1H); 7.39 (ddd, J = 1.37, 6.88 & 8 Hz, 1H); 7.35 (dd, J = 1.83 & 8.24 Hz, 1H); 7.30 (ddd, J = 1.37, 1.83 & 7.58 Hz, 1H), 5.01 (s, 1H); 3.35 (s, 1H); 2. 82 (s, 1H); 2.45 (dd, J = 4.35 & 14.76 Hz, 2H); 2.25 (m, 4H); 2.10 (dd, J = 1.83 & 14.20 Hz, 1 Hz); 2.04 (d, J =14.20 Hz, 1H); 1.14 (s, 3H); 1.11 (s, 3H); 1.04 (s, 3H); 0.95 (s, 3H). 13C NMR δ ppm 190.99, 189.51, 149.79, 132.16, 131.46, 129.67, 127.27, 124.44, 114.73, 46.93, 46.35, 32.00, 30.14, 28.62, 28.25. LC–MS calculated for C23H27NO6, observed m/z 414 ([M+1]+, 100% rel. intensity).

Ethyl 4-(4-hy­droxy-3,5-di­meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (II). Spec­tra are similar to those for the product of the synthesis previously reported by Yang et al. (2011). 1H NMR (CDCl3) δ ppm 6.56 (s, 2H, Ar-H); 5.69 (br.s, 1H); 5.33 (s, 1H); 5.01 (s, 1H); 4.10 (q, 2H, J = 6Hz); 3.83 (s, 6H); 2.39 (s, 3H); 2.36, s, 1H); 2.225 (q, 2H, J = 16 Hz); 2.18 (s, 1H); 1.24 (t, 3H, J = 6Hz); 1.10(s, 3H); 0.99 (s, 3H). 13C NMR δ ppm 195.47, 167.42, 147.49, 146.49, 133.15, 112.33, 106.26, 104.98, 59.82, 56.23, 50.69, 36.34, 32.69, 29.58, 26.84, 19.53, 14.33. LC–MS calculated for C23H29NO6, observed m/z 831 ([M 2+1]+, 100% rel. intensity), 416 ([M+1]+, 74), 262 ([M-4-Ar-H]+, 81).

Ethyl 4-(9′-Anthr­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (III). 1H NMR (CDCl3) δ ppm 9.09 (d, 1H); 8.29 (s, 2H); 7.93 (m, 2H); 7.57 (m, 1H); 7.43 (m, 1H); 7.33 (m, 2H); 6.68 (s, 1H); 5.92 (br. s, 1H); 3.7 (m, 2H, OCH2CH3), 2.06 (d, 1H, J = 16 Hz); 1.97 (d, 1H, J = 16 Hz); 0.5 (t, 3H, OCH2 CH3, J = 8 Hz). 13C NMR δppm 195.69, 167.41, 159.11, 147.37, 112.69, 111.72, 107.7, 59.39, 50.49, 32.27, 30.93, 29.11, 27.38, 19.11, 13.44. C29H29NO3, observed m/z 440 [M+1]+, 11.5% rel. intensity), 262 ([M-4-Ar-H]+, 100).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydrogen atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 A) and refined with isotropic displacement parameters 1.2–1.5 times those of the parent atoms. Hydrogen atoms attached to nitro­gen and oxygen were found in difference-Fourier maps and refined freely. In compound III, three reflections (Inline graphic01, 110, and 020) affected by the beam stop were omitted because of poor agreement between the observed and calculated intensities.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C23H27NO6 C23H29NO6 C29H29NO3
M r 413.45 415.47 439.53
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100 100
a, b, c (Å) 8.7024 (3), 9.8709 (4), 13.1621 (5) 10.8854 (4), 25.2446 (10), 15.3665 (6) 11.6527 (3), 18.1986 (4), 12.3435 (3)
α, β, γ (°) 90.3822 (19), 108.9608 (18), 97.3571 (18) 90, 100.7606 (19), 90 90, 114.8758 (12), 90
V3) 1059.08 (7) 4148.4 (3) 2374.74 (10)
Z 2 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.10 0.08
Crystal size (mm) 0.39 × 0.25 × 0.13 0.48 × 0.43 × 0.31 0.45 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker SMART BREEZE CCD Bruker SMART BREEZE CCD Bruker SMART BREEZE CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 29458, 5315, 4254 168826, 12707, 11044 72579, 5902, 4515
R int 0.031 0.045 0.055
(sin θ/λ)max−1) 0.683 0.716 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.154, 1.04 0.039, 0.108, 1.04 0.048, 0.135, 1.04
No. of reflections 5315 12707 5902
No. of parameters 291 569 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.25 0.52, −0.21 0.54, −0.22

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989019017018/dx2021sup1.cif

e-76-00125-sup1.cif (7.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019017018/dx2021Isup2.hkl

e-76-00125-Isup2.hkl (422.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019017018/dx2021Isup5.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019017018/dx2021IIsup3.hkl

e-76-00125-IIsup3.hkl (1,007.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019017018/dx2021IIsup6.cml

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989019017018/dx2021IIIsup4.hkl

e-76-00125-IIIsup4.hkl (469.4KB, hkl)

CCDC references: 1973149, 1973148, 1973147

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Montana grant program for grant 325490.

supplementary crystallographic information

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Crystal data

C23H27NO6 Z = 2
Mr = 413.45 F(000) = 440
Triclinic, P1 Dx = 1.297 Mg m3
a = 8.7024 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8709 (4) Å Cell parameters from 9400 reflections
c = 13.1621 (5) Å θ = 2.5–28.8°
α = 90.3822 (19)° µ = 0.09 mm1
β = 108.9608 (18)° T = 100 K
γ = 97.3571 (18)° Prism, yellow
V = 1059.08 (7) Å3 0.39 × 0.25 × 0.13 mm

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Data collection

Bruker SMART BREEZE CCD diffractometer Rint = 0.031
φ and ω scans θmax = 29.1°, θmin = 2.5°
29458 measured reflections h = −11→11
5315 independent reflections k = −13→13
4254 reflections with I > 2σ(I) l = −17→17

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.5356P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5315 reflections Δρmax = 0.65 e Å3
291 parameters Δρmin = −0.25 e Å3
0 restraints

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O5 0.04549 (13) 0.40295 (11) 0.15867 (9) 0.0208 (2)
O3 0.21250 (13) 0.20362 (12) 0.17985 (9) 0.0236 (3)
O4 0.68127 (15) 0.53646 (13) 0.29954 (11) 0.0320 (3)
O6 0.50510 (15) 0.73583 (13) 0.29901 (10) 0.0296 (3)
C9 0.11023 (18) 0.52479 (16) 0.18099 (11) 0.0185 (3)
O2 0.61739 (15) 0.30380 (15) 0.47643 (10) 0.0346 (3)
O1 0.50744 (18) 0.09861 (14) 0.41032 (11) 0.0380 (3)
C16 0.44538 (19) 0.37141 (16) 0.25549 (12) 0.0203 (3)
C8 0.27365 (18) 0.56290 (16) 0.25447 (11) 0.0183 (3)
C7 0.37049 (18) 0.45661 (15) 0.31983 (11) 0.0182 (3)
H7 0.466554 0.510901 0.375098 0.022*
N1 0.49857 (19) 0.21541 (16) 0.43905 (11) 0.0279 (3)
C10 0.0114 (2) 0.63357 (17) 0.12509 (13) 0.0235 (3)
H10A −0.104225 0.606543 0.120725 0.028*
H10B 0.014314 0.636767 0.050574 0.028*
C17 0.36806 (18) 0.25256 (16) 0.19662 (12) 0.0209 (3)
C13 0.34611 (19) 0.69472 (17) 0.25407 (12) 0.0218 (3)
C6 0.28101 (18) 0.36902 (16) 0.38462 (11) 0.0191 (3)
C21 0.61154 (19) 0.42118 (18) 0.26078 (13) 0.0237 (3)
C18 0.4540 (2) 0.15999 (18) 0.14946 (14) 0.0249 (3)
C12 0.2536 (2) 0.80723 (17) 0.20066 (13) 0.0249 (3)
H12A 0.273724 0.823572 0.131642 0.030*
H12B 0.296854 0.892238 0.246928 0.030*
C11 0.0687 (2) 0.77713 (16) 0.17870 (13) 0.0230 (3)
C1 0.3365 (2) 0.25007 (17) 0.43280 (12) 0.0238 (3)
C2 0.2498 (2) 0.16111 (18) 0.48286 (13) 0.0285 (4)
H2 0.288304 0.078128 0.509312 0.034*
C4 0.0550 (2) 0.31725 (19) 0.45528 (13) 0.0277 (4)
H4 −0.039275 0.344284 0.466757 0.033*
C19 0.6040 (2) 0.23166 (18) 0.12570 (14) 0.0267 (4)
C14 0.0311 (2) 0.78794 (18) 0.28423 (14) 0.0280 (4)
H14A −0.086246 0.759417 0.270562 0.042*
H14B 0.060734 0.882821 0.313448 0.042*
H14C 0.094698 0.728498 0.336144 0.042*
C5 0.13841 (19) 0.40093 (17) 0.40030 (12) 0.0220 (3)
H5 0.097129 0.482417 0.372502 0.026*
C20 0.7057 (2) 0.3260 (2) 0.22307 (15) 0.0310 (4)
H20A 0.756393 0.268957 0.283196 0.037*
H20B 0.795669 0.381263 0.205032 0.037*
C3 0.1069 (2) 0.19581 (19) 0.49334 (14) 0.0304 (4)
H3A 0.044832 0.136339 0.526547 0.036*
C22 0.7073 (2) 0.1264 (2) 0.10677 (18) 0.0361 (4)
H22A 0.740886 0.071941 0.170262 0.054*
H22B 0.804872 0.173597 0.093904 0.054*
H22C 0.642313 0.066101 0.043989 0.054*
C15 −0.0190 (2) 0.87981 (19) 0.10242 (15) 0.0321 (4)
H15A 0.001219 0.871620 0.033763 0.048*
H15B 0.022549 0.972726 0.134428 0.048*
H15C −0.137191 0.860984 0.090111 0.048*
C23 0.5504 (3) 0.3151 (2) 0.02618 (16) 0.0377 (4)
H23A 0.491440 0.253400 −0.036919 0.057*
H23B 0.647292 0.366841 0.015346 0.057*
H23C 0.478164 0.378662 0.036190 0.057*
H3 0.160 (4) 0.282 (3) 0.187 (2) 0.069 (9)*
H18A 0.377 (3) 0.114 (2) 0.093 (2) 0.042 (6)*
H18B 0.486 (3) 0.084 (2) 0.2037 (19) 0.042 (6)*
H6 0.569 (5) 0.647 (4) 0.307 (3) 0.103 (12)*

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0178 (5) 0.0222 (6) 0.0217 (5) 0.0004 (4) 0.0066 (4) −0.0023 (4)
O3 0.0172 (5) 0.0246 (6) 0.0287 (6) −0.0011 (4) 0.0089 (4) −0.0045 (5)
O4 0.0232 (6) 0.0310 (7) 0.0418 (7) −0.0051 (5) 0.0142 (5) −0.0105 (5)
O6 0.0217 (6) 0.0284 (6) 0.0351 (7) −0.0051 (5) 0.0080 (5) −0.0042 (5)
C9 0.0194 (7) 0.0225 (7) 0.0163 (7) 0.0031 (6) 0.0095 (6) −0.0003 (5)
O2 0.0232 (6) 0.0471 (8) 0.0292 (6) 0.0049 (6) 0.0029 (5) 0.0016 (6)
O1 0.0496 (8) 0.0338 (7) 0.0369 (7) 0.0206 (6) 0.0170 (6) 0.0081 (6)
C16 0.0182 (7) 0.0224 (7) 0.0216 (7) 0.0027 (6) 0.0083 (6) −0.0001 (6)
C8 0.0177 (7) 0.0213 (7) 0.0167 (6) 0.0027 (5) 0.0068 (5) −0.0018 (5)
C7 0.0163 (7) 0.0209 (7) 0.0172 (7) 0.0005 (5) 0.0061 (5) −0.0027 (5)
N1 0.0304 (8) 0.0335 (8) 0.0209 (7) 0.0114 (6) 0.0070 (6) 0.0047 (6)
C10 0.0233 (8) 0.0249 (8) 0.0202 (7) 0.0034 (6) 0.0043 (6) 0.0017 (6)
C17 0.0178 (7) 0.0246 (8) 0.0211 (7) 0.0024 (6) 0.0075 (6) 0.0004 (6)
C13 0.0210 (7) 0.0249 (8) 0.0203 (7) −0.0007 (6) 0.0095 (6) −0.0032 (6)
C6 0.0185 (7) 0.0236 (7) 0.0143 (6) 0.0000 (6) 0.0054 (5) −0.0029 (5)
C21 0.0181 (7) 0.0310 (9) 0.0213 (7) 0.0006 (6) 0.0068 (6) −0.0029 (6)
C18 0.0211 (8) 0.0265 (8) 0.0280 (8) 0.0008 (6) 0.0103 (7) −0.0065 (7)
C12 0.0299 (8) 0.0208 (8) 0.0260 (8) −0.0003 (6) 0.0135 (7) 0.0017 (6)
C11 0.0278 (8) 0.0218 (8) 0.0210 (7) 0.0052 (6) 0.0095 (6) 0.0034 (6)
C1 0.0234 (8) 0.0280 (8) 0.0186 (7) 0.0048 (6) 0.0044 (6) −0.0028 (6)
C2 0.0382 (10) 0.0257 (8) 0.0194 (7) 0.0022 (7) 0.0072 (7) 0.0019 (6)
C4 0.0255 (8) 0.0383 (10) 0.0210 (7) 0.0000 (7) 0.0115 (6) −0.0012 (7)
C19 0.0241 (8) 0.0288 (9) 0.0311 (8) 0.0032 (6) 0.0144 (7) −0.0028 (7)
C14 0.0333 (9) 0.0289 (9) 0.0278 (8) 0.0079 (7) 0.0166 (7) 0.0018 (7)
C5 0.0224 (8) 0.0264 (8) 0.0179 (7) 0.0037 (6) 0.0076 (6) 0.0005 (6)
C20 0.0176 (7) 0.0369 (10) 0.0395 (10) −0.0011 (7) 0.0128 (7) −0.0102 (8)
C3 0.0365 (9) 0.0335 (9) 0.0222 (8) −0.0030 (7) 0.0142 (7) 0.0013 (7)
C22 0.0283 (9) 0.0356 (10) 0.0493 (11) 0.0062 (7) 0.0190 (8) −0.0077 (8)
C15 0.0384 (10) 0.0259 (9) 0.0312 (9) 0.0091 (7) 0.0084 (8) 0.0071 (7)
C23 0.0470 (11) 0.0377 (11) 0.0379 (10) 0.0098 (9) 0.0254 (9) 0.0049 (8)

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Geometric parameters (Å, º)

O5—C9 1.2507 (19) C17—C18 1.499 (2)
O3—C17 1.3234 (19) C13—C12 1.499 (2)
O4—C21 1.240 (2) C6—C1 1.404 (2)
O6—C13 1.3228 (19) C6—C5 1.395 (2)
C9—C8 1.437 (2) C21—C20 1.502 (2)
C9—C10 1.507 (2) C18—C19 1.528 (2)
O2—N1 1.227 (2) C12—C11 1.528 (2)
O1—N1 1.231 (2) C11—C14 1.533 (2)
C16—C7 1.529 (2) C11—C15 1.527 (2)
C16—C17 1.370 (2) C1—C2 1.391 (2)
C16—C21 1.445 (2) C2—C3 1.380 (3)
C8—C7 1.523 (2) C4—C5 1.389 (2)
C8—C13 1.372 (2) C4—C3 1.375 (3)
C7—C6 1.533 (2) C19—C20 1.526 (2)
N1—C1 1.470 (2) C19—C22 1.526 (2)
C10—C11 1.527 (2) C19—C23 1.526 (3)
O5—C9—C8 122.69 (14) O4—C21—C16 122.67 (15)
O5—C9—C10 117.37 (13) O4—C21—C20 118.99 (14)
C8—C9—C10 119.93 (13) C16—C21—C20 118.26 (15)
C17—C16—C7 124.87 (14) C17—C18—C19 114.49 (14)
C17—C16—C21 119.05 (14) C13—C12—C11 113.81 (13)
C21—C16—C7 116.07 (13) C10—C11—C12 107.37 (13)
C9—C8—C7 121.06 (13) C10—C11—C14 111.47 (14)
C13—C8—C9 117.49 (14) C10—C11—C15 109.11 (14)
C13—C8—C7 121.00 (13) C12—C11—C14 110.01 (14)
C16—C7—C6 112.82 (12) C15—C11—C12 110.07 (14)
C8—C7—C16 113.54 (12) C15—C11—C14 108.80 (14)
C8—C7—C6 114.51 (12) C6—C1—N1 121.11 (15)
O2—N1—O1 124.15 (16) C2—C1—N1 114.97 (15)
O2—N1—C1 117.60 (14) C2—C1—C6 123.83 (15)
O1—N1—C1 118.19 (15) C3—C2—C1 118.67 (16)
C9—C10—C11 115.19 (13) C3—C4—C5 120.92 (16)
O3—C17—C16 123.87 (14) C20—C19—C18 107.98 (14)
O3—C17—C18 112.79 (14) C20—C19—C22 109.38 (15)
C16—C17—C18 123.25 (14) C22—C19—C18 110.18 (15)
O6—C13—C8 123.82 (15) C23—C19—C18 110.18 (15)
O6—C13—C12 112.72 (14) C23—C19—C20 109.85 (16)
C8—C13—C12 123.46 (14) C23—C19—C22 109.26 (15)
C1—C6—C7 122.42 (13) C4—C5—C6 122.05 (15)
C5—C6—C7 122.82 (14) C21—C20—C19 114.88 (14)
C5—C6—C1 114.76 (14) C4—C3—C2 119.41 (16)
O5—C9—C8—C7 −7.3 (2) C7—C6—C1—C2 −173.36 (14)
O5—C9—C8—C13 165.07 (14) C7—C6—C5—C4 177.16 (14)
O5—C9—C10—C11 161.40 (13) N1—C1—C2—C3 171.47 (15)
O3—C17—C18—C19 156.51 (14) C10—C9—C8—C7 174.32 (13)
O4—C21—C20—C19 −146.42 (16) C10—C9—C8—C13 −13.3 (2)
O6—C13—C12—C11 −162.31 (13) C17—C16—C7—C8 −88.49 (18)
C9—C8—C7—C16 78.45 (17) C17—C16—C7—C6 43.9 (2)
C9—C8—C7—C6 −53.11 (18) C17—C16—C21—O4 169.75 (16)
C9—C8—C13—O6 −164.77 (14) C17—C16—C21—C20 −13.6 (2)
C9—C8—C13—C12 14.0 (2) C17—C18—C19—C20 45.7 (2)
C9—C10—C11—C12 49.40 (17) C17—C18—C19—C22 165.08 (15)
C9—C10—C11—C14 −71.15 (18) C17—C18—C19—C23 −74.29 (19)
C9—C10—C11—C15 168.67 (14) C13—C8—C7—C16 −93.69 (17)
O2—N1—C1—C6 51.4 (2) C13—C8—C7—C6 134.75 (14)
O2—N1—C1—C2 −125.14 (16) C13—C12—C11—C10 −48.40 (17)
O1—N1—C1—C6 −131.16 (16) C13—C12—C11—C14 73.07 (17)
O1—N1—C1—C2 52.2 (2) C13—C12—C11—C15 −167.05 (14)
C16—C7—C6—C1 35.67 (19) C6—C1—C2—C3 −5.0 (2)
C16—C7—C6—C5 −144.27 (14) C21—C16—C7—C8 92.93 (16)
C16—C17—C18—C19 −26.7 (2) C21—C16—C7—C6 −134.69 (14)
C16—C21—C20—C19 36.8 (2) C21—C16—C17—O3 −174.70 (14)
C8—C9—C10—C11 −20.2 (2) C21—C16—C17—C18 8.9 (2)
C8—C7—C6—C1 167.58 (13) C18—C19—C20—C21 −51.4 (2)
C8—C7—C6—C5 −12.4 (2) C1—C6—C5—C4 −2.8 (2)
C8—C13—C12—C11 18.8 (2) C1—C2—C3—C4 −0.7 (2)
C7—C16—C17—O3 6.8 (3) C5—C6—C1—N1 −169.69 (14)
C7—C16—C17—C18 −169.69 (15) C5—C6—C1—C2 6.6 (2)
C7—C16—C21—O4 −11.6 (2) C5—C4—C3—C2 4.3 (3)
C7—C16—C21—C20 165.04 (15) C3—C4—C5—C6 −2.5 (2)
C7—C8—C13—O6 7.6 (2) C22—C19—C20—C21 −171.31 (16)
C7—C8—C13—C12 −173.56 (14) C23—C19—C20—C21 68.8 (2)
C7—C6—C1—N1 10.4 (2)

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O5 0.97 (3) 1.62 (3) 2.5570 (16) 162 (3)
O6—H6···O4 1.08 (4) 1.58 (4) 2.6437 (19) 166 (3)
C2—H2···O1i 0.95 2.63 3.538 (2) 160
C10—H10B···O5ii 0.99 2.65 3.6138 (19) 165
C15—H15B···O3iii 0.98 2.58 3.505 (2) 157
C18—H18B···O1 1.04 (2) 2.67 (2) 3.381 (2) 125.5 (16)
C20—H20B···O5iv 0.99 2.43 3.332 (2) 152

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z; (iii) x, y+1, z; (iv) x+1, y, z.

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Crystal data

C23H29NO6 F(000) = 1776
Mr = 415.47 Dx = 1.330 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.8854 (4) Å Cell parameters from 9684 reflections
b = 25.2446 (10) Å θ = 2.7–30.5°
c = 15.3665 (6) Å µ = 0.10 mm1
β = 100.7606 (19)° T = 100 K
V = 4148.4 (3) Å3 Prism, colourless
Z = 8 0.48 × 0.43 × 0.31 mm

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Data collection

Bruker SMART BREEZE CCD diffractometer Rint = 0.045
φ and ω scans θmax = 30.6°, θmin = 1.6°
168826 measured reflections h = −15→15
12707 independent reflections k = −36→36
11044 reflections with I > 2σ(I) l = −21→21

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.060P)2 + 1.3541P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
12707 reflections Δρmax = 0.52 e Å3
569 parameters Δρmin = −0.20 e Å3
0 restraints

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.09761 (6) 0.68726 (3) 0.28219 (5) 0.01536 (13)
O2A 0.66193 (6) 0.61973 (3) 0.32843 (5) 0.01652 (13)
O3A 0.54423 (6) 0.69363 (3) 0.31163 (5) 0.01527 (13)
O4A 0.40914 (7) 0.74895 (3) 0.70657 (5) 0.01676 (14)
H4C 0.4593 (16) 0.7750 (7) 0.7112 (11) 0.035 (4)*
O5A 0.31079 (7) 0.65461 (3) 0.68643 (4) 0.01866 (14)
O6A 0.47618 (6) 0.80349 (3) 0.56333 (5) 0.01668 (14)
N1A 0.34484 (7) 0.54131 (3) 0.39339 (5) 0.01093 (13)
H1A 0.3460 (13) 0.5068 (6) 0.4013 (9) 0.021 (3)*
C2A 0.45480 (8) 0.56515 (3) 0.38033 (5) 0.01037 (15)
C3A 0.45444 (8) 0.61775 (3) 0.36062 (6) 0.01007 (14)
C4A 0.33953 (8) 0.65156 (3) 0.36544 (5) 0.00946 (14)
H4B 0.332567 0.679421 0.318505 0.011*
C5A 0.22391 (8) 0.61725 (3) 0.34576 (5) 0.00925 (14)
C6A 0.10568 (8) 0.63990 (3) 0.30421 (5) 0.00999 (14)
C7A −0.00768 (8) 0.60412 (3) 0.28469 (6) 0.01162 (15)
H7C −0.013501 0.588937 0.224662 0.014*
H7D −0.083739 0.625617 0.284713 0.014*
C8A −0.00446 (8) 0.55865 (3) 0.35161 (6) 0.01072 (15)
C9A 0.11952 (8) 0.52866 (3) 0.35798 (6) 0.01071 (15)
H9C 0.130811 0.504944 0.410176 0.013*
H9D 0.115282 0.506253 0.304626 0.013*
C10A 0.23072 (8) 0.56462 (3) 0.36583 (5) 0.00927 (14)
C11A −0.01825 (9) 0.58146 (4) 0.44184 (6) 0.01572 (17)
H11D 0.049914 0.606478 0.462131 0.024*
H11E −0.014841 0.552601 0.484888 0.024*
H11F −0.098635 0.599854 0.436132 0.024*
C12A −0.11296 (9) 0.52050 (4) 0.31995 (7) 0.01625 (17)
H12D −0.192403 0.539584 0.314712 0.024*
H12E −0.110612 0.491581 0.362771 0.024*
H12F −0.105306 0.505920 0.262095 0.024*
C13A 0.56241 (8) 0.52727 (4) 0.38723 (6) 0.01339 (16)
H13D 0.543503 0.494967 0.417571 0.020*
H13E 0.638014 0.543801 0.420913 0.020*
H13F 0.575997 0.518286 0.327703 0.020*
C14A 0.56421 (8) 0.64179 (4) 0.33347 (6) 0.01162 (15)
C15A 0.63909 (9) 0.71842 (4) 0.27011 (6) 0.01674 (17)
H15C 0.723206 0.707623 0.301464 0.020*
H15D 0.632745 0.757422 0.274256 0.020*
C16A 0.62173 (10) 0.70211 (4) 0.17397 (7) 0.02087 (19)
H16D 0.674331 0.724303 0.143533 0.031*
H16E 0.533831 0.706570 0.145851 0.031*
H16F 0.645760 0.664893 0.170167 0.031*
C17A 0.35248 (8) 0.67935 (3) 0.45549 (6) 0.01023 (15)
C18A 0.32110 (8) 0.65290 (3) 0.52864 (6) 0.01201 (15)
H18A 0.286818 0.618226 0.521374 0.014*
C19A 0.33951 (8) 0.67677 (4) 0.61162 (6) 0.01263 (16)
C20A 0.39194 (8) 0.72784 (4) 0.62385 (6) 0.01266 (16)
C21A 0.42098 (8) 0.75402 (3) 0.55069 (6) 0.01235 (16)
C22A 0.40129 (8) 0.73027 (3) 0.46704 (6) 0.01162 (15)
H22A 0.421364 0.749009 0.417934 0.014*
C23A 0.25765 (10) 0.60304 (4) 0.67836 (7) 0.02005 (19)
H23D 0.179341 0.603652 0.634894 0.030*
H23E 0.240715 0.591604 0.735908 0.030*
H23F 0.316250 0.578294 0.658694 0.030*
C24A 0.38733 (10) 0.84600 (4) 0.54853 (7) 0.02017 (19)
H24D 0.337479 0.843172 0.488624 0.030*
H24E 0.431736 0.879953 0.554867 0.030*
H24F 0.332068 0.843913 0.591977 0.030*
O1B 0.64618 (7) 0.56795 (3) 0.59302 (5) 0.01898 (14)
O2B 0.42404 (7) 0.61173 (3) 0.93863 (5) 0.02210 (15)
O3B 0.47350 (6) 0.54093 (3) 0.86392 (5) 0.01724 (14)
O4B 1.07150 (7) 0.47496 (3) 0.91945 (5) 0.01745 (14)
H4 1.1277 (17) 0.4973 (7) 0.9396 (12) 0.040 (5)*
O5B 1.09254 (6) 0.57723 (3) 0.88846 (5) 0.01832 (14)
O6B 0.85544 (7) 0.42479 (3) 0.88741 (5) 0.01802 (14)
N1B 0.67195 (7) 0.70086 (3) 0.81054 (5) 0.01272 (14)
H1 0.6769 (13) 0.7356 (6) 0.8200 (9) 0.022 (3)*
C2B 0.60016 (8) 0.67286 (4) 0.86093 (6) 0.01315 (16)
C3B 0.57467 (8) 0.62086 (4) 0.84315 (6) 0.01213 (15)
C4B 0.63347 (8) 0.59179 (3) 0.77391 (6) 0.01085 (15)
H4A 0.570391 0.566145 0.742480 0.013*
C5B 0.66228 (8) 0.63135 (3) 0.70649 (6) 0.01071 (15)
C6B 0.66639 (8) 0.61434 (3) 0.61710 (6) 0.01161 (15)
C7B 0.69106 (8) 0.65543 (3) 0.55138 (6) 0.01271 (15)
H7A 0.610642 0.671873 0.523744 0.015*
H7B 0.725884 0.637650 0.503929 0.015*
C8B 0.78141 (8) 0.69911 (3) 0.59211 (6) 0.01258 (15)
C9B 0.73133 (8) 0.72350 (3) 0.67009 (6) 0.01263 (15)
H9A 0.798126 0.745108 0.705925 0.015*
H9B 0.660884 0.747437 0.646616 0.015*
C10B 0.68745 (8) 0.68288 (3) 0.72894 (6) 0.01098 (15)
C11B 0.91219 (9) 0.67533 (4) 0.62358 (7) 0.01783 (18)
H11A 0.906685 0.645916 0.664297 0.027*
H11B 0.968228 0.702619 0.654158 0.027*
H11C 0.945007 0.662303 0.572359 0.027*
C12B 0.78685 (10) 0.74186 (4) 0.52223 (7) 0.01908 (18)
H12A 0.817987 0.726305 0.472081 0.029*
H12B 0.843131 0.770322 0.548282 0.029*
H12C 0.702898 0.756306 0.501600 0.029*
C13B 0.55601 (10) 0.70687 (4) 0.92881 (7) 0.02043 (19)
H13A 0.617141 0.735037 0.947664 0.031*
H13B 0.546865 0.685161 0.980088 0.031*
H13C 0.475127 0.722665 0.903090 0.031*
C14B 0.48511 (8) 0.59282 (4) 0.88766 (6) 0.01479 (16)
C15B 0.37849 (9) 0.51189 (4) 0.89925 (7) 0.01923 (18)
H15A 0.294455 0.525795 0.873705 0.023*
H15B 0.392024 0.516062 0.964409 0.023*
C16B 0.38731 (10) 0.45419 (4) 0.87558 (7) 0.02153 (19)
H16A 0.376740 0.450555 0.811117 0.032*
H16B 0.321567 0.434209 0.896828 0.032*
H16C 0.469351 0.440325 0.903427 0.032*
C17B 0.75057 (8) 0.56042 (3) 0.81518 (6) 0.01136 (15)
C18B 0.86636 (8) 0.58599 (4) 0.83344 (6) 0.01318 (16)
H18 0.871998 0.622799 0.821919 0.016*
C19B 0.97326 (8) 0.55741 (4) 0.86850 (6) 0.01334 (16)
C20B 0.96602 (8) 0.50345 (4) 0.88589 (6) 0.01323 (16)
C21B 0.85061 (9) 0.47788 (3) 0.86888 (6) 0.01301 (16)
C22B 0.74257 (8) 0.50638 (4) 0.83344 (6) 0.01278 (16)
H22 0.663772 0.489024 0.821767 0.015*
C23B 1.10806 (9) 0.63320 (4) 0.88435 (8) 0.02108 (19)
H23A 1.077197 0.645485 0.823712 0.032*
H23B 1.196897 0.642070 0.901795 0.032*
H23C 1.060743 0.650516 0.924718 0.032*
C24B 0.74049 (10) 0.39706 (4) 0.88304 (7) 0.01957 (19)
H24A 0.689946 0.400674 0.823490 0.029*
H24B 0.694746 0.411935 0.926559 0.029*
H24C 0.757687 0.359498 0.896071 0.029*

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0138 (3) 0.0100 (3) 0.0212 (3) 0.0012 (2) 0.0004 (2) 0.0044 (2)
O2A 0.0114 (3) 0.0183 (3) 0.0206 (3) 0.0018 (2) 0.0049 (2) 0.0016 (3)
O3A 0.0153 (3) 0.0116 (3) 0.0209 (3) −0.0018 (2) 0.0086 (3) 0.0018 (2)
O4A 0.0174 (3) 0.0172 (3) 0.0155 (3) −0.0066 (3) 0.0026 (2) −0.0073 (2)
O5A 0.0266 (4) 0.0172 (3) 0.0127 (3) −0.0096 (3) 0.0049 (3) −0.0020 (2)
O6A 0.0150 (3) 0.0086 (3) 0.0256 (3) −0.0037 (2) 0.0018 (3) −0.0039 (2)
N1A 0.0099 (3) 0.0076 (3) 0.0152 (3) 0.0012 (2) 0.0019 (3) 0.0017 (3)
C2A 0.0098 (3) 0.0115 (4) 0.0096 (3) 0.0008 (3) 0.0012 (3) −0.0006 (3)
C3A 0.0088 (3) 0.0107 (3) 0.0106 (3) 0.0002 (3) 0.0017 (3) −0.0005 (3)
C4A 0.0087 (3) 0.0078 (3) 0.0117 (3) −0.0001 (3) 0.0014 (3) 0.0002 (3)
C5A 0.0088 (3) 0.0084 (3) 0.0104 (3) 0.0001 (3) 0.0016 (3) 0.0004 (3)
C6A 0.0101 (3) 0.0097 (3) 0.0102 (3) 0.0007 (3) 0.0020 (3) 0.0005 (3)
C7A 0.0095 (3) 0.0113 (4) 0.0134 (4) −0.0005 (3) 0.0004 (3) 0.0006 (3)
C8A 0.0096 (3) 0.0098 (3) 0.0130 (4) −0.0010 (3) 0.0027 (3) −0.0007 (3)
C9A 0.0102 (3) 0.0081 (3) 0.0138 (4) −0.0010 (3) 0.0024 (3) −0.0005 (3)
C10A 0.0095 (3) 0.0092 (3) 0.0090 (3) 0.0005 (3) 0.0014 (3) −0.0003 (3)
C11A 0.0166 (4) 0.0174 (4) 0.0146 (4) −0.0002 (3) 0.0064 (3) −0.0019 (3)
C12A 0.0119 (4) 0.0147 (4) 0.0220 (4) −0.0042 (3) 0.0026 (3) −0.0009 (3)
C13A 0.0118 (4) 0.0126 (4) 0.0159 (4) 0.0035 (3) 0.0031 (3) 0.0003 (3)
C14A 0.0113 (4) 0.0126 (4) 0.0107 (3) −0.0014 (3) 0.0015 (3) −0.0008 (3)
C15A 0.0160 (4) 0.0162 (4) 0.0195 (4) −0.0051 (3) 0.0072 (3) 0.0022 (3)
C16A 0.0203 (5) 0.0245 (5) 0.0190 (4) −0.0016 (4) 0.0066 (4) 0.0024 (4)
C17A 0.0086 (3) 0.0089 (3) 0.0130 (4) 0.0004 (3) 0.0014 (3) −0.0009 (3)
C18A 0.0124 (4) 0.0098 (4) 0.0136 (4) −0.0019 (3) 0.0020 (3) −0.0013 (3)
C19A 0.0124 (4) 0.0120 (4) 0.0135 (4) −0.0022 (3) 0.0024 (3) −0.0008 (3)
C20A 0.0104 (4) 0.0123 (4) 0.0149 (4) −0.0013 (3) 0.0015 (3) −0.0040 (3)
C21A 0.0100 (4) 0.0082 (3) 0.0185 (4) −0.0016 (3) 0.0017 (3) −0.0027 (3)
C22A 0.0107 (3) 0.0091 (3) 0.0150 (4) −0.0004 (3) 0.0023 (3) −0.0003 (3)
C23A 0.0280 (5) 0.0149 (4) 0.0177 (4) −0.0065 (4) 0.0052 (4) 0.0013 (3)
C24A 0.0219 (5) 0.0102 (4) 0.0281 (5) 0.0000 (3) 0.0039 (4) −0.0003 (3)
O1B 0.0299 (4) 0.0093 (3) 0.0169 (3) −0.0001 (3) 0.0023 (3) −0.0026 (2)
O2B 0.0220 (4) 0.0223 (4) 0.0258 (4) 0.0014 (3) 0.0142 (3) 0.0004 (3)
O3B 0.0148 (3) 0.0159 (3) 0.0229 (3) −0.0016 (2) 0.0082 (3) 0.0013 (3)
O4B 0.0143 (3) 0.0165 (3) 0.0203 (3) 0.0059 (3) 0.0001 (3) 0.0028 (3)
O5B 0.0112 (3) 0.0149 (3) 0.0272 (4) 0.0005 (2) −0.0007 (3) −0.0011 (3)
O6B 0.0181 (3) 0.0111 (3) 0.0256 (4) 0.0029 (2) 0.0060 (3) 0.0060 (3)
N1B 0.0151 (3) 0.0098 (3) 0.0137 (3) 0.0001 (3) 0.0038 (3) −0.0031 (3)
C2B 0.0121 (4) 0.0147 (4) 0.0128 (4) 0.0025 (3) 0.0027 (3) −0.0008 (3)
C3B 0.0101 (4) 0.0136 (4) 0.0129 (4) 0.0022 (3) 0.0026 (3) 0.0010 (3)
C4B 0.0107 (4) 0.0095 (3) 0.0123 (4) 0.0011 (3) 0.0017 (3) 0.0001 (3)
C5B 0.0105 (3) 0.0094 (3) 0.0119 (4) 0.0012 (3) 0.0014 (3) −0.0003 (3)
C6B 0.0113 (4) 0.0099 (4) 0.0128 (4) 0.0016 (3) 0.0001 (3) −0.0009 (3)
C7B 0.0147 (4) 0.0114 (4) 0.0117 (4) −0.0004 (3) 0.0017 (3) −0.0008 (3)
C8B 0.0127 (4) 0.0122 (4) 0.0131 (4) −0.0004 (3) 0.0032 (3) −0.0011 (3)
C9B 0.0143 (4) 0.0093 (4) 0.0147 (4) −0.0006 (3) 0.0037 (3) −0.0013 (3)
C10B 0.0098 (3) 0.0107 (4) 0.0122 (4) 0.0015 (3) 0.0014 (3) −0.0011 (3)
C11B 0.0133 (4) 0.0205 (4) 0.0197 (4) 0.0007 (3) 0.0032 (3) −0.0036 (3)
C12B 0.0230 (5) 0.0174 (4) 0.0177 (4) −0.0045 (4) 0.0061 (4) 0.0020 (3)
C13B 0.0250 (5) 0.0196 (5) 0.0191 (4) 0.0027 (4) 0.0105 (4) −0.0044 (4)
C14B 0.0122 (4) 0.0162 (4) 0.0162 (4) 0.0020 (3) 0.0030 (3) 0.0030 (3)
C15B 0.0148 (4) 0.0195 (4) 0.0252 (5) −0.0026 (3) 0.0082 (4) 0.0042 (4)
C16B 0.0210 (5) 0.0193 (5) 0.0244 (5) −0.0038 (4) 0.0046 (4) 0.0020 (4)
C17B 0.0117 (4) 0.0108 (4) 0.0116 (4) 0.0020 (3) 0.0023 (3) −0.0005 (3)
C18B 0.0131 (4) 0.0106 (4) 0.0152 (4) 0.0014 (3) 0.0012 (3) −0.0006 (3)
C19B 0.0118 (4) 0.0138 (4) 0.0140 (4) 0.0009 (3) 0.0012 (3) −0.0016 (3)
C20B 0.0138 (4) 0.0139 (4) 0.0119 (4) 0.0046 (3) 0.0021 (3) 0.0008 (3)
C21B 0.0166 (4) 0.0107 (4) 0.0126 (4) 0.0028 (3) 0.0049 (3) 0.0016 (3)
C22B 0.0135 (4) 0.0120 (4) 0.0134 (4) 0.0015 (3) 0.0041 (3) 0.0004 (3)
C23B 0.0156 (4) 0.0162 (4) 0.0307 (5) −0.0016 (3) 0.0025 (4) −0.0033 (4)
C24B 0.0213 (5) 0.0145 (4) 0.0243 (5) −0.0009 (3) 0.0078 (4) 0.0041 (3)

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Geometric parameters (Å, º)

O1A—C6A 1.2412 (10) O1B—C6B 1.2355 (11)
O2A—C14A 1.2159 (11) O2B—C14B 1.2156 (12)
O3A—C14A 1.3583 (11) O3B—C14B 1.3593 (12)
O3A—C15A 1.4529 (11) O3B—C15B 1.4530 (11)
O4A—C20A 1.3587 (11) O4B—C20B 1.3713 (11)
O5A—C19A 1.3661 (11) O5B—C19B 1.3717 (11)
O5A—C23A 1.4206 (12) O5B—C23B 1.4257 (12)
O6A—C21A 1.3837 (10) O6B—C21B 1.3690 (11)
O6A—C24A 1.4341 (12) O6B—C24B 1.4245 (12)
N1A—C2A 1.3874 (11) N1B—C2B 1.3913 (12)
N1A—C10A 1.3683 (11) N1B—C10B 1.3733 (11)
C2A—C3A 1.3617 (12) C2B—C3B 1.3589 (13)
C2A—C13A 1.5006 (12) C2B—C13B 1.4979 (13)
C3A—C4A 1.5275 (12) C3B—C4B 1.5280 (12)
C3A—C14A 1.4684 (12) C3B—C14B 1.4725 (13)
C4A—C5A 1.5112 (11) C4B—C5B 1.5134 (12)
C4A—C17A 1.5344 (12) C4B—C17B 1.5337 (12)
C5A—C6A 1.4437 (11) C5B—C6B 1.4479 (12)
C5A—C10A 1.3628 (11) C5B—C10B 1.3604 (12)
C6A—C7A 1.5134 (12) C6B—C7B 1.5062 (12)
C7A—C8A 1.5371 (12) C7B—C8B 1.5314 (12)
C8A—C9A 1.5346 (12) C8B—C9B 1.5350 (12)
C8A—C11A 1.5342 (12) C8B—C11B 1.5374 (13)
C8A—C12A 1.5313 (12) C8B—C12B 1.5313 (13)
C9A—C10A 1.4998 (11) C9B—C10B 1.5027 (12)
C15A—C16A 1.5111 (14) C15B—C16B 1.5088 (15)
C17A—C18A 1.4034 (12) C17B—C18B 1.3972 (12)
C17A—C22A 1.3895 (11) C17B—C22B 1.3987 (12)
C18A—C19A 1.3906 (12) C18B—C19B 1.3896 (12)
C19A—C20A 1.4082 (12) C19B—C20B 1.3932 (13)
C20A—C21A 1.3904 (13) C20B—C21B 1.3931 (13)
C21A—C22A 1.3981 (12) C21B—C22B 1.3994 (12)
C14A—O3A—C15A 115.43 (7) C14B—O3B—C15B 115.02 (7)
C19A—O5A—C23A 117.08 (7) C19B—O5B—C23B 117.82 (7)
C21A—O6A—C24A 113.00 (7) C21B—O6B—C24B 118.16 (7)
C10A—N1A—C2A 121.78 (7) C10B—N1B—C2B 121.19 (8)
N1A—C2A—C13A 113.36 (7) N1B—C2B—C13B 112.51 (8)
C3A—C2A—N1A 119.23 (8) C3B—C2B—N1B 119.59 (8)
C3A—C2A—C13A 127.37 (8) C3B—C2B—C13B 127.86 (9)
C2A—C3A—C4A 120.17 (7) C2B—C3B—C4B 120.50 (8)
C2A—C3A—C14A 119.84 (8) C2B—C3B—C14B 119.94 (8)
C14A—C3A—C4A 119.99 (7) C14B—C3B—C4B 119.50 (8)
C3A—C4A—C17A 111.17 (7) C3B—C4B—C17B 112.57 (7)
C5A—C4A—C3A 109.20 (7) C5B—C4B—C3B 109.09 (7)
C5A—C4A—C17A 112.05 (7) C5B—C4B—C17B 111.19 (7)
C6A—C5A—C4A 120.12 (7) C6B—C5B—C4B 120.05 (7)
C10A—C5A—C4A 120.36 (7) C10B—C5B—C4B 121.01 (8)
C10A—C5A—C6A 119.51 (7) C10B—C5B—C6B 118.93 (8)
O1A—C6A—C5A 120.93 (8) O1B—C6B—C5B 122.00 (8)
O1A—C6A—C7A 120.49 (8) O1B—C6B—C7B 119.74 (8)
C5A—C6A—C7A 118.54 (7) C5B—C6B—C7B 118.21 (7)
C6A—C7A—C8A 113.41 (7) C6B—C7B—C8B 113.78 (7)
C9A—C8A—C7A 108.72 (7) C7B—C8B—C9B 108.25 (7)
C11A—C8A—C7A 109.30 (7) C7B—C8B—C11B 109.50 (7)
C11A—C8A—C9A 111.15 (7) C9B—C8B—C11B 110.73 (7)
C12A—C8A—C7A 109.71 (7) C12B—C8B—C7B 109.08 (7)
C12A—C8A—C9A 109.08 (7) C12B—C8B—C9B 109.31 (7)
C12A—C8A—C11A 108.87 (7) C12B—C8B—C11B 109.94 (8)
C10A—C9A—C8A 113.17 (7) C10B—C9B—C8B 113.28 (7)
N1A—C10A—C9A 115.91 (7) N1B—C10B—C9B 115.54 (7)
C5A—C10A—N1A 119.81 (8) C5B—C10B—N1B 119.61 (8)
C5A—C10A—C9A 124.26 (7) C5B—C10B—C9B 124.85 (8)
O2A—C14A—O3A 121.80 (8) O2B—C14B—O3B 121.11 (9)
O2A—C14A—C3A 126.64 (8) O2B—C14B—C3B 126.85 (9)
O3A—C14A—C3A 111.55 (7) O3B—C14B—C3B 112.03 (8)
O3A—C15A—C16A 110.04 (8) O3B—C15B—C16B 108.38 (8)
C18A—C17A—C4A 120.65 (7) C18B—C17B—C4B 119.57 (8)
C22A—C17A—C4A 120.45 (8) C18B—C17B—C22B 119.86 (8)
C22A—C17A—C18A 118.83 (8) C22B—C17B—C4B 120.56 (8)
C19A—C18A—C17A 120.88 (8) C19B—C18B—C17B 119.78 (8)
O5A—C19A—C18A 125.29 (8) O5B—C19B—C18B 125.90 (8)
O5A—C19A—C20A 114.41 (8) O5B—C19B—C20B 113.51 (8)
C18A—C19A—C20A 120.30 (8) C18B—C19B—C20B 120.59 (8)
O4A—C20A—C19A 117.75 (8) O4B—C20B—C19B 120.77 (8)
O4A—C20A—C21A 123.89 (8) O4B—C20B—C21B 119.34 (8)
C21A—C20A—C19A 118.35 (8) C21B—C20B—C19B 119.89 (8)
O6A—C21A—C20A 118.27 (8) O6B—C21B—C20B 114.60 (8)
O6A—C21A—C22A 120.27 (8) O6B—C21B—C22B 125.54 (8)
C20A—C21A—C22A 121.37 (8) C20B—C21B—C22B 119.85 (8)
C17A—C22A—C21A 120.23 (8) C17B—C22B—C21B 120.02 (8)
O1A—C6A—C7A—C8A −151.01 (8) O1B—C6B—C7B—C8B −147.46 (8)
O4A—C20A—C21A—O6A 3.22 (13) O4B—C20B—C21B—O6B −0.68 (12)
O4A—C20A—C21A—C22A 179.97 (8) O4B—C20B—C21B—C22B −179.08 (8)
O5A—C19A—C20A—O4A 0.60 (12) O5B—C19B—C20B—O4B −0.23 (12)
O5A—C19A—C20A—C21A −178.29 (8) O5B—C19B—C20B—C21B 179.96 (8)
O6A—C21A—C22A—C17A 176.30 (8) O6B—C21B—C22B—C17B −178.23 (8)
N1A—C2A—C3A—C4A 8.37 (12) N1B—C2B—C3B—C4B 5.35 (13)
N1A—C2A—C3A—C14A −170.77 (8) N1B—C2B—C3B—C14B −171.69 (8)
C2A—N1A—C10A—C5A −16.97 (12) C2B—N1B—C10B—C5B −17.81 (13)
C2A—N1A—C10A—C9A 161.69 (8) C2B—N1B—C10B—C9B 161.71 (8)
C2A—C3A—C4A—C5A −29.30 (10) C2B—C3B—C4B—C5B −26.83 (11)
C2A—C3A—C4A—C17A 94.83 (9) C2B—C3B—C4B—C17B 97.09 (10)
C2A—C3A—C14A—O2A −2.27 (14) C2B—C3B—C14B—O2B 3.16 (15)
C2A—C3A—C14A—O3A 176.45 (8) C2B—C3B—C14B—O3B −178.35 (8)
C3A—C4A—C5A—C6A −149.71 (8) C3B—C4B—C5B—C6B −153.27 (8)
C3A—C4A—C5A—C10A 29.31 (10) C3B—C4B—C5B—C10B 28.25 (11)
C3A—C4A—C17A—C18A −83.76 (9) C3B—C4B—C17B—C18B −84.89 (10)
C3A—C4A—C17A—C22A 93.08 (9) C3B—C4B—C17B—C22B 96.04 (9)
C4A—C3A—C14A—O2A 178.59 (8) C4B—C3B—C14B—O2B −173.92 (9)
C4A—C3A—C14A—O3A −2.69 (11) C4B—C3B—C14B—O3B 4.58 (11)
C4A—C5A—C6A—O1A 1.72 (12) C4B—C5B—C6B—O1B 0.45 (13)
C4A—C5A—C6A—C7A 179.35 (7) C4B—C5B—C6B—C7B 177.94 (7)
C4A—C5A—C10A—N1A −8.32 (12) C4B—C5B—C10B—N1B −7.91 (12)
C4A—C5A—C10A—C9A 173.14 (7) C4B—C5B—C10B—C9B 172.62 (8)
C4A—C17A—C18A—C19A 176.22 (8) C4B—C17B—C18B—C19B −178.18 (8)
C4A—C17A—C22A—C21A −175.56 (8) C4B—C17B—C22B—C21B 178.27 (8)
C5A—C4A—C17A—C18A 38.74 (10) C5B—C4B—C17B—C18B 37.86 (11)
C5A—C4A—C17A—C22A −144.43 (8) C5B—C4B—C17B—C22B −141.21 (8)
C5A—C6A—C7A—C8A 31.35 (11) C5B—C6B—C7B—C8B 34.99 (11)
C6A—C5A—C10A—N1A 170.71 (8) C6B—C5B—C10B—N1B 173.59 (8)
C6A—C5A—C10A—C9A −7.84 (12) C6B—C5B—C10B—C9B −5.88 (13)
C6A—C7A—C8A—C9A −53.22 (9) C6B—C7B—C8B—C9B −54.30 (10)
C6A—C7A—C8A—C11A 68.27 (9) C6B—C7B—C8B—C11B 66.51 (10)
C6A—C7A—C8A—C12A −172.43 (7) C6B—C7B—C8B—C12B −173.14 (8)
C7A—C8A—C9A—C10A 45.78 (9) C7B—C8B—C9B—C10B 44.60 (10)
C8A—C9A—C10A—N1A 164.48 (7) C8B—C9B—C10B—N1B 164.10 (8)
C8A—C9A—C10A—C5A −16.93 (12) C8B—C9B—C10B—C5B −16.41 (12)
C10A—N1A—C2A—C3A 16.82 (12) C10B—N1B—C2B—C3B 19.06 (13)
C10A—N1A—C2A—C13A −161.19 (8) C10B—N1B—C2B—C13B −158.87 (8)
C10A—C5A—C6A—O1A −177.31 (8) C10B—C5B—C6B—O1B 178.96 (9)
C10A—C5A—C6A—C7A 0.32 (12) C10B—C5B—C6B—C7B −3.55 (12)
C11A—C8A—C9A—C10A −74.57 (9) C11B—C8B—C9B—C10B −75.44 (9)
C12A—C8A—C9A—C10A 165.38 (7) C12B—C8B—C9B—C10B 163.30 (8)
C13A—C2A—C3A—C4A −173.92 (8) C13B—C2B—C3B—C4B −177.07 (9)
C13A—C2A—C3A—C14A 6.94 (13) C13B—C2B—C3B—C14B 5.89 (14)
C14A—O3A—C15A—C16A 77.56 (10) C14B—O3B—C15B—C16B −173.74 (8)
C14A—C3A—C4A—C5A 149.84 (7) C14B—C3B—C4B—C5B 150.23 (8)
C14A—C3A—C4A—C17A −86.04 (9) C14B—C3B—C4B—C17B −85.86 (10)
C15A—O3A—C14A—O2A 8.56 (12) C15B—O3B—C14B—O2B 3.78 (13)
C15A—O3A—C14A—C3A −170.22 (7) C15B—O3B—C14B—C3B −174.82 (8)
C17A—C4A—C5A—C6A 86.68 (9) C17B—C4B—C5B—C6B 82.01 (10)
C17A—C4A—C5A—C10A −94.30 (9) C17B—C4B—C5B—C10B −96.48 (9)
C17A—C18A—C19A—O5A 179.24 (8) C17B—C18B—C19B—O5B 179.14 (8)
C17A—C18A—C19A—C20A −0.95 (13) C17B—C18B—C19B—C20B −0.19 (13)
C18A—C17A—C22A—C21A 1.33 (13) C18B—C17B—C22B—C21B −0.80 (13)
C18A—C19A—C20A—O4A −179.24 (8) C18B—C19B—C20B—O4B 179.18 (8)
C18A—C19A—C20A—C21A 1.87 (13) C18B—C19B—C20B—C21B −0.63 (13)
C19A—C20A—C21A—O6A −177.97 (8) C19B—C20B—C21B—O6B 179.13 (8)
C19A—C20A—C21A—C22A −1.22 (13) C19B—C20B—C21B—C22B 0.72 (13)
C20A—C21A—C22A—C17A −0.39 (13) C20B—C21B—C22B—C17B −0.02 (13)
C22A—C17A—C18A—C19A −0.67 (13) C22B—C17B—C18B—C19B 0.89 (13)
C23A—O5A—C19A—C18A −0.11 (14) C23B—O5B—C19B—C18B 8.86 (14)
C23A—O5A—C19A—C20A −179.94 (8) C23B—O5B—C19B—C20B −171.77 (9)
C24A—O6A—C21A—C20A −93.57 (10) C24B—O6B—C21B—C20B 171.90 (8)
C24A—O6A—C21A—C22A 89.64 (10) C24B—O6B—C21B—C22B −9.80 (13)

Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4A—H4C···O1Ai 0.848 (17) 1.937 (17) 2.6948 (9) 148.0 (16)
N1A—H1A···O1Bii 0.880 (15) 1.890 (15) 2.7666 (10) 174.1 (13)
C7A—H7C···O6Bii 0.99 2.67 3.4510 (12) 136
C12A—H12D···O2Aiii 0.98 2.60 3.5237 (12) 157
C13A—H13D···O1Bii 0.98 2.59 3.3590 (12) 136
C16A—H16D···O4Aiv 0.98 2.65 3.3136 (13) 126
C24A—H24E···O4Bv 0.98 2.43 3.3105 (13) 149
N1B—H1···O1Ai 0.888 (15) 2.166 (15) 2.9479 (10) 146.6 (12)
C7B—H7B···O2A 0.99 2.69 3.4992 (11) 139
C9B—H9B···O6A 0.99 2.59 3.5751 (11) 172
C15B—H15A···O5Biii 0.99 2.60 3.4993 (12) 151
C23B—H23B···O2Bvi 0.98 2.55 3.4277 (13) 149

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) x+1/2, −y+3/2, z−1/2; (v) −x+3/2, y+1/2, −z+3/2; (vi) x+1, y, z.

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Crystal data

C29H29NO3 F(000) = 936
Mr = 439.53 Dx = 1.229 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.6527 (3) Å Cell parameters from 9872 reflections
b = 18.1986 (4) Å θ = 2.2–27.6°
c = 12.3435 (3) Å µ = 0.08 mm1
β = 114.8758 (12)° T = 100 K
V = 2374.74 (10) Å3 Prism, yellow
Z = 4 0.45 × 0.12 × 0.11 mm

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Data collection

Bruker SMART BREEZE CCD diffractometer Rint = 0.055
φ and ω scans θmax = 28.3°, θmin = 2.1°
72579 measured reflections h = −15→15
5902 independent reflections k = −24→24
4515 reflections with I > 2σ(I) l = −16→16

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.067P)2 + 1.0544P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5902 reflections Δρmax = 0.54 e Å3
306 parameters Δρmin = −0.22 e Å3
0 restraints

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.34009 (10) 0.80683 (6) 0.16928 (9) 0.0235 (2)
O2 0.31457 (11) 0.54998 (7) 0.51900 (11) 0.0331 (3)
O3 0.19449 (10) 0.64051 (6) 0.40339 (10) 0.0256 (2)
N1 0.61943 (12) 0.65569 (7) 0.47273 (11) 0.0182 (3)
H1 0.6990 (19) 0.6551 (11) 0.5295 (18) 0.032 (5)*
C2 0.52536 (13) 0.62310 (7) 0.49757 (12) 0.0177 (3)
C3 0.40249 (13) 0.63374 (7) 0.42341 (12) 0.0169 (3)
C4 0.36056 (13) 0.68248 (7) 0.31263 (12) 0.0153 (3)
H4 0.304711 0.721153 0.322453 0.018*
C5 0.47314 (13) 0.72274 (7) 0.30848 (12) 0.0152 (3)
C6 0.44911 (13) 0.78495 (7) 0.22944 (12) 0.0170 (3)
C7 0.55990 (14) 0.82620 (8) 0.22492 (13) 0.0202 (3)
H7A 0.575271 0.870831 0.274940 0.024*
H7B 0.536301 0.842425 0.141710 0.024*
C8 0.68311 (14) 0.78268 (8) 0.26676 (13) 0.0199 (3)
C9 0.70717 (13) 0.74830 (8) 0.38790 (13) 0.0188 (3)
H9A 0.778956 0.713567 0.410903 0.023*
H9B 0.731471 0.787529 0.449080 0.023*
C10 0.59379 (13) 0.70822 (7) 0.38663 (12) 0.0158 (3)
C11 0.67348 (15) 0.72310 (9) 0.17535 (14) 0.0260 (3)
H11A 0.602860 0.690143 0.164169 0.039*
H11B 0.752376 0.694870 0.204489 0.039*
H11C 0.659039 0.746243 0.098998 0.039*
C12 0.79290 (15) 0.83464 (9) 0.28370 (15) 0.0262 (3)
H12A 0.872397 0.806942 0.314765 0.039*
H12B 0.797430 0.873461 0.340391 0.039*
H12C 0.779071 0.856745 0.206789 0.039*
C13 0.57721 (15) 0.58079 (8) 0.61266 (13) 0.0240 (3)
H13A 0.663101 0.597854 0.662873 0.036*
H13B 0.579314 0.528329 0.595650 0.036*
H13C 0.523073 0.588557 0.654582 0.036*
C14 0.30380 (14) 0.60270 (8) 0.45520 (13) 0.0215 (3)
C15 0.08506 (16) 0.61002 (11) 0.41441 (16) 0.0340 (4)
H15A 0.023216 0.649703 0.404172 0.041*
H15B 0.111372 0.589143 0.495409 0.041*
C16 0.0228 (2) 0.55080 (12) 0.32261 (18) 0.0466 (5)
H16A 0.080715 0.509048 0.338088 0.070*
H16B 0.002429 0.570354 0.242627 0.070*
H16C −0.055015 0.534573 0.327545 0.070*
C17 0.27883 (12) 0.64059 (7) 0.19723 (12) 0.0149 (3)
C18 0.33088 (13) 0.58220 (7) 0.15614 (12) 0.0151 (3)
C19 0.46066 (13) 0.55974 (8) 0.21467 (12) 0.0171 (3)
H19 0.515995 0.585501 0.283915 0.021*
C20 0.50692 (14) 0.50254 (8) 0.17387 (13) 0.0199 (3)
H20 0.593432 0.489206 0.215031 0.024*
C21 0.42774 (15) 0.46271 (8) 0.07091 (14) 0.0223 (3)
H21 0.460922 0.422798 0.043432 0.027*
C22 0.30435 (14) 0.48181 (8) 0.01176 (13) 0.0206 (3)
H22 0.251852 0.455228 −0.057734 0.025*
C23 0.25166 (13) 0.54115 (8) 0.05188 (12) 0.0174 (3)
C24 0.12363 (14) 0.55804 (8) −0.00657 (12) 0.0192 (3)
H24 0.071627 0.530269 −0.074803 0.023*
C25 0.06980 (13) 0.61454 (8) 0.03234 (12) 0.0178 (3)
C26 0.14856 (13) 0.65780 (7) 0.13450 (12) 0.0162 (3)
C27 0.08637 (13) 0.71596 (8) 0.16756 (13) 0.0191 (3)
H27 0.135306 0.747691 0.231472 0.023*
C28 −0.04097 (14) 0.72696 (8) 0.10984 (14) 0.0220 (3)
H28 −0.078874 0.765462 0.135365 0.026*
C29 −0.11792 (14) 0.68199 (8) 0.01238 (14) 0.0228 (3)
H29 −0.206831 0.689377 −0.025495 0.027*
C30 −0.06317 (14) 0.62827 (8) −0.02621 (13) 0.0210 (3)
H30 −0.114157 0.599310 −0.093293 0.025*

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0196 (5) 0.0252 (5) 0.0203 (5) 0.0012 (4) 0.0030 (4) 0.0046 (4)
O2 0.0326 (7) 0.0324 (6) 0.0380 (7) −0.0054 (5) 0.0184 (6) 0.0102 (5)
O3 0.0203 (5) 0.0324 (6) 0.0278 (6) −0.0043 (4) 0.0139 (5) 0.0013 (5)
N1 0.0150 (6) 0.0202 (6) 0.0164 (6) −0.0014 (5) 0.0038 (5) 0.0016 (5)
C2 0.0210 (7) 0.0160 (6) 0.0158 (6) −0.0025 (5) 0.0074 (6) −0.0012 (5)
C3 0.0198 (7) 0.0171 (6) 0.0147 (6) −0.0025 (5) 0.0082 (5) −0.0011 (5)
C4 0.0146 (6) 0.0163 (6) 0.0147 (6) −0.0009 (5) 0.0059 (5) −0.0005 (5)
C5 0.0156 (6) 0.0164 (6) 0.0140 (6) −0.0020 (5) 0.0065 (5) −0.0020 (5)
C6 0.0187 (7) 0.0178 (6) 0.0135 (6) −0.0011 (5) 0.0058 (5) −0.0016 (5)
C7 0.0231 (7) 0.0202 (7) 0.0173 (7) −0.0036 (6) 0.0084 (6) 0.0021 (5)
C8 0.0196 (7) 0.0222 (7) 0.0195 (7) −0.0046 (6) 0.0099 (6) −0.0007 (5)
C9 0.0146 (7) 0.0228 (7) 0.0179 (7) −0.0016 (5) 0.0058 (5) 0.0004 (5)
C10 0.0169 (7) 0.0162 (6) 0.0146 (6) −0.0012 (5) 0.0070 (5) −0.0014 (5)
C11 0.0274 (8) 0.0308 (8) 0.0247 (8) −0.0053 (6) 0.0156 (7) −0.0049 (6)
C12 0.0241 (8) 0.0297 (8) 0.0277 (8) −0.0080 (6) 0.0137 (7) 0.0003 (6)
C13 0.0268 (8) 0.0236 (7) 0.0180 (7) −0.0033 (6) 0.0061 (6) 0.0033 (6)
C14 0.0225 (7) 0.0266 (7) 0.0166 (7) −0.0058 (6) 0.0092 (6) −0.0055 (6)
C15 0.0261 (8) 0.0496 (11) 0.0316 (9) −0.0113 (8) 0.0174 (7) −0.0048 (8)
C16 0.0397 (11) 0.0598 (13) 0.0417 (11) −0.0258 (10) 0.0186 (9) −0.0104 (10)
C17 0.0157 (6) 0.0156 (6) 0.0140 (6) −0.0022 (5) 0.0067 (5) 0.0004 (5)
C18 0.0168 (6) 0.0162 (6) 0.0141 (6) −0.0022 (5) 0.0083 (5) 0.0013 (5)
C19 0.0172 (7) 0.0182 (6) 0.0164 (7) −0.0014 (5) 0.0076 (5) 0.0013 (5)
C20 0.0200 (7) 0.0205 (7) 0.0220 (7) 0.0022 (5) 0.0115 (6) 0.0026 (5)
C21 0.0301 (8) 0.0174 (7) 0.0253 (8) 0.0001 (6) 0.0175 (7) −0.0008 (6)
C22 0.0260 (8) 0.0188 (7) 0.0199 (7) −0.0070 (6) 0.0125 (6) −0.0046 (5)
C23 0.0207 (7) 0.0170 (6) 0.0162 (7) −0.0041 (5) 0.0094 (6) 0.0005 (5)
C24 0.0207 (7) 0.0198 (7) 0.0152 (6) −0.0056 (5) 0.0057 (6) −0.0006 (5)
C25 0.0166 (7) 0.0189 (7) 0.0169 (7) −0.0043 (5) 0.0062 (5) 0.0029 (5)
C26 0.0154 (6) 0.0170 (6) 0.0168 (6) −0.0027 (5) 0.0074 (5) 0.0023 (5)
C27 0.0176 (7) 0.0195 (7) 0.0209 (7) −0.0006 (5) 0.0087 (6) 0.0014 (5)
C28 0.0193 (7) 0.0220 (7) 0.0275 (8) 0.0017 (6) 0.0125 (6) 0.0055 (6)
C29 0.0144 (7) 0.0262 (7) 0.0260 (8) −0.0014 (6) 0.0067 (6) 0.0094 (6)
C30 0.0175 (7) 0.0230 (7) 0.0193 (7) −0.0060 (5) 0.0046 (6) 0.0041 (6)

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Geometric parameters (Å, º)

O1—C6 1.2370 (17) C9—C10 1.5036 (19)
O2—C14 1.2138 (19) C15—C16 1.510 (3)
O3—C14 1.3489 (19) C17—C18 1.4188 (19)
O3—C15 1.4486 (19) C17—C26 1.4188 (19)
N1—C2 1.3893 (18) C18—C19 1.4342 (19)
N1—C10 1.3658 (18) C18—C23 1.4377 (19)
C2—C3 1.350 (2) C19—C20 1.362 (2)
C2—C13 1.5013 (19) C20—C21 1.416 (2)
C3—C4 1.5275 (18) C21—C22 1.356 (2)
C3—C14 1.4749 (19) C22—C23 1.430 (2)
C4—C5 1.5220 (18) C23—C24 1.391 (2)
C4—C17 1.5413 (18) C24—C25 1.391 (2)
C5—C6 1.4430 (19) C25—C26 1.4417 (19)
C5—C10 1.3550 (19) C25—C30 1.430 (2)
C6—C7 1.5146 (19) C26—C27 1.4356 (19)
C7—C8 1.527 (2) C27—C28 1.364 (2)
C8—C9 1.534 (2) C28—C29 1.419 (2)
C8—C11 1.534 (2) C29—C30 1.358 (2)
C8—C12 1.533 (2)
C14—O3—C15 116.95 (13) O2—C14—O3 122.01 (14)
C10—N1—C2 122.41 (12) O2—C14—C3 126.59 (14)
N1—C2—C13 112.76 (12) O3—C14—C3 111.41 (12)
C3—C2—N1 119.95 (12) O3—C15—C16 111.51 (14)
C3—C2—C13 127.23 (13) C18—C17—C4 120.66 (12)
C2—C3—C4 122.61 (12) C18—C17—C26 119.36 (12)
C2—C3—C14 119.20 (13) C26—C17—C4 119.90 (12)
C14—C3—C4 117.97 (12) C17—C18—C19 123.51 (12)
C3—C4—C17 112.38 (11) C17—C18—C23 119.94 (12)
C5—C4—C3 110.73 (11) C19—C18—C23 116.53 (12)
C5—C4—C17 114.41 (11) C20—C19—C18 121.93 (13)
C6—C5—C4 118.40 (12) C19—C20—C21 120.87 (14)
C10—C5—C4 122.21 (12) C22—C21—C20 119.68 (13)
C10—C5—C6 118.85 (12) C21—C22—C23 121.31 (13)
O1—C6—C5 121.10 (13) C22—C23—C18 119.67 (13)
O1—C6—C7 119.63 (12) C24—C23—C18 119.61 (13)
C5—C6—C7 119.20 (12) C24—C23—C22 120.69 (13)
C6—C7—C8 115.17 (12) C25—C24—C23 121.68 (13)
C7—C8—C9 107.55 (11) C24—C25—C26 119.48 (13)
C7—C8—C11 110.50 (12) C24—C25—C30 120.32 (13)
C7—C8—C12 109.77 (12) C30—C25—C26 120.17 (13)
C9—C8—C11 110.82 (12) C17—C26—C25 119.88 (12)
C12—C8—C9 108.59 (12) C17—C26—C27 124.04 (13)
C12—C8—C11 109.57 (12) C27—C26—C25 116.07 (12)
C10—C9—C8 112.84 (11) C28—C27—C26 121.87 (14)
N1—C10—C9 115.33 (12) C27—C28—C29 121.26 (14)
C5—C10—N1 120.82 (12) C30—C29—C28 119.33 (13)
C5—C10—C9 123.84 (12) C29—C30—C25 121.17 (14)
O1—C6—C7—C8 −160.55 (13) C13—C2—C3—C4 175.60 (13)
N1—C2—C3—C4 −1.6 (2) C13—C2—C3—C14 1.1 (2)
N1—C2—C3—C14 −176.08 (12) C14—O3—C15—C16 −82.03 (19)
C2—N1—C10—C5 −10.5 (2) C14—C3—C4—C5 167.62 (12)
C2—N1—C10—C9 168.21 (12) C14—C3—C4—C17 −63.06 (16)
C2—C3—C4—C5 −6.93 (18) C15—O3—C14—O2 −7.7 (2)
C2—C3—C4—C17 122.39 (14) C15—O3—C14—C3 172.08 (12)
C2—C3—C14—O2 −25.1 (2) C17—C4—C5—C6 67.85 (16)
C2—C3—C14—O3 155.09 (13) C17—C4—C5—C10 −120.75 (14)
C3—C4—C5—C6 −163.92 (11) C17—C18—C19—C20 178.82 (13)
C3—C4—C5—C10 7.48 (18) C17—C18—C23—C22 −179.25 (12)
C3—C4—C17—C18 −65.27 (16) C17—C18—C23—C24 −1.38 (19)
C3—C4—C17—C26 111.42 (14) C17—C26—C27—C28 −175.04 (13)
C4—C3—C14—O2 160.16 (14) C18—C17—C26—C25 1.94 (19)
C4—C3—C14—O3 −19.65 (17) C18—C17—C26—C27 −179.50 (12)
C4—C5—C6—O1 2.40 (19) C18—C19—C20—C21 0.1 (2)
C4—C5—C6—C7 179.41 (12) C18—C23—C24—C25 0.8 (2)
C4—C5—C10—N1 0.6 (2) C19—C18—C23—C22 −0.43 (18)
C4—C5—C10—C9 −178.06 (12) C19—C18—C23—C24 177.45 (12)
C4—C17—C18—C19 −2.05 (19) C19—C20—C21—C22 0.2 (2)
C4—C17—C18—C23 176.69 (12) C20—C21—C22—C23 −0.6 (2)
C4—C17—C26—C25 −174.79 (12) C21—C22—C23—C18 0.8 (2)
C4—C17—C26—C27 3.8 (2) C21—C22—C23—C24 −177.10 (13)
C5—C4—C17—C18 62.12 (16) C22—C23—C24—C25 178.66 (13)
C5—C4—C17—C26 −121.19 (13) C23—C18—C19—C20 0.04 (19)
C5—C6—C7—C8 22.39 (18) C23—C24—C25—C26 1.1 (2)
C6—C5—C10—N1 171.93 (12) C23—C24—C25—C30 −177.01 (13)
C6—C5—C10—C9 −6.7 (2) C24—C25—C26—C17 −2.52 (19)
C6—C7—C8—C9 −49.79 (16) C24—C25—C26—C27 178.81 (12)
C6—C7—C8—C11 71.30 (15) C24—C25—C30—C29 178.32 (13)
C6—C7—C8—C12 −167.75 (12) C25—C26—C27—C28 3.6 (2)
C7—C8—C9—C10 49.90 (15) C26—C17—C18—C19 −178.75 (12)
C8—C9—C10—N1 157.27 (12) C26—C17—C18—C23 −0.01 (19)
C8—C9—C10—C5 −24.03 (19) C26—C25—C30—C29 0.2 (2)
C10—N1—C2—C3 11.0 (2) C26—C27—C28—C29 −1.2 (2)
C10—N1—C2—C13 −166.55 (13) C27—C28—C29—C30 −1.8 (2)
C10—C5—C6—O1 −169.29 (13) C28—C29—C30—C25 2.3 (2)
C10—C5—C6—C7 7.72 (19) C30—C25—C26—C17 175.63 (12)
C11—C8—C9—C10 −70.98 (15) C30—C25—C26—C27 −3.04 (19)
C12—C8—C9—C10 168.62 (12)

Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.90 (2) 1.94 (2) 2.7776 (16) 154.2 (18)
C13—H13B···O2ii 0.98 2.65 3.409 (2) 134
C19—H19···N1 0.95 2.48 3.4148 (19) 168

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by University of Montana grant 325490 to Nicholas R. Natale.

References

  1. Aygün Cevher, H., Schaller, D., Gandini, M. A., Kaplan, O., Gambeta, E., Zhang, F. X., Çelebier, M., Tahir, M. N., Zamponi, G. W., Wolber, G. & Gündüz, M. G. (2019). Bioorg. Chem. 91, 103187. [DOI] [PubMed]
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Franconetti, A., Frontera, A. & Mooibroek, T. J. (2019). CrystEngComm, 21, 5410–5417.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Martín, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suárez, M., Ochoa, E., Morales, A. & Bosque, J. (1995). J. Heterocycl. Chem. 32, 235–238.
  7. Natale, N. R. & Steiger, S. A. (2014). Future Med. Chem. 6, 923–943. [DOI] [PubMed]
  8. Palakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806–o2807. [DOI] [PMC free article] [PubMed]
  9. Rose, U. (1990). Arch. Pharm. Pharm. Med. Chem. 323, 281–286. [DOI] [PubMed]
  10. Rose, U. & Dräger, M. (1992). J. Med. Chem. 35, 2238–2243. [DOI] [PubMed]
  11. Schaller, D., Gündüz, M. G., Zhang, F. X., Zamponi, G. W. & Wolber, G. (2018). Eur. J. Med. Chem. 155, 1–12. [DOI] [PubMed]
  12. Schauer, C. K., Anderson, O. P., Natale, N. R. & Quincy, D. A. (1986). Acta Cryst. C42, 884–886.
  13. Shahraki, O., Edraki, N., Khoshneviszadeh, M., Zargari, F., Ranjbar, S., Saso, L., Firuzi, O. & Miri, R. (2017). Drug. Des. Dev. Ther. 11, 407–418. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Steiger, S. A., Li, C., Backos, D. S., Reigan, P. & Natale, N. R. (2017). Bioorg. Med. Chem. 25, 3223–3234. [DOI] [PMC free article] [PubMed]
  17. Steiger, S. A., Li, C., Campana, C. F. & Natale, N. R. (2016). Tetrahedron Lett. 57, 423–425. [DOI] [PMC free article] [PubMed]
  18. Steiger, S. A., Li, C. & Natale, N. R. (2018). Acta Cryst. E74, 1417–1420. [DOI] [PMC free article] [PubMed]
  19. Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014a). Acta Cryst. C70, 790–795. [DOI] [PMC free article] [PubMed]
  20. Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014b). Acta Cryst. E70, o791–o792. [DOI] [PMC free article] [PubMed]
  21. Trippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). J. Med. Chem. 56, 3121–3147. [DOI] [PMC free article] [PubMed]
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  23. Wang, L.-M., Sheng, J., Zhang, L., Han, J.-W., Fan, Z.-Y., Tian, H. & Qian, C.-T. (2005). Tetrahedron, 61, 1539–1543.
  24. Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, x, 327-337.
  25. Yao, C. S., Zhu, S. L., Yu, C. X. & Tu, S. J. (2005). J. Xuzhou Normal Univ. (Nat. Sci.) 233, 65-67.
  26. Zamponi, G. (2016). Nat. Rev. Drug Discov. 15, 19–34. [DOI] [PubMed]
  27. Zamponi, G., Stotz, S. C., Staples, R. J., Andro, T. M., Nelson, J. K., Hulubei, V., Blumenfeld, A. & Natale, N. R. (2003). J. Med. Chem. 46, 87–96. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989019017018/dx2021sup1.cif

e-76-00125-sup1.cif (7.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019017018/dx2021Isup2.hkl

e-76-00125-Isup2.hkl (422.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019017018/dx2021Isup5.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019017018/dx2021IIsup3.hkl

e-76-00125-IIsup3.hkl (1,007.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019017018/dx2021IIsup6.cml

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989019017018/dx2021IIIsup4.hkl

e-76-00125-IIIsup4.hkl (469.4KB, hkl)

CCDC references: 1973149, 1973148, 1973147

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES