Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 21;76(Pt 2):257–260. doi: 10.1107/S2056989020000584

Crystal structure of a tripeptide biphenyl hybrid C50H56N6O10·0.5H2O

Thuy Quynh Le a, Xuan Tu Nguyen a, Hung Huy Nguyen a, Dinh Hung Mac a, Thai Thanh Thu Bui a,*
PMCID: PMC7001844  PMID: 32071757

The synthesis of the peptide biphenyl hybrid compound dimethyl 2,2′-[((2S,2′S)-2,2′-{[(2S,2′S)-1,1′-([1,1′-biphen­yl]-2,2′-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­nedi­yl)](2S,2′S)-dipropionate) is described. The crystal structure of this compound has a highly ordered supra­molecular structure with extensive inter­molecular hydrogen bonding.

Keywords: crystal structure, hydrogen bonding, peptide biphenyl hybrids, tripeptide Pro–Phe–Ala.

Abstract

A peptide biphenyl hybrid compound {systematic name: dimethyl 2,2′-[((2S,2′S)-2,2′-{[(2S,2′S)-1,1′-([1,1′-biphen­yl]-2,2′-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­nedi­yl)](2S,2′S)-dipropionate hemihydrate}, C50H56N6O10·0.5H2O, was prepared by coupling of [1,1′-biphen­yl]-2,2′-dicarbonyl dichloride, tri­ethyl­amine and the tripeptide Pro–Phe–Ala in CH2Cl2 at 273 K under an N2 atmosphere. In the crystal, the asymmetric unit contains the peptide biphenyl hybrid accompanied by one-half of a water mol­ecule. A C atom of one of the proline rings is disordered between two positions in a 0.746 (11):0.254 (11) ratio. An important structural aspect of peptide compounds is their capacity to self-associate mediated by inter­molecular and intra­molecular hydrogen bonding. This characteristic can be useful in understanding the inter­actions between peptides and biomacromolecular targets, as well as to explain peptide properties.

Chemical context  

Peptides are combined linear chains of amino acids and are essential for all biological processes. Consequently, they are of great interest in the biomedical field, and research into the use of peptides and modified peptides as therapeutics is increasing rapidly. At present there are over 100 approved peptide-based therapeutics on the market, with the majority being smaller than 20 amino acids (Bruno et al., 2013 ). However, these peptides have some drawbacks: their poor absorption after oral ingestion, low diffusion in tissue organs, and low metabolic stability towards protease enzymes as well as undesired side-effects of flexible peptides due to inter­action with several receptors.

To overcome these disadvantages, researchers are aiming at the development of new treatment methods based on peptides and proteins, by introducing both structural and functional specific modifications and maintaining the features responsible for biological activity. The synthesis, structure, and properties of peptide–biphenyl hybrids I and II (Fig. 1), which are derivatives of 1,1-biphenyl with amino acids or peptide chains at the positions C2 and C2′ (Mann et al., 2002; Montero, Mann et al., 2004) have been studied intensively to overcome the disadvantages mentioned above.

Figure 1.

Figure 1

Structure of peptide-biphenyl hybrids I and II.

The combination of biphenyl and peptide fragments provides compounds with structural (Mann et al., 2002) and biological properties of significant inter­est, as illustrated by the glycopeptide anti­biotic vancomycin, the proteasome inhibitor TMC-95A (Kaiser et al., 2004) and the peptide anti­biotic WS- 43708A (Rajamoorthi & Williams, 1987), aryl­omycins (Schimana et al., 2002) and biphenomycins (Ezaki et al., 1985). The inhibition of calpain I by biphenyl derivatives and peptide–biphenyl hybrids was reported by Montero, Albericio et al. (2004).

Biphenyl is a typical drug-like scaffold, which is present in 2.1% of reference drug mol­ecules (Bemis et al., 1996). Based on the important role of the biphenyl unit and peptides in biological activity, we report here the synthesis and crystallographic study of a peptide–2,2′-biphenyl hybrid with the tripeptide Pro–Phe–Ala (Fig. 2).graphic file with name e-76-00257-scheme1.jpg

Figure 2.

Figure 2

A view of the mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

Structural commentary  

The title compound crystallizes in space group P212121 with one mol­ecule of dimethyl 2,2′-[((2S,2′S)-2,2′-{[(2S,2′S)-1,1′-([1,1′-biphen­yl]-2,2′-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­ne­di­­yl)](2S,2′S)-dipropionate) and one-half of a water mol­ecule in the asymmetric unit (Fig. 2). One of the proline rings is disordered over two conformations and atom C17 was refined using a split model with occupancies of 0.746 (11) and 0.254 (11). An intra­molecular hydrogen bond is formed between the NH and CO groups of the two tripeptides with a distance of 2.04 Å (N5—H5⋯O5=C19, see Table 1, Fig. 2), which is slightly shorter than previously reported (Ranganathan et al., 1997). The C20–C25 and C26–C31 benzene rings are roughly perpendicular to each other, with a dihedral angle between them of 84.4 (4)°. An inter­esting feature is the non-coplanarity between each phenyl ring and the C=O function of the attached peptide bond. The C26—C31—C32=O6, C26—C31—C32—N4 and C25—C20—C19=O5, C25—C20—C19—N3 torsion angles are 59.8 (4)°, −123.0 (3)° and −85.9 (4)°, −96.8 (4)°, respectively. The torsion angles ω, Φ and Ψ along the two tripeptide backbones are given in Table 2. The torsion angles φ and ψ of amino acids Phe2, Pro4, Phe5 and Ala6 (as defined in Table 2) correspond with the α region in a Ramachandran plot, while for amino acids Pro1 and Ala3 the β region is observed.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11B⋯O10 0.87 2.15 2.899 (6) 145
O11—H11A⋯O7 0.87 2.03 2.804 (6) 145
C29—H29⋯O11i 0.95 2.57 3.339 (7) 138
N5—H5⋯O5 0.88 2.04 2.892 (3) 163
N2—H2⋯O3ii 0.88 2.11 2.867 (4) 143
C6—H6A⋯O2iii 1.00 2.67 3.647 (4) 165
C4—H4C⋯O4ii 0.98 2.55 3.480 (4) 159
C27—H27⋯O9iv 0.95 2.41 3.327 (5) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. Backbone torsion angles ω, Φ, Ψ (°) for the two tripeptide fragments.

Pro1 ω1 C20—C19—N3—C15 170.3 (3)
  φ1 C19—N3—C15—C14 −66.2 (4)
  ψ1 N3—C15—C14—N2 152.4 (3)
Phe2 ω2 C15—C14—N2—C6 165.7 (3)
  φ2 C14—N2—C6—C5 −68.9 (4)
  ψ2 N2—C6—C5—N1 −48.1 (4)
Ala3 ω3 C6—C5—N1—C3 −174.4 (3)
  φ3 C5—N1—C3—C2 −145.1 (3)
  ψ3 N1—C3—C2—O1 158.6 (3)
Pro4 ω4 C31—C32—N4—C36 −169.3 (3)
  φ4 C32—N4—C36—C37 −58.8 (3)
  ψ4 N4—C36—C37—N5 −32.5 (4)
Phe5 ω5 C36—C37—N5—C38 −173.0 (3)
  φ5 C37—N5—C38—C46 −96.4 (3)
  ψ5 N5—C38—C46—N6 22.6 (4)
Ala6 ω6 C38—C46—N6—C47 169.3 (3)
  φ6 C46—N6—C47—C49 −52.1 (4)
  ψ6 N6—C47—C49—O10 −31.8 (4)

Supra­molecular features  

The crystal packing is dominated by hydrogen bonding (Table 1). The water mol­ecule stabilizes the packing by bridging atoms O10 and O7 (hydrogen bonds O11—H11B⋯O10, O11—H11A⋯O7) and makes an additional hydrogen bond C29—H29⋯O11 with a neighbouring mol­ecule. The mol­ecules are further linked via a hydrogen bond between the NH and CO groups of peptide bonds (N2—H2⋯O3=C5), resulting in chains running in the a-axis direction (Fig. 3). In addition, five C–H⋯O=C inter­actions with H⋯O distances ranging from 2.41 to 2.67 Å are observed.

Figure 3.

Figure 3

Partial crystal packing of the title compound with dashed lines representing the hydrogen bonds (see also Table 1).

Database survey  

A search in the Cambridge Structural Database (CSD, Version 5.40, 2019.2; Groom et al., 2016) for a peptide–biphenyl hybrid with three amino acids gave no hits. We found nine structures of peptide–biphenyl hybrids containing one and two amino acids. In three of them a di­sulfide bridge is present. Three structures contain only one amino acid (MULLOU, Mann et al., 2002; WAFRUR and WAFSAY, Herradón et al., 2004) and two structures contain two amino acids (MULLUA, Mann et al., 2002; WAFSEC, Herradón et al., 2004). For the structures of MULLUA and WAFSEC, the torsion angles ϕ and ψ are located in different regions of the Ramachandran plot compared to the title structure.

Synthesis and crystallization  

To a round-bottom flask was added amine HN–proline–phenyl­alanine–alanine–COOMe (1 eq.), Et3N (2 eq.) and anhydrous CH2Cl2 (50mL). To this solution was added a solution of (1,1′-biphen­yl)-2,2′-dicarbonyl dichloride in CH2Cl2 at 273 K under an N2 atmosphere. After completion of the reaction, the mixture was washed with 1N HCl solution, water and a solution of brine, respectively. The organic phase was dried over Na2SO4, filtered and evaporated under reduced pressure. The crude product was then purified by flash chromatography (AcOEt/hexane 3:2) to give a yellow solid (63% yield). The compound was recrystallized by slow evaporation in methanol to give crystals suitable for X-ray diffraction.

1H NMR (500 MHz, CDCl3, δ in ppm) δ 7.96 (s, 1H), 7.63 (d, J = 21.1 Hz, 1H), 7.56–7.28 (m, 7H), 7.32–7.07 (m, 11H), 6.90 (s, 1H), 6.84 (d, J = 7.1 Hz, 1H), 5.91 (s, 1H), 4.59–4.36 (m, 3H), 4.36–4.14 (m, 3H), 3.75–3.62 (m, 6H), 3.60–3.54 (m, 2H), 3.48–3.10 (m, 4H), 2.41 (s, 1H), 2.18 (s, 1H), 2.02–1.89 (m, 2H), 1.89–1.64 (m, 8H), 1.56 (s, 1H), 1.43 (s, 1H), 1.34–1.14 (m, 6H).

13C NMR (126 MHz, CDCl3, δ in ppm) δ 73.22, 172.49, 172.33, 171.45, 170.92, 170.60, 170.02, 169.43, 138.29, 137.02, 131.39, 131.03, 129.81, 129.71, 129.61, 129.41, 129.32, 128.97, 128.65, 128.50, 127.96, 127.66, 126.93, 126.63, 60.08, 58.57, 55.32, 52.37, 50.38, 48.13, 47.44, 39.20, 36.31, 32.00, 29.83, 28.58, 25.63, 24.63, 23.23, 18.56, 18.47, 18.14.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and treated as riding on their parent atoms with N—H = 0.88 Å and U iso(H) = 1.2U eq (N), Caromatic—H = 0.95 Å and U iso(H) = 1.2U eq(C), Cproline, methylen—H = 0.99 Å and U iso(H) = 1.2 U eq(C), Cmeth­yl—H = 0.98 Å and U iso(H) = 1.5 U eq(C), Owater—H = 0.87 Å and U iso(H) = 1.52U eq(O). A rotating group model (AFIX 137) was applied to the methyl groups at C1, C4, C48, C50. The solvent water mol­ecule is disordered and was refined with a site occupation factor fixed to 0.5. The ring of one of the proline residues shows two conformations with refined occupancy factors for atom C17 converging to 0.746 (11) and 0.254 (11).

Table 3. Experimental details.

Crystal data
Chemical formula C50H56N6O10·0.5H2O
M r 910.01
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.9955 (5), 15.8364 (7), 31.1356 (14)
V3) 4928.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.28 × 0.2 × 0.15
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.695, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 43863, 10447, 8909
R int 0.038
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.130, 1.06
No. of reflections 10447
No. of parameters 621
No. of restraints 39
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −0.17

Computer programs: APEX2 and SAINT (Bruker, 2013), olex2.solve (Bourhis et al., 2015), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020000584/vm2226sup1.cif

e-76-00257-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020000584/vm2226Isup2.hkl

e-76-00257-Isup2.hkl (828.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020000584/vm2226Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020000584/vm2226Isup7.cdx

CCDC reference: 1978230

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C50H56N6O10·0.5H2O Dx = 1.226 Mg m3
Mr = 910.01 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9965 reflections
a = 9.9955 (5) Å θ = 3.1–26.5°
b = 15.8364 (7) Å µ = 0.09 mm1
c = 31.1356 (14) Å T = 100 K
V = 4928.5 (4) Å3 Prism, clear light yellow
Z = 4 0.28 × 0.2 × 0.15 mm
F(000) = 1932

Data collection

Bruker D8 Quest CMOS diffractometer 8909 reflections with I > 2σ(I)
φ and ω scans Rint = 0.038
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 26.8°, θmin = 2.9°
Tmin = 0.695, Tmax = 0.745 h = −12→12
43863 measured reflections k = −20→20
10447 independent reflections l = −39→32

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.586P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 1.05 e Å3
10447 reflections Δρmin = −0.17 e Å3
621 parameters Absolute structure: Flack x determined using 3422 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
39 restraints Absolute structure parameter: 0.1 (3)
Primary atom site location: iterative

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O8 0.5783 (2) 0.35379 (15) 0.61299 (7) 0.0290 (5)
O5 0.1677 (2) 0.52485 (14) 0.62202 (7) 0.0300 (5)
O6 0.1527 (2) 0.33804 (15) 0.71036 (7) 0.0297 (5)
O7 0.1823 (2) 0.20517 (14) 0.61792 (8) 0.0328 (5)
O9 0.7545 (2) 0.24915 (17) 0.69600 (8) 0.0368 (6)
O4 0.3271 (2) 0.67992 (16) 0.56633 (8) 0.0358 (6)
O10 0.5908 (3) 0.18598 (15) 0.65811 (8) 0.0376 (6)
O3 0.3607 (2) 0.78162 (16) 0.46470 (8) 0.0366 (6)
O2 0.0132 (3) 0.94017 (16) 0.53066 (9) 0.0458 (7)
N5 0.2180 (2) 0.34595 (17) 0.61273 (8) 0.0211 (5)
H5 0.1869 0.3968 0.6182 0.025*
O1 0.1553 (3) 1.04279 (16) 0.51105 (9) 0.0452 (7)
N2 0.1356 (3) 0.66860 (16) 0.52816 (8) 0.0251 (6)
H2 0.0490 0.6587 0.5292 0.030*
N6 0.4311 (3) 0.32243 (18) 0.66559 (8) 0.0259 (6)
H6 0.3466 0.3178 0.6731 0.031*
N3 0.1878 (3) 0.65960 (17) 0.64292 (8) 0.0296 (6)
N4 −0.0114 (2) 0.37316 (16) 0.66369 (8) 0.0229 (5)
N1 0.1567 (3) 0.82474 (17) 0.48518 (10) 0.0336 (7)
H1 0.0797 0.8092 0.4964 0.040*
C5 0.2483 (3) 0.7659 (2) 0.47812 (10) 0.0255 (7)
C2 0.1053 (4) 0.9653 (2) 0.50913 (12) 0.0329 (8)
C49 0.6401 (3) 0.2466 (2) 0.68322 (10) 0.0273 (7)
C37 0.1444 (3) 0.27814 (19) 0.62330 (10) 0.0234 (6)
C19 0.2126 (3) 0.5774 (2) 0.64748 (10) 0.0236 (6)
C46 0.4634 (3) 0.34112 (19) 0.62472 (10) 0.0226 (6)
C40 0.2546 (3) 0.3822 (2) 0.52165 (9) 0.0246 (6)
C38 0.3471 (3) 0.3369 (2) 0.59253 (9) 0.0226 (6)
H38 0.3491 0.2788 0.5800 0.027*
C32 0.0613 (3) 0.3867 (2) 0.69939 (10) 0.0247 (7)
C25 0.2567 (3) 0.52550 (19) 0.72356 (9) 0.0227 (6)
C20 0.3034 (3) 0.55266 (19) 0.68390 (9) 0.0231 (6)
C33 −0.1105 (3) 0.4298 (2) 0.64412 (10) 0.0272 (7)
H33A −0.0832 0.4896 0.6468 0.033*
H33B −0.1999 0.4223 0.6573 0.033*
C45 0.1501 (3) 0.4389 (2) 0.51655 (10) 0.0284 (7)
H45 0.1490 0.4896 0.5328 0.034*
C22 0.5320 (3) 0.5374 (2) 0.70738 (12) 0.0320 (7)
H22 0.6253 0.5417 0.7020 0.038*
C31 0.0216 (3) 0.4610 (2) 0.72602 (10) 0.0268 (7)
C34 −0.1097 (3) 0.4010 (2) 0.59730 (10) 0.0306 (7)
H34A −0.1946 0.4158 0.5827 0.037*
H34B −0.0341 0.4263 0.5813 0.037*
C39 0.3631 (3) 0.3978 (2) 0.55481 (9) 0.0254 (7)
H39A 0.3574 0.4567 0.5653 0.031*
H39B 0.4521 0.3897 0.5415 0.031*
C41 0.2561 (3) 0.3086 (2) 0.49701 (10) 0.0292 (7)
H41 0.3279 0.2698 0.5000 0.035*
C23 0.4861 (3) 0.5099 (2) 0.74670 (12) 0.0328 (8)
H23 0.5481 0.4948 0.7685 0.039*
C43 0.0489 (4) 0.3485 (2) 0.46349 (11) 0.0332 (8)
H43 −0.0213 0.3372 0.4437 0.040*
C8 0.1648 (4) 0.6529 (2) 0.40682 (10) 0.0312 (7)
C14 0.2050 (3) 0.6776 (2) 0.56506 (10) 0.0265 (7)
C44 0.0472 (4) 0.4222 (2) 0.48784 (11) 0.0316 (8)
H44 −0.0245 0.4612 0.4848 0.038*
C26 0.1115 (3) 0.5259 (2) 0.73614 (9) 0.0255 (7)
C7 0.1065 (3) 0.6452 (2) 0.45158 (10) 0.0306 (7)
H7A 0.0829 0.5854 0.4570 0.037*
H7B 0.0232 0.6788 0.4531 0.037*
C47 0.5353 (3) 0.3100 (2) 0.69728 (10) 0.0269 (7)
H47 0.5805 0.3654 0.7025 0.032*
C6 0.2021 (3) 0.6751 (2) 0.48676 (10) 0.0265 (7)
H6A 0.2823 0.6374 0.4869 0.032*
C42 0.1532 (4) 0.2917 (2) 0.46815 (10) 0.0326 (8)
H42 0.1546 0.2412 0.4517 0.039*
C21 0.4407 (3) 0.5586 (2) 0.67586 (11) 0.0286 (7)
H21 0.4714 0.5773 0.6486 0.034*
C30 −0.1064 (4) 0.4624 (3) 0.74307 (11) 0.0395 (9)
H30 −0.1668 0.4179 0.7366 0.047*
C36 0.0037 (3) 0.2945 (2) 0.63950 (10) 0.0252 (7)
H36 −0.0263 0.2459 0.6576 0.030*
C24 0.3505 (3) 0.5042 (2) 0.75457 (10) 0.0293 (7)
H24 0.3207 0.4852 0.7819 0.035*
C9 0.1242 (4) 0.7179 (2) 0.37993 (11) 0.0383 (8)
H9 0.0580 0.7568 0.3893 0.046*
C35 −0.0937 (3) 0.3060 (2) 0.60144 (11) 0.0307 (7)
H35A −0.0560 0.2815 0.5748 0.037*
H35B −0.1808 0.2787 0.6075 0.037*
C4 0.1237 (4) 0.9350 (2) 0.43102 (12) 0.0353 (8)
H4A 0.1771 0.9056 0.4092 0.053*
H4B 0.1296 0.9961 0.4264 0.053*
H4C 0.0302 0.9170 0.4288 0.053*
C29 −0.1478 (4) 0.5278 (3) 0.76945 (13) 0.0531 (12)
H29 −0.2350 0.5271 0.7816 0.064*
C15 0.1186 (4) 0.6907 (2) 0.60477 (10) 0.0317 (8)
H15 0.0294 0.6629 0.6014 0.038*
C27 0.0672 (3) 0.5929 (3) 0.76131 (12) 0.0390 (9)
H27 0.1256 0.6387 0.7672 0.047*
C13 0.2600 (4) 0.5956 (2) 0.39230 (11) 0.0355 (8)
H13 0.2886 0.5510 0.4105 0.043*
C3 0.1767 (3) 0.9136 (2) 0.47531 (12) 0.0334 (8)
H3 0.2745 0.9266 0.4764 0.040*
C12 0.3135 (4) 0.6032 (3) 0.35134 (12) 0.0440 (9)
H12 0.3776 0.5634 0.3414 0.053*
C10 0.1802 (5) 0.7262 (3) 0.33924 (12) 0.0451 (10)
H10 0.1539 0.7717 0.3212 0.054*
C28 −0.0625 (4) 0.5933 (3) 0.77791 (14) 0.0561 (13)
H28 −0.0917 0.6393 0.7951 0.067*
C11 0.2732 (4) 0.6690 (3) 0.32496 (12) 0.0465 (10)
H11 0.3100 0.6745 0.2970 0.056*
C18 0.2329 (4) 0.7290 (2) 0.67105 (12) 0.0388 (9)
H18C 0.3232 0.7490 0.6628 0.047* 0.746 (11)
H18D 0.2340 0.7114 0.7016 0.047* 0.746 (11)
H18A 0.3292 0.7245 0.6782 0.047* 0.254 (11)
H18B 0.1798 0.7323 0.6978 0.047* 0.254 (11)
C48 0.4734 (4) 0.2800 (3) 0.73931 (11) 0.0402 (9)
H48A 0.4047 0.3202 0.7485 0.060*
H48B 0.5430 0.2761 0.7614 0.060*
H48C 0.4326 0.2243 0.7351 0.060*
C50 0.6830 (5) 0.1212 (2) 0.64429 (13) 0.0473 (10)
H50A 0.7417 0.1438 0.6219 0.071*
H50B 0.6327 0.0730 0.6328 0.071*
H50C 0.7372 0.1026 0.6688 0.071*
C16 0.1028 (5) 0.7859 (3) 0.61383 (13) 0.0511 (11)
H16C 0.0117 0.8053 0.6062 0.061* 0.746 (11)
H16D 0.1688 0.8190 0.5971 0.061* 0.746 (11)
H16A 0.1091 0.8189 0.5869 0.061* 0.254 (11)
H16B 0.0156 0.7978 0.6276 0.061* 0.254 (11)
C1 0.0909 (6) 1.0984 (3) 0.54255 (14) 0.0606 (13)
H1A −0.0051 1.1017 0.5365 0.091*
H1B 0.1303 1.1549 0.5407 0.091*
H1C 0.1046 1.0756 0.5715 0.091*
O11 0.3543 (5) 0.0810 (3) 0.6507 (2) 0.0484 (14) 0.5
H11A 0.3164 0.1111 0.6307 0.073* 0.5
H11B 0.4078 0.1161 0.6636 0.073* 0.5
C17B 0.1282 (8) 0.7962 (4) 0.6631 (2) 0.0526 (18) 0.746 (11)
H17A 0.1625 0.8533 0.6700 0.063* 0.746 (11)
H17B 0.0459 0.7854 0.6799 0.063* 0.746 (11)
C17A 0.204 (2) 0.8050 (9) 0.6403 (5) 0.047 (3) 0.254 (11)
H17C 0.1801 0.8555 0.6574 0.057* 0.254 (11)
H17D 0.2847 0.8182 0.6233 0.057* 0.254 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O8 0.0180 (11) 0.0412 (13) 0.0278 (12) 0.0043 (9) 0.0010 (9) −0.0014 (10)
O5 0.0355 (13) 0.0288 (11) 0.0256 (11) −0.0027 (10) −0.0080 (10) 0.0001 (10)
O6 0.0248 (11) 0.0390 (12) 0.0254 (11) 0.0010 (10) −0.0052 (9) 0.0020 (10)
O7 0.0321 (12) 0.0245 (12) 0.0419 (14) 0.0017 (10) 0.0016 (11) −0.0055 (10)
O9 0.0242 (12) 0.0512 (15) 0.0351 (13) 0.0127 (11) −0.0037 (10) 0.0015 (11)
O4 0.0274 (13) 0.0468 (14) 0.0333 (12) 0.0080 (11) −0.0101 (10) −0.0035 (11)
O10 0.0392 (14) 0.0353 (13) 0.0384 (14) 0.0094 (11) −0.0051 (11) −0.0034 (11)
O3 0.0253 (12) 0.0438 (14) 0.0407 (13) −0.0030 (11) 0.0031 (10) −0.0034 (12)
O2 0.0446 (16) 0.0348 (14) 0.0578 (17) −0.0044 (12) 0.0116 (14) −0.0067 (13)
N5 0.0173 (12) 0.0239 (13) 0.0222 (12) 0.0018 (10) −0.0022 (10) −0.0012 (10)
O1 0.0634 (18) 0.0328 (13) 0.0393 (14) −0.0167 (13) −0.0107 (13) −0.0015 (12)
N2 0.0224 (13) 0.0277 (13) 0.0252 (13) 0.0021 (11) −0.0046 (11) 0.0002 (11)
N6 0.0172 (12) 0.0391 (15) 0.0213 (12) 0.0049 (11) −0.0014 (10) 0.0013 (12)
N3 0.0371 (15) 0.0299 (14) 0.0218 (13) 0.0084 (12) −0.0079 (12) −0.0024 (12)
N4 0.0197 (13) 0.0271 (14) 0.0220 (12) −0.0007 (10) −0.0024 (10) −0.0025 (11)
N1 0.0206 (13) 0.0251 (14) 0.0550 (18) −0.0025 (11) 0.0028 (13) 0.0033 (14)
C5 0.0217 (15) 0.0329 (17) 0.0219 (14) −0.0012 (13) −0.0060 (12) −0.0029 (13)
C2 0.0330 (18) 0.0254 (17) 0.0403 (19) −0.0030 (15) −0.0114 (16) 0.0037 (15)
C49 0.0243 (16) 0.0335 (17) 0.0242 (15) 0.0084 (13) −0.0011 (13) 0.0054 (14)
C37 0.0239 (15) 0.0243 (16) 0.0219 (14) −0.0009 (12) −0.0043 (12) −0.0028 (13)
C19 0.0226 (15) 0.0288 (16) 0.0194 (14) 0.0006 (12) 0.0019 (12) −0.0003 (13)
C46 0.0190 (15) 0.0261 (16) 0.0228 (15) 0.0057 (12) 0.0002 (12) −0.0012 (13)
C40 0.0254 (15) 0.0301 (16) 0.0182 (14) −0.0049 (13) 0.0025 (12) 0.0018 (13)
C38 0.0183 (14) 0.0271 (16) 0.0224 (14) 0.0047 (12) −0.0007 (12) −0.0025 (13)
C32 0.0182 (14) 0.0348 (17) 0.0211 (15) −0.0048 (13) 0.0005 (12) 0.0031 (14)
C25 0.0175 (14) 0.0295 (16) 0.0211 (14) 0.0007 (12) −0.0011 (12) −0.0041 (13)
C20 0.0238 (15) 0.0234 (15) 0.0220 (15) 0.0045 (12) −0.0012 (12) −0.0034 (13)
C33 0.0184 (14) 0.0346 (17) 0.0284 (16) 0.0043 (13) −0.0021 (13) −0.0027 (14)
C45 0.0318 (17) 0.0260 (16) 0.0273 (16) −0.0054 (13) −0.0040 (14) 0.0028 (14)
C22 0.0175 (15) 0.0378 (19) 0.0405 (19) 0.0006 (14) 0.0039 (14) 0.0035 (16)
C31 0.0184 (15) 0.0426 (19) 0.0193 (14) −0.0038 (14) −0.0020 (12) −0.0056 (14)
C34 0.0210 (15) 0.046 (2) 0.0248 (16) 0.0036 (15) −0.0076 (13) 0.0003 (15)
C39 0.0227 (15) 0.0329 (17) 0.0207 (14) −0.0008 (13) −0.0006 (12) 0.0007 (13)
C41 0.0299 (17) 0.0336 (18) 0.0240 (15) −0.0007 (14) 0.0034 (14) −0.0016 (14)
C23 0.0194 (16) 0.045 (2) 0.0335 (18) 0.0016 (14) −0.0076 (14) 0.0080 (16)
C43 0.0337 (18) 0.043 (2) 0.0233 (16) −0.0124 (16) −0.0046 (14) 0.0028 (15)
C8 0.0371 (19) 0.0316 (17) 0.0249 (15) −0.0057 (15) −0.0093 (14) −0.0030 (14)
C14 0.0281 (16) 0.0242 (16) 0.0271 (16) 0.0065 (13) −0.0074 (13) 0.0013 (13)
C44 0.0310 (17) 0.0341 (18) 0.0298 (17) −0.0034 (14) −0.0072 (14) 0.0076 (15)
C26 0.0168 (14) 0.0420 (18) 0.0176 (14) −0.0009 (13) −0.0022 (12) −0.0043 (14)
C7 0.0336 (18) 0.0280 (16) 0.0302 (17) −0.0032 (14) −0.0070 (14) −0.0014 (14)
C47 0.0197 (15) 0.0386 (19) 0.0225 (15) 0.0069 (13) −0.0028 (12) 0.0011 (14)
C6 0.0278 (16) 0.0278 (16) 0.0240 (15) 0.0054 (13) −0.0035 (13) −0.0026 (13)
C42 0.0368 (18) 0.0384 (18) 0.0227 (15) −0.0092 (15) 0.0032 (14) −0.0059 (14)
C21 0.0258 (16) 0.0329 (17) 0.0271 (16) −0.0027 (13) 0.0069 (13) 0.0037 (14)
C30 0.0230 (17) 0.065 (2) 0.0305 (17) −0.0115 (17) −0.0001 (14) −0.0164 (18)
C36 0.0216 (15) 0.0269 (16) 0.0270 (16) −0.0033 (12) −0.0037 (13) −0.0027 (13)
C24 0.0242 (16) 0.0427 (19) 0.0210 (15) −0.0012 (14) −0.0001 (13) 0.0050 (14)
C9 0.053 (2) 0.0340 (18) 0.0280 (17) −0.0026 (17) −0.0114 (16) −0.0049 (16)
C35 0.0195 (15) 0.043 (2) 0.0298 (17) −0.0022 (14) −0.0056 (13) −0.0112 (15)
C4 0.0323 (18) 0.0298 (17) 0.044 (2) −0.0040 (14) 0.0060 (16) 0.0004 (16)
C29 0.0184 (17) 0.096 (3) 0.045 (2) −0.004 (2) 0.0057 (16) −0.036 (2)
C15 0.0359 (19) 0.0358 (18) 0.0234 (15) 0.0135 (15) −0.0040 (14) 0.0006 (14)
C27 0.0215 (16) 0.059 (2) 0.0369 (19) −0.0037 (16) −0.0039 (14) −0.0240 (19)
C13 0.042 (2) 0.0325 (18) 0.0319 (17) −0.0042 (16) −0.0101 (16) −0.0050 (15)
C3 0.0238 (16) 0.0261 (16) 0.050 (2) −0.0059 (13) −0.0012 (15) 0.0029 (16)
C12 0.039 (2) 0.056 (2) 0.037 (2) −0.0027 (18) −0.0057 (16) −0.0170 (19)
C10 0.064 (3) 0.044 (2) 0.0269 (17) −0.008 (2) −0.0122 (18) 0.0006 (17)
C28 0.0237 (18) 0.091 (3) 0.054 (2) 0.000 (2) 0.0028 (17) −0.046 (3)
C11 0.053 (2) 0.063 (3) 0.0238 (17) −0.017 (2) −0.0078 (17) −0.0028 (18)
C18 0.050 (2) 0.0321 (18) 0.0340 (18) 0.0109 (16) −0.0127 (17) −0.0093 (15)
C48 0.0300 (18) 0.066 (3) 0.0249 (17) 0.0155 (18) −0.0011 (14) 0.0071 (18)
C50 0.068 (3) 0.0342 (19) 0.039 (2) 0.0199 (19) −0.003 (2) 0.0003 (17)
C16 0.074 (3) 0.043 (2) 0.036 (2) 0.033 (2) −0.003 (2) −0.0010 (18)
C1 0.113 (4) 0.032 (2) 0.037 (2) −0.014 (2) −0.006 (2) −0.0101 (18)
O11 0.023 (2) 0.048 (3) 0.074 (4) 0.004 (2) −0.008 (3) −0.001 (3)
C17B 0.077 (4) 0.044 (3) 0.037 (3) 0.028 (3) −0.012 (3) −0.015 (2)
C17A 0.074 (7) 0.029 (6) 0.040 (6) 0.015 (6) −0.010 (6) −0.019 (5)

Geometric parameters (Å, º)

O8—C46 1.221 (4) C8—C9 1.388 (5)
O5—C19 1.234 (4) C8—C13 1.390 (5)
O6—C32 1.243 (4) C14—C15 1.523 (5)
O7—C37 1.227 (4) C44—H44 0.9500
O9—C49 1.211 (4) C26—C27 1.391 (5)
O4—C14 1.221 (4) C7—H7A 0.9900
O10—C49 1.333 (4) C7—H7B 0.9900
O10—C50 1.445 (4) C7—C6 1.529 (4)
O3—C5 1.224 (4) C47—H47 1.0000
O2—C2 1.207 (4) C47—C48 1.523 (5)
N5—H5 0.8800 C6—H6A 1.0000
N5—C37 1.343 (4) C42—H42 0.9500
N5—C38 1.443 (4) C21—H21 0.9500
O1—C2 1.326 (4) C30—H30 0.9500
O1—C1 1.466 (5) C30—C29 1.384 (6)
N2—H2 0.8800 C36—H36 1.0000
N2—C14 1.350 (4) C36—C35 1.544 (4)
N2—C6 1.454 (4) C24—H24 0.9500
N6—H6 0.8800 C9—H9 0.9500
N6—C46 1.346 (4) C9—C10 1.391 (5)
N6—C47 1.448 (4) C35—H35A 0.9900
N3—C19 1.332 (4) C35—H35B 0.9900
N3—C15 1.460 (4) C4—H4A 0.9800
N3—C18 1.476 (4) C4—H4B 0.9800
N4—C32 1.345 (4) C4—H4C 0.9800
N4—C33 1.469 (4) C4—C3 1.515 (5)
N4—C36 1.463 (4) C29—H29 0.9500
N1—H1 0.8800 C29—C28 1.369 (6)
N1—C5 1.325 (4) C15—H15 1.0000
N1—C3 1.454 (4) C15—C16 1.542 (5)
C5—C6 1.534 (5) C27—H27 0.9500
C2—C3 1.513 (5) C27—C28 1.395 (5)
C49—C47 1.515 (4) C13—H13 0.9500
C37—C36 1.516 (4) C13—C12 1.388 (5)
C19—C20 1.505 (4) C3—H3 1.0000
C46—C38 1.536 (4) C12—H12 0.9500
C40—C45 1.386 (5) C12—C11 1.387 (6)
C40—C39 1.518 (4) C10—H10 0.9500
C40—C41 1.396 (5) C10—C11 1.372 (6)
C38—H38 1.0000 C28—H28 0.9500
C38—C39 1.528 (4) C11—H11 0.9500
C32—C31 1.492 (5) C18—H18C 0.9900
C25—C20 1.388 (4) C18—H18D 0.9900
C25—C26 1.503 (4) C18—H18A 0.9900
C25—C24 1.387 (4) C18—H18B 0.9900
C20—C21 1.398 (5) C18—C17B 1.513 (6)
C33—H33A 0.9900 C18—C17A 1.566 (15)
C33—H33B 0.9900 C48—H48A 0.9800
C33—C34 1.527 (4) C48—H48B 0.9800
C45—H45 0.9500 C48—H48C 0.9800
C45—C44 1.388 (5) C50—H50A 0.9800
C22—H22 0.9500 C50—H50B 0.9800
C22—C23 1.378 (5) C50—H50C 0.9800
C22—C21 1.382 (5) C16—H16C 0.9900
C31—C26 1.402 (5) C16—H16D 0.9900
C31—C30 1.385 (5) C16—H16A 0.9900
C34—H34A 0.9900 C16—H16B 0.9900
C34—H34B 0.9900 C16—C17B 1.563 (7)
C34—C35 1.519 (5) C16—C17A 1.335 (17)
C39—H39A 0.9900 C1—H1A 0.9800
C39—H39B 0.9900 C1—H1B 0.9800
C41—H41 0.9500 C1—H1C 0.9800
C41—C42 1.391 (5) O11—H11A 0.8701
C23—H23 0.9500 O11—H11B 0.8694
C23—C24 1.380 (5) C17B—H17A 0.9900
C43—H43 0.9500 C17B—H17B 0.9900
C43—C44 1.392 (5) C17A—H17C 0.9900
C43—C42 1.386 (5) C17A—H17D 0.9900
C8—C7 1.515 (5)
C49—O10—C50 116.8 (3) C41—C42—H42 120.0
C37—N5—H5 119.4 C43—C42—C41 119.9 (3)
C37—N5—C38 121.2 (3) C43—C42—H42 120.0
C38—N5—H5 119.4 C20—C21—H21 119.8
C2—O1—C1 114.9 (3) C22—C21—C20 120.3 (3)
C14—N2—H2 119.6 C22—C21—H21 119.8
C14—N2—C6 120.8 (3) C31—C30—H30 119.5
C6—N2—H2 119.6 C29—C30—C31 121.1 (4)
C46—N6—H6 119.9 C29—C30—H30 119.5
C46—N6—C47 120.1 (3) N4—C36—C37 114.4 (2)
C47—N6—H6 119.9 N4—C36—H36 109.5
C19—N3—C15 120.3 (3) N4—C36—C35 103.3 (2)
C19—N3—C18 127.4 (3) C37—C36—H36 109.5
C15—N3—C18 112.1 (3) C37—C36—C35 110.5 (3)
C32—N4—C33 127.6 (3) C35—C36—H36 109.5
C32—N4—C36 120.4 (3) C25—C24—H24 119.2
C36—N4—C33 112.1 (2) C23—C24—C25 121.6 (3)
C5—N1—H1 118.3 C23—C24—H24 119.2
C5—N1—C3 123.4 (3) C8—C9—H9 120.0
C3—N1—H1 118.3 C8—C9—C10 120.1 (4)
O3—C5—N1 123.2 (3) C10—C9—H9 120.0
O3—C5—C6 121.8 (3) C34—C35—C36 104.4 (3)
N1—C5—C6 115.0 (3) C34—C35—H35A 110.9
O2—C2—O1 124.6 (4) C34—C35—H35B 110.9
O2—C2—C3 124.6 (3) C36—C35—H35A 110.9
O1—C2—C3 110.8 (3) C36—C35—H35B 110.9
O9—C49—O10 124.4 (3) H35A—C35—H35B 108.9
O9—C49—C47 122.4 (3) H4A—C4—H4B 109.5
O10—C49—C47 113.0 (3) H4A—C4—H4C 109.5
O7—C37—N5 123.4 (3) H4B—C4—H4C 109.5
O7—C37—C36 119.5 (3) C3—C4—H4A 109.5
N5—C37—C36 116.9 (3) C3—C4—H4B 109.5
O5—C19—N3 121.5 (3) C3—C4—H4C 109.5
O5—C19—C20 121.9 (3) C30—C29—H29 120.2
N3—C19—C20 116.6 (3) C28—C29—C30 119.6 (4)
O8—C46—N6 123.0 (3) C28—C29—H29 120.2
O8—C46—C38 121.6 (3) N3—C15—C14 110.2 (3)
N6—C46—C38 115.2 (3) N3—C15—H15 111.1
C45—C40—C39 120.8 (3) N3—C15—C16 103.3 (3)
C45—C40—C41 119.1 (3) C14—C15—H15 111.1
C41—C40—C39 120.1 (3) C14—C15—C16 109.9 (3)
N5—C38—C46 112.8 (2) C16—C15—H15 111.1
N5—C38—H38 106.2 C26—C27—H27 119.7
N5—C38—C39 111.5 (2) C26—C27—C28 120.6 (4)
C46—C38—H38 106.2 C28—C27—H27 119.7
C39—C38—C46 113.3 (3) C8—C13—H13 119.8
C39—C38—H38 106.2 C12—C13—C8 120.4 (4)
O6—C32—N4 121.7 (3) C12—C13—H13 119.8
O6—C32—C31 122.1 (3) N1—C3—C2 108.2 (3)
N4—C32—C31 116.2 (3) N1—C3—C4 111.1 (3)
C20—C25—C26 123.7 (3) N1—C3—H3 109.0
C24—C25—C20 117.9 (3) C2—C3—C4 110.4 (3)
C24—C25—C26 118.2 (3) C2—C3—H3 109.0
C25—C20—C19 123.3 (3) C4—C3—H3 109.0
C25—C20—C21 120.7 (3) C13—C12—H12 120.1
C21—C20—C19 116.1 (3) C11—C12—C13 119.8 (4)
N4—C33—H33A 111.3 C11—C12—H12 120.1
N4—C33—H33B 111.3 C9—C10—H10 119.8
N4—C33—C34 102.2 (2) C11—C10—C9 120.4 (4)
H33A—C33—H33B 109.2 C11—C10—H10 119.8
C34—C33—H33A 111.3 C29—C28—C27 120.2 (4)
C34—C33—H33B 111.3 C29—C28—H28 119.9
C40—C45—H45 119.7 C27—C28—H28 119.9
C40—C45—C44 120.6 (3) C12—C11—H11 120.0
C44—C45—H45 119.7 C10—C11—C12 120.1 (4)
C23—C22—H22 120.4 C10—C11—H11 120.0
C23—C22—C21 119.2 (3) N3—C18—H18C 111.3
C21—C22—H22 120.4 N3—C18—H18D 111.3
C26—C31—C32 122.2 (3) N3—C18—H18A 112.0
C30—C31—C32 118.1 (3) N3—C18—H18B 112.0
C30—C31—C26 119.6 (3) N3—C18—C17B 102.4 (3)
C33—C34—H34A 111.3 N3—C18—C17A 98.7 (6)
C33—C34—H34B 111.3 H18C—C18—H18D 109.2
H34A—C34—H34B 109.2 H18A—C18—H18B 109.7
C35—C34—C33 102.4 (3) C17B—C18—H18C 111.3
C35—C34—H34A 111.3 C17B—C18—H18D 111.3
C35—C34—H34B 111.3 C17A—C18—H18A 112.0
C40—C39—C38 110.2 (3) C17A—C18—H18B 112.0
C40—C39—H39A 109.6 C47—C48—H48A 109.5
C40—C39—H39B 109.6 C47—C48—H48B 109.5
C38—C39—H39A 109.6 C47—C48—H48C 109.5
C38—C39—H39B 109.6 H48A—C48—H48B 109.5
H39A—C39—H39B 108.1 H48A—C48—H48C 109.5
C40—C41—H41 119.7 H48B—C48—H48C 109.5
C42—C41—C40 120.5 (3) O10—C50—H50A 109.5
C42—C41—H41 119.7 O10—C50—H50B 109.5
C22—C23—H23 119.8 O10—C50—H50C 109.5
C22—C23—C24 120.4 (3) H50A—C50—H50B 109.5
C24—C23—H23 119.8 H50A—C50—H50C 109.5
C44—C43—H43 120.1 H50B—C50—H50C 109.5
C42—C43—H43 120.1 C15—C16—H16C 110.7
C42—C43—C44 119.8 (3) C15—C16—H16D 110.7
C9—C8—C7 120.1 (3) C15—C16—H16A 110.8
C9—C8—C13 119.2 (3) C15—C16—H16B 110.8
C13—C8—C7 120.6 (3) C15—C16—C17B 105.4 (3)
O4—C14—N2 123.0 (3) H16C—C16—H16D 108.8
O4—C14—C15 122.5 (3) H16A—C16—H16B 108.8
N2—C14—C15 114.4 (3) C17B—C16—H16C 110.7
C45—C44—C43 120.1 (3) C17B—C16—H16D 110.7
C45—C44—H44 120.0 C17A—C16—C15 104.9 (6)
C43—C44—H44 120.0 C17A—C16—H16A 110.8
C31—C26—C25 123.9 (3) C17A—C16—H16B 110.8
C27—C26—C25 117.3 (3) O1—C1—H1A 109.5
C27—C26—C31 118.8 (3) O1—C1—H1B 109.5
C8—C7—H7A 108.9 O1—C1—H1C 109.5
C8—C7—H7B 108.9 H1A—C1—H1B 109.5
C8—C7—C6 113.2 (3) H1A—C1—H1C 109.5
H7A—C7—H7B 107.8 H1B—C1—H1C 109.5
C6—C7—H7A 108.9 H11A—O11—H11B 104.4
C6—C7—H7B 108.9 C18—C17B—C16 101.5 (4)
N6—C47—C49 113.0 (3) C18—C17B—H17A 111.5
N6—C47—H47 108.4 C18—C17B—H17B 111.5
N6—C47—C48 109.6 (3) C16—C17B—H17A 111.5
C49—C47—H47 108.4 C16—C17B—H17B 111.5
C49—C47—C48 108.9 (3) H17A—C17B—H17B 109.3
C48—C47—H47 108.4 C18—C17A—H17C 109.6
N2—C6—C5 111.1 (3) C18—C17A—H17D 109.6
N2—C6—C7 109.1 (3) C16—C17A—C18 110.2 (11)
N2—C6—H6A 108.6 C16—C17A—H17C 109.6
C5—C6—H6A 108.6 C16—C17A—H17D 109.6
C7—C6—C5 110.7 (3) H17C—C17A—H17D 108.1
C7—C6—H6A 108.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O11—H11B···O10 0.87 2.15 2.899 (6) 145
O11—H11A···O7 0.87 2.03 2.804 (6) 145
C29—H29···O11i 0.95 2.57 3.339 (7) 138
N5—H5···O5 0.88 2.04 2.892 (3) 163
N2—H2···O3ii 0.88 2.11 2.867 (4) 143
C6—H6A···O2iii 1.00 2.67 3.647 (4) 165
C4—H4C···O4ii 0.98 2.55 3.480 (4) 159
C27—H27···O9iv 0.95 2.41 3.327 (5) 162
C1—H1B···O7v 0.98 2.59 3.033 (5) 108
C1—H1C···O7v 0.98 2.63 3.033 (5) 105

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x−1/2, −y+3/2, −z+1; (iii) x+1/2, −y+1/2, −z+1; (iv) −x+1, y+1/2, −z+3/2; (v) x, y+1, z.

Funding Statement

This work was funded by Vietnam National University grant QG.17.13.

References

  1. Bemis, G. W. & Murcko, M. (1996). J. Med. Chem. 39, 2887–2893. [DOI] [PubMed]
  2. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  3. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruno, B. J., Miller, G. D. & Lim, C. S. (2013). Ther. Deliv. 4, 1443–1467. [DOI] [PMC free article] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Ezaki, M., Iwami, M., Yamashita, M., Hashimoto, S., Komori, T., Umehara, K., Mine, Y., Kohsaka, M., Aoki, H. & Imanaka, H. (1985). J. Antibiot. 38, 1453–1461. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Herradón, B., Montero, A., Mann, E. & Maestro, M. A. (2004). CrystEngComm, 6, 512–521.
  9. Kaiser, M., Groll, M., Siciliano, C., Assfalg-Machleidt, I., Weyher, E., Kohno, J., Milbradt, A. G., Renner, C., Huber, R. & Moroder, L. (2004). ChemBioChem, 5, 1256–1266. [DOI] [PubMed]
  10. Mann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624–3638.
  11. Montero, A., Albericio, F., Royo, M. & Herradón, B. (2004). Org. Lett. 6, 4089–4092. [DOI] [PubMed]
  12. Montero, A., Mann, E., Chana, A. & Herradón, B. (2004). Chem. Bio-div. 1, 442–457. [DOI] [PubMed]
  13. Rajamoorthi, K. & Williams, D. H. (1987). J. Org. Chem. 52, 5435–5437.
  14. Ranganathan, D., Kurur, S., Madhusudanan, K. P. & Karle, I. L. (1997). Tetrahedron Lett. 38, 4659–4662.
  15. Schimana, J., Gebhardt, K., Höltzel, A., Schmid, D. G., Süssmuth, R., Müller, J., Pukall, R. & Fiedler, H.-P. (2002). J. Antibiot. 55, 565–570. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020000584/vm2226sup1.cif

e-76-00257-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020000584/vm2226Isup2.hkl

e-76-00257-Isup2.hkl (828.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020000584/vm2226Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020000584/vm2226Isup7.cdx

CCDC reference: 1978230

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES