Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jan 31;76(Pt 2):281–287. doi: 10.1107/S2056989020001036

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of (2Z)-2-(2,4-di­chloro­benzyl­idene)-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

Brahim Hni a,*, Nada Kheira Sebbar b,a, Tuncer Hökelek c, Achour Redouane a, Joel T Mague d, Noureddine Hamou Ahabchane a, El Mokhtar Essassi a
PMCID: PMC7001846  PMID: 32071763

The title compound contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units in which the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form chains of mol­ecules extending along the a-axis direction which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphy⋯π (ring) inter­actions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds to form stepped layers approximately parallel to (012).

Keywords: crystal structure; 1,4-benzo­thia­zin-3-one; di­hydro­thia­zine; hydrogen bond; π-stacking; Hirshfeld surface

Abstract

The title compound, C24H27Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units in which the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form chains of mol­ecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphy⋯π (ring) inter­actions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.

Chemical context  

A number of sulfur- and nitro­gen-containing heterocyclic compounds have been well studied. These mol­ecules exhibit a wide range of biological applications, indicating that the 1,4-benzo­thia­zine moiety is a potentially useful template in medicinal chemistry research with therapeutic applications in the anti­microbial (Armenise et al., 2012, Sabatini et al., 2008), anti-viral (Malagu et al., 1998), anti-oxidant (Zia-ur-Rehman et al. 2009), anti-inflammatory (Trapani et al., 1985; Gowda et al., 2011) anti­pyretic (Warren et al., 1987), and anti-cancer (Gupta et al., 1991; Gupta et al., 1985) areas as well as being precursors for the synthesis of new compounds (Sebbar et al., 2015a ; Vidal et al., 2006) possessing anti-diabetic (Tawada et al., 1990) and anti-corrosion activities (Ellouz et al., 2016a ,b ; Sebbar et al., 2016a ) and biological properties (Hni et al., 2019a ; Ellouz et al., 2017a ,b , 2018; Sebbar et al., 2019a ,b ). As a continuation of our research into the development of new 1,4-benzo­thia­zine derivatives with potential pharmacological applications, we have studied the reaction of 1-bromo­nonane with (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base (Hni et al., 2019b ; Sebbar et al., 2019) to give the title compound, (I), in good yield. We report here its crystalline and mol­ecular structures as well as the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations.graphic file with name e-76-00281-scheme1.jpg

Structural commentary  

The title compound contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units (Fig. 1), in which the di­hydro­thia­zine ring, B (S1/N1/C1/C6–C8), adopts a screw-boat conformation with puckering parameters Q T = 0.5581 (16) Å, θ = 69.76 (18)° and φ = 334.3 (2)°. The planar rings, A (C1–C6) and C (C10–C15) are oriented at a dihedral angle of 88.45 (7)°. Atoms Cl1, Cl2 and C9 are almost co-planar with ring C being displaced by 0.0247 (6), −0.0732 (9) and −0.0274 (2) Å, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds link the mol­ecules, forming chains extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphy⋯π (ring) inter­actions (Table 1 and Fig. 2). These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds to form stepped layers approximately parallel to (012) (Table 1 and Figs. 2 and 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the ring A (C1–C6).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1ix 0.96 (3) 2.51 (3) 3.268 (2) 136 (2)
C5—H5⋯Cl1i 0.96 (2) 2.86 (2) 3.634 (2) 138.8 (17)
C15—H15⋯O1vi 0.96 (3) 2.36 (3) 3.270 (2) 159 (2)
C17—H17ACg1i 0.98 (2) 2.90 (2) 3.619 (2) 131.2 (17)

Symmetry codes: (i) Inline graphic; (vi) Inline graphic; (ix) Inline graphic.

Figure 2.

Figure 2

A perspective view of one double chain. The inter­molecular C—HBnz⋯OThz and C—HBnz⋯ClDchlphy (Bnz = benzene,Thz = thia­zine and Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds are shown, respectively, as black and light purple dashed lines while the C—HDchlphy⋯π (ring) inter­actions are shown as green dashed lines.

Figure 3.

Figure 3

Perspective view of one double chain and half of a second showing the C—HDchlphy⋯OThz (Dchlphy = 2,4-di­chloro­phenyl and Thz = thia­zine) hydrogen bond connecting them. Inter­molecular inter­actions depicted as in Fig. 2.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near O1 and hydrogen atom H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 6 clearly suggests that there are no π–π inter­actions in (I). The overall two-dimensional fingerprint plot, Fig. 7 a, and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H ⋯ Cl, O⋯H/H⋯O and S⋯H/H⋯S contacts (McKinnon et al., 2007) are illustrated in Fig. 7 bf, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2), contributing 44.7% to the overall crystal packing, which is reflected in Fig. 7 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 1.09 Å. The presence of C—H⋯π inter­actions is indicated by the fringed pairs of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 7 c, 23.7% contribution to the HS). The two pairs of wings in the fingerprint plot delineated into Cl⋯Hl/H⋯Cl contacts (Fig. 7 d, 18.9% contribution) have an unsymmetrical distribution of points due to a third wing, with the edges at d e + d i = 2.74 Å (for the long wing), d e + d i = 2.92 Å (for the short wing) and d e + d i = 3.53 Å (for the unsymmetrical third wing). The pair of wings in the fingerprint plot delineated into O⋯H/H⋯O contacts (Fig. 7 e, 5.0% contribution) has a pair of spikes with the tips at d e + d i = 2.22 Å. Finally, the wings in the fingerprint plot delineated into S⋯H/H⋯S contacts (Fig. 7 f, 4.8% contribution) have the tips at d e + d i = 2.99 Å.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.6343 to 1.4076 a.u.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

Figure 7.

Figure 7

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) O⋯H/H ⋯ O and (f) S⋯H/H⋯S contacts. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 2. Selected interatomic distances (Å).

Cl1⋯C5i 3.634 (2) C21⋯H24B 2.86
Cl1⋯C12ii 3.548 (2) C24⋯H21B 2.91
Cl1⋯H9 2.82 (3) C24A⋯H24E viii 2.44
Cl1⋯H5i 2.86 (2) C24A⋯H24F viii 2.70
Cl1⋯H12ii 2.92 (3) C24A⋯H24D viii 1.94
Cl2⋯H20A iii 3.13 (2) H3⋯H17A ix 2.42 (4)
Cl2⋯H24C i 3.01 H5⋯H17B 2.21 (4)
S1⋯N1 3.0439 (16) H5⋯H16B 2.33 (3)
S1⋯C15 3.236 (2) H12⋯H22A iii 2.37
S1⋯H15 2.84 (3) H16A⋯H18A 2.47 (3)
S1⋯H2iv 3.15 (3) H16B⋯H24D vii 2.54
O1⋯C3v 3.268 (2) H16B⋯H18B 2.46 (3)
O1⋯C17 3.238 (2) H16B⋯H24A vii 2.49
O1⋯C15vi 3.270 (2) H17A⋯H19A 2.59 (3)
O1⋯H3v 2.51 (3) H17B⋯H19B 2.55 (4)
O1⋯H16A 2.43 (2) H18B⋯H20B 2.55 (3)
O1⋯H17A 2.75 (2) H19A⋯H21A 2.58 (4)
O1⋯H9 2.49 (3) H19B⋯H21B 2.51 (4)
O1⋯H15vi 2.36 (3) H20A⋯H22A 2.49
C5⋯C17 3.430 (3) H20B⋯H22B 2.54
C5⋯C24vii 3.58 H21A⋯H23B 2.55
C6⋯C24vii 3.58 H21A⋯H23C 2.60
C24A⋯C24A viii 2.48 H21B⋯H24B 2.32
C2⋯H19A i 2.98 (2) H21B⋯H23D 2.34
C5⋯H24A vii 2.99 H22B⋯H24C 2.27
C5⋯H16B 2.64 (2) H22B⋯H24E 2.43
C5⋯H17B 2.93 (3) H24D⋯C24A viii 1.94
C7⋯H15vi 2.95 (3) H24D⋯H24D viii 1.82
C7⋯H17A 2.99 (2) H24D⋯H24E viii 1.70
C16⋯H5 2.62 (3) H24D⋯H24F viii 2.07
C17⋯H3v 2.98 (3) H24E⋯H24F viii 2.54
C17⋯H5 2.82 (3)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and S⋯H/H⋯S inter­actions in Fig. 8 ae, respectively.

Figure 8.

Figure 8

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) C⋯H/H⋯C, (c) Cl ⋯ H/H⋯Cl, (d) O⋯H/H⋯O and (f) S⋯H/H⋯S inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Inter­action energy calculations  

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the default radius of 3.8 Å (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −53.7 (E ele), −13.6 (E pol), −161.9 (E dis), 119.0 (E rep) and −134.3 (E tot) for C—HDchlphy⋯OThz, 25.6 (E ele), −5.7 (E pol), −62.1 (E dis), 23.1 (E rep) and −71.2 (E tot) [or C—HBnz⋯OThz and −16.0 (E ele), −8.3 (E pol), −43.0 (E dis), 42.2 (E rep) and −34.4 (Et ot) for C—HBnz⋯ClDchlphy (Bnz = benzene, Thz = thia­zine and Dchlphy = 2,4-di­chloro­phen­yl).

DFT calculations  

The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311G(d,p) basis-set calculations as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 3). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. E HOMO and E LUMO clarify the inevitable charge-exchange collaboration inside the studied material, and together with the electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole (2Z)-2-[(2,4-di­chloro­phen­yl)methyl­idene]-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one ring.

Table 3. Comparison of the selected (X-ray and DFT) geometric data (Å, °).

Bonds/angles X-ray B3LYP/6–311G(d,p)
Cl1—C11 1.744 (2) 1.826
Cl2—C13 1.733 (2) 1.821
S1—C8 1.7578 (18) 1.831
S1—C1 1.7589 (18) 1.830
O1—C7 1.228 (2) 1.256
N1—C7 1.368 (2) 1.392
N1—C6 1.420 (2) 1.423
N1—C16 1.479 (2) 1.489
     
C8—S1—C1 97.27 (8) 99.15
C7—N1—C6 123.67 (14) 124.78
C7—N1—C16 117.19 (14) 114.70
C6—N1—C16 119.07 (15) 119.29
C2—C1—C6 120.22 (17) 121.21
C2—C1—S1 119.25 (13) 117.28
C6—C1—S1 120.52 (13) 121.48
C3—C2—S1 120.53 (17) 120.47

Table 4. Calculated energies.

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) −64734
E HOMO (eV) −6.9440
E LUMO (eV) −0.6941
Energy gap, ΔE (eV) 6.2499
Dipole moment, μ (Debye) 4.4939
Ionization potential, I (eV) 6.9440
Electron affinity, A 0.6941
Electro negativity, χ 3.8191
Hardness, η 3.1249
Electrophilicity index, ω 2.3337
Softness, σ 0.3200
Fraction of electron transferred, ΔN 0.5090

Figure 9.

Figure 9

The energy band gap of the title compound.

Database survey  

A search in the Cambridge Structural Database (Groom et al., 2016; updated to October 2019), for compounds containing the fragment II gave 14 hits.graphic file with name e-76-00281-scheme2.jpg

The largest set contains IIa (COGRUN; Sebbar et al., 2014a ), IIb (APAJUY; Sebbar et al., 2016c ), IIc (EVIYIT; Sebbar et al., 2016b ) and IId (WUFGIP; Sebbar et al., 2015b ). Additional examples are III: R 1 = 4-FC6H4 and R 2 = CH2C≡CH (WOCFUS; Hni et al., 2019a ), R 1 = 4-ClC6H4 and R 2 = CH2Ph (OMEGEU; Ellouz et al., 2016c ) and R 1 = 2-ClC6H4, R 2 = CH2C≡CH (SAVTUH; Sebbar et al., 2017). In all these compounds, the configuration about the benzyl­idene group: C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitro­gen and sulfur atoms and that defined by nitro­gen and sulfur and the other two carbon atoms separating them having approximate values of 36° (WUFGIP), 29° (APAJUY), 28° (SAVTUH), 26° (WOCFUS) and 25° (COGRUN). By contrast, in both EVIYIT and OMEGEU, the benzo­thia­zine unit is nearly planar with the corresponding dihedral angle being about 4°.

Synthesis and crystallization  

To a solution of (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (1.5 mmol), potassium carbonate (2.7 mmol) and tetra-n-butyl ammonium bromide (0.14 mmol) in DMF (20 mL) was added 1-bromo­nonane (2.6 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue obtained was washed with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (9/1) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield = 79%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The two carbon atoms at the end of the nonyl chain, C23 and C24, are disordered in a 0.562 (4)/0.438 (4) ratio. These were refined with restraints that the two components have comparable geometries. The H atoms on these carbons as well as those on C22 were included as riding contributions in idealized positions (C—H = 0.99 Å with U iso(H) = 1.5U eq(C).

Table 5. Experimental details.

Crystal data
Chemical formula C24H27Cl2NOS
M r 448.42
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 8.9961 (3), 10.3755 (3), 13.2565 (4)
α, β, γ (°) 73.857 (1), 88.119 (1), 74.182 (1)
V3) 1142.32 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.52
Crystal size (mm) 0.20 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.54, 0.76
No. of measured, independent and observed [I > 2σ(I)] reflections 8788, 4246, 3772
R int 0.025
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.107, 1.02
No. of reflections 4246
No. of parameters 349
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.50

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020001036/lh5943sup1.cif

e-76-00281-sup1.cif (284.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001036/lh5943Isup2.hkl

e-76-00281-Isup2.hkl (338.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020001036/lh5943Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020001036/lh5943Isup4.cml

CCDC reference: 1980073

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C24H27Cl2NOS Z = 2
Mr = 448.42 F(000) = 472
Triclinic, P1 Dx = 1.304 Mg m3
a = 8.9961 (3) Å Cu Kα radiation, λ = 1.54178 Å
b = 10.3755 (3) Å Cell parameters from 7317 reflections
c = 13.2565 (4) Å θ = 3.5–72.4°
α = 73.857 (1)° µ = 3.52 mm1
β = 88.119 (1)° T = 150 K
γ = 74.182 (1)° Column, colourless
V = 1142.32 (6) Å3 0.20 × 0.14 × 0.08 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 4246 independent reflections
Radiation source: INCOATEC IµS micro-focus source 3772 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.025
Detector resolution: 10.4167 pixels mm-1 θmax = 72.4°, θmin = 3.5°
ω scans h = −10→11
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −12→12
Tmin = 0.54, Tmax = 0.76 l = −13→15
8788 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual space
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: mixed
wR(F2) = 0.107 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.6585P] where P = (Fo2 + 2Fc2)/3
4246 reflections (Δ/σ)max < 0.001
349 parameters Δρmax = 0.32 e Å3
14 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The two carbons at the end of the nonyl chain, C23 and C24, are disordered in a 0.562 (4)/0.438 (4) ratio. These were refined with restraints that the two components have comparable geometries. The H-atoms on these carbons as well as those on C22 were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.49354 (7) 0.17182 (5) 0.85050 (4) 0.04871 (16)
Cl2 0.90576 (10) −0.32166 (6) 1.00981 (5) 0.0707 (2)
S1 0.74621 (5) 0.09525 (4) 0.49738 (4) 0.03192 (13)
O1 0.30841 (14) 0.26156 (14) 0.47052 (11) 0.0350 (3)
N1 0.49478 (16) 0.35999 (15) 0.39383 (12) 0.0290 (3)
C1 0.77339 (19) 0.26057 (18) 0.43712 (14) 0.0278 (4)
C2 0.9224 (2) 0.2768 (2) 0.43323 (15) 0.0330 (4)
H2 1.005 (3) 0.196 (3) 0.4656 (18) 0.042 (6)*
C3 0.9469 (2) 0.4057 (2) 0.38810 (17) 0.0380 (4)
H3 1.051 (3) 0.414 (3) 0.387 (2) 0.052 (7)*
C4 0.8221 (2) 0.5199 (2) 0.34844 (18) 0.0410 (5)
H4 0.837 (3) 0.613 (3) 0.316 (2) 0.056 (7)*
C5 0.6730 (2) 0.5053 (2) 0.35211 (17) 0.0366 (4)
H5 0.589 (3) 0.587 (2) 0.3270 (18) 0.039 (6)*
C6 0.64689 (19) 0.37512 (19) 0.39486 (14) 0.0287 (4)
C7 0.4449 (2) 0.26179 (18) 0.46805 (14) 0.0286 (4)
C8 0.5633 (2) 0.15326 (18) 0.54591 (15) 0.0291 (4)
C9 0.5205 (2) 0.1027 (2) 0.64295 (16) 0.0344 (4)
H9 0.408 (3) 0.145 (3) 0.656 (2) 0.057 (7)*
C10 0.6193 (2) −0.0020 (2) 0.73085 (15) 0.0331 (4)
C11 0.6141 (2) 0.0188 (2) 0.83067 (16) 0.0361 (4)
C12 0.7034 (3) −0.0761 (2) 0.91616 (17) 0.0418 (5)
H12 0.700 (3) −0.059 (3) 0.986 (2) 0.056 (7)*
C13 0.8000 (3) −0.1984 (2) 0.90162 (17) 0.0429 (5)
C14 0.8106 (3) −0.2233 (2) 0.80462 (17) 0.0407 (5)
H14 0.880 (3) −0.309 (3) 0.797 (2) 0.050 (7)*
C15 0.7214 (2) −0.1252 (2) 0.72000 (16) 0.0363 (4)
H15 0.729 (3) −0.149 (3) 0.655 (2) 0.046 (6)*
C16 0.3799 (2) 0.4592 (2) 0.31152 (15) 0.0309 (4)
H16A 0.315 (3) 0.405 (2) 0.2923 (17) 0.036 (6)*
H16B 0.434 (2) 0.491 (2) 0.2491 (17) 0.028 (5)*
C17 0.2769 (2) 0.5837 (2) 0.34303 (15) 0.0313 (4)
H17A 0.225 (3) 0.548 (2) 0.4065 (18) 0.036 (6)*
H17B 0.342 (3) 0.636 (2) 0.3630 (17) 0.032 (5)*
C18 0.1618 (2) 0.6778 (2) 0.25291 (16) 0.0325 (4)
H18A 0.104 (3) 0.623 (2) 0.2318 (17) 0.036 (6)*
H18B 0.217 (3) 0.703 (2) 0.1916 (19) 0.040 (6)*
C19 0.0581 (2) 0.8062 (2) 0.27852 (17) 0.0348 (4)
H19A 0.004 (3) 0.776 (2) 0.3390 (18) 0.035 (6)*
H19B 0.123 (3) 0.859 (3) 0.2959 (19) 0.045 (6)*
C20 −0.0531 (2) 0.9040 (2) 0.18839 (17) 0.0372 (4)
H20A −0.125 (3) 0.853 (2) 0.1714 (18) 0.039 (6)*
H20B 0.010 (3) 0.934 (2) 0.1228 (19) 0.043 (6)*
C21 −0.1479 (2) 1.0373 (2) 0.21183 (18) 0.0383 (4)
H21A −0.205 (3) 1.011 (3) 0.274 (2) 0.059 (8)*
H21B −0.080 (3) 1.087 (2) 0.2266 (18) 0.042 (6)*
C22 −0.2613 (3) 1.1333 (2) 0.12285 (19) 0.0493 (6)
H22A −0.325994 1.078902 0.104683 0.059*
H22B −0.201418 1.161858 0.060625 0.059*
C23 −0.3697 (8) 1.2661 (4) 0.1422 (6) 0.0440 (18) 0.562 (4)
H23A −0.458686 1.305117 0.090467 0.053* 0.562 (4)
H23B −0.409306 1.245547 0.213838 0.053* 0.562 (4)
C24 −0.2717 (6) 1.3686 (5) 0.1297 (4) 0.0630 (10) 0.562 (4)
H24A −0.335043 1.455992 0.141231 0.094* 0.562 (4)
H24B −0.184022 1.328099 0.181244 0.094* 0.562 (4)
H24C −0.233125 1.387336 0.058565 0.094* 0.562 (4)
C23A −0.3282 (12) 1.2751 (6) 0.1453 (7) 0.0440 (18) 0.438 (4)
H23C −0.388048 1.262316 0.209642 0.053* 0.438 (4)
H23D −0.242430 1.312260 0.158121 0.053* 0.438 (4)
C24A −0.4333 (8) 1.3801 (6) 0.0534 (5) 0.0630 (10) 0.438 (4)
H24D −0.474134 1.469164 0.069938 0.094* 0.438 (4)
H24E −0.373809 1.394060 −0.010101 0.094* 0.438 (4)
H24F −0.519298 1.344161 0.041374 0.094* 0.438 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0592 (3) 0.0364 (3) 0.0409 (3) −0.0014 (2) 0.0109 (2) −0.0080 (2)
Cl2 0.1011 (6) 0.0441 (3) 0.0459 (3) 0.0100 (3) −0.0229 (3) −0.0052 (2)
S1 0.0281 (2) 0.0251 (2) 0.0361 (3) −0.00014 (16) 0.00197 (17) −0.00517 (17)
O1 0.0233 (6) 0.0393 (7) 0.0427 (8) −0.0097 (5) −0.0023 (5) −0.0104 (6)
N1 0.0200 (7) 0.0281 (7) 0.0351 (8) −0.0032 (6) −0.0043 (6) −0.0054 (6)
C1 0.0231 (8) 0.0284 (8) 0.0289 (9) −0.0028 (7) 0.0005 (6) −0.0074 (7)
C2 0.0207 (8) 0.0363 (10) 0.0357 (10) 0.0002 (7) −0.0005 (7) −0.0076 (8)
C3 0.0217 (9) 0.0421 (11) 0.0473 (12) −0.0077 (8) 0.0014 (8) −0.0088 (9)
C4 0.0275 (9) 0.0339 (10) 0.0569 (13) −0.0089 (8) 0.0019 (8) −0.0049 (9)
C5 0.0244 (9) 0.0276 (9) 0.0502 (12) −0.0032 (7) −0.0027 (8) −0.0020 (8)
C6 0.0198 (8) 0.0299 (9) 0.0338 (9) −0.0038 (7) −0.0009 (7) −0.0076 (7)
C7 0.0248 (8) 0.0282 (8) 0.0336 (9) −0.0058 (7) −0.0016 (7) −0.0111 (7)
C8 0.0248 (8) 0.0264 (8) 0.0359 (10) −0.0063 (7) −0.0018 (7) −0.0087 (7)
C9 0.0295 (9) 0.0343 (10) 0.0384 (10) −0.0093 (8) 0.0010 (8) −0.0081 (8)
C10 0.0312 (9) 0.0335 (9) 0.0345 (10) −0.0129 (8) 0.0021 (7) −0.0055 (8)
C11 0.0403 (10) 0.0294 (9) 0.0358 (10) −0.0091 (8) 0.0067 (8) −0.0057 (8)
C12 0.0550 (13) 0.0372 (11) 0.0312 (11) −0.0117 (9) 0.0019 (9) −0.0077 (8)
C13 0.0527 (12) 0.0326 (10) 0.0382 (11) −0.0078 (9) −0.0058 (9) −0.0045 (8)
C14 0.0463 (12) 0.0320 (10) 0.0434 (12) −0.0083 (9) −0.0026 (9) −0.0117 (8)
C15 0.0402 (11) 0.0361 (10) 0.0361 (10) −0.0141 (8) 0.0009 (8) −0.0122 (8)
C16 0.0240 (8) 0.0312 (9) 0.0326 (10) −0.0018 (7) −0.0053 (7) −0.0058 (7)
C17 0.0230 (8) 0.0306 (9) 0.0374 (10) −0.0033 (7) −0.0048 (7) −0.0080 (8)
C18 0.0253 (9) 0.0322 (9) 0.0359 (10) −0.0033 (7) −0.0033 (8) −0.0067 (8)
C19 0.0295 (9) 0.0320 (10) 0.0396 (11) −0.0032 (8) −0.0058 (8) −0.0089 (8)
C20 0.0332 (10) 0.0318 (10) 0.0406 (11) 0.0006 (8) −0.0052 (8) −0.0088 (8)
C21 0.0350 (10) 0.0321 (10) 0.0440 (12) −0.0017 (8) −0.0041 (9) −0.0113 (8)
C22 0.0505 (13) 0.0366 (11) 0.0476 (13) 0.0079 (10) −0.0053 (10) −0.0095 (9)
C23 0.033 (4) 0.0350 (13) 0.0547 (15) 0.0018 (17) 0.001 (2) −0.0088 (11)
C24 0.064 (2) 0.0489 (19) 0.061 (2) 0.0064 (17) −0.0022 (17) −0.0126 (16)
C23A 0.033 (4) 0.0350 (13) 0.0547 (15) 0.0018 (17) 0.001 (2) −0.0088 (11)
C24A 0.064 (2) 0.0489 (19) 0.061 (2) 0.0064 (17) −0.0022 (17) −0.0126 (16)

Geometric parameters (Å, º)

Cl1—C11 1.744 (2) C16—H16B 0.97 (2)
Cl2—C13 1.733 (2) C17—C18 1.528 (2)
S1—C8 1.7578 (18) C17—H17A 0.98 (2)
S1—C1 1.7589 (18) C17—H17B 0.98 (2)
O1—C7 1.228 (2) C18—C19 1.521 (3)
N1—C7 1.368 (2) C18—H18A 0.96 (2)
N1—C6 1.420 (2) C18—H18B 0.95 (2)
N1—C16 1.479 (2) C19—C20 1.519 (3)
C1—C2 1.393 (3) C19—H19A 0.95 (2)
C1—C6 1.398 (2) C19—H19B 0.97 (3)
C2—C3 1.379 (3) C20—C21 1.522 (3)
C2—H2 0.96 (2) C20—H20A 1.00 (2)
C3—C4 1.382 (3) C20—H20B 1.04 (2)
C3—H3 0.96 (3) C21—C22 1.515 (3)
C4—C5 1.388 (3) C21—H21A 0.97 (3)
C4—H4 0.99 (3) C21—H21B 0.96 (3)
C5—C6 1.392 (3) C22—C23 1.537 (4)
C5—H5 0.96 (2) C22—C23A 1.537 (4)
C7—C8 1.497 (2) C22—H22A 0.9900
C8—C9 1.334 (3) C22—H22B 0.9900
C9—C10 1.471 (3) C23—C24 1.530 (7)
C9—H9 1.02 (3) C23—H23A 0.9900
C10—C11 1.396 (3) C23—H23B 0.9900
C10—C15 1.397 (3) C24—H24A 0.9800
C11—C12 1.381 (3) C24—H24B 0.9800
C12—C13 1.388 (3) C24—H24C 0.9800
C12—H12 0.99 (3) C23A—C24A 1.530 (8)
C13—C14 1.376 (3) C23A—H23C 0.9900
C14—C15 1.385 (3) C23A—H23D 0.9900
C14—H14 0.97 (3) C24A—H24D 0.9800
C15—H15 0.96 (3) C24A—H24E 0.9800
C16—C17 1.525 (3) C24A—H24F 0.9800
C16—H16A 0.99 (2)
Cl1···C5i 3.634 (2) C21···H24B 2.86
Cl1···C12ii 3.548 (2) C24···H21B 2.91
Cl1···H9 2.82 (3) C24A···H24Eviii 2.44
Cl1···H5i 2.86 (2) C24A···H24Fviii 2.70
Cl1···H12ii 2.92 (3) C24A···H24Dviii 1.94
Cl2···H20Aiii 3.13 (2) H3···H17Aix 2.42 (4)
Cl2···H24Ci 3.01 H5···H17B 2.21 (4)
S1···N1 3.0439 (16) H5···H16B 2.33 (3)
S1···C15 3.236 (2) H12···H22Aiii 2.37
S1···H15 2.84 (3) H16A···H18A 2.47 (3)
S1···H2iv 3.15 (3) H16B···H24Dvii 2.54
O1···C3v 3.268 (2) H16B···H18B 2.46 (3)
O1···C17 3.238 (2) H16B···H24Avii 2.49
O1···C15vi 3.270 (2) H17A···H19A 2.59 (3)
O1···H3v 2.51 (3) H17B···H19B 2.55 (4)
O1···H16A 2.43 (2) H18B···H20B 2.55 (3)
O1···H17A 2.75 (2) H19A···H21A 2.58 (4)
O1···H9 2.49 (3) H19B···H21B 2.51 (4)
O1···H15vi 2.36 (3) H20A···H22A 2.49
C5···C17 3.430 (3) H20B···H22B 2.54
C5···C24vii 3.58 H21A···H23B 2.55
C6···C24vii 3.58 H21A···H23C 2.60
C24A···C24Aviii 2.48 H21B···H24B 2.32
C2···H19Ai 2.98 (2) H21B···H23D 2.34
C5···H24Avii 2.99 H22B···H24C 2.27
C5···H16B 2.64 (2) H22B···H24E 2.43
C5···H17B 2.93 (3) H24D···C24Aviii 1.94
C7···H15vi 2.95 (3) H24D···H24Dviii 1.82
C7···H17A 2.99 (2) H24D···H24Eviii 1.70
C16···H5 2.62 (3) H24D···H24Fviii 2.07
C17···H3v 2.98 (3) H24E···H24Fviii 2.54
C17···H5 2.82 (3)
C8—S1—C1 97.27 (8) C16—C17—H17B 109.2 (13)
C7—N1—C6 123.67 (14) C18—C17—H17B 110.8 (12)
C7—N1—C16 117.19 (14) H17A—C17—H17B 106.0 (18)
C6—N1—C16 119.07 (15) C19—C18—C17 113.07 (16)
C2—C1—C6 120.22 (17) C19—C18—H18A 112.5 (13)
C2—C1—S1 119.25 (13) C17—C18—H18A 109.3 (13)
C6—C1—S1 120.52 (13) C19—C18—H18B 111.2 (14)
C3—C2—C1 120.53 (17) C17—C18—H18B 108.8 (14)
C3—C2—H2 122.3 (14) H18A—C18—H18B 101.4 (19)
C1—C2—H2 117.1 (14) C20—C19—C18 113.91 (17)
C2—C3—C4 119.53 (18) C20—C19—H19A 110.8 (14)
C2—C3—H3 118.7 (16) C18—C19—H19A 108.3 (14)
C4—C3—H3 121.7 (16) C20—C19—H19B 107.2 (14)
C3—C4—C5 120.51 (19) C18—C19—H19B 108.7 (15)
C3—C4—H4 120.8 (16) H19A—C19—H19B 107.7 (19)
C5—C4—H4 118.7 (16) C19—C20—C21 113.55 (18)
C4—C5—C6 120.58 (17) C19—C20—H20A 108.8 (13)
C4—C5—H5 118.4 (14) C21—C20—H20A 109.2 (13)
C6—C5—H5 121.0 (14) C19—C20—H20B 109.1 (13)
C5—C6—C1 118.59 (16) C21—C20—H20B 107.1 (13)
C5—C6—N1 120.19 (15) H20A—C20—H20B 109.1 (19)
C1—C6—N1 121.22 (16) C22—C21—C20 113.53 (18)
O1—C7—N1 121.48 (16) C22—C21—H21A 108.6 (17)
O1—C7—C8 121.01 (16) C20—C21—H21A 107.9 (17)
N1—C7—C8 117.51 (15) C22—C21—H21B 108.5 (14)
C9—C8—C7 118.51 (17) C20—C21—H21B 109.6 (14)
C9—C8—S1 125.47 (14) H21A—C21—H21B 109 (2)
C7—C8—S1 115.89 (13) C21—C22—C23 117.2 (4)
C8—C9—C10 126.86 (18) C21—C22—C23A 109.3 (4)
C8—C9—H9 114.5 (15) C21—C22—H22A 108.0
C10—C9—H9 118.6 (15) C23—C22—H22A 108.0
C11—C10—C15 116.75 (18) C21—C22—H22B 108.0
C11—C10—C9 120.39 (18) C23—C22—H22B 108.0
C15—C10—C9 122.85 (18) H22A—C22—H22B 107.2
C12—C11—C10 122.93 (19) C24—C23—C22 105.7 (4)
C12—C11—Cl1 117.26 (16) C24—C23—H23A 110.6
C10—C11—Cl1 119.80 (15) C22—C23—H23A 110.6
C11—C12—C13 117.9 (2) C24—C23—H23B 110.6
C11—C12—H12 121.9 (16) C22—C23—H23B 110.6
C13—C12—H12 120.1 (16) H23A—C23—H23B 108.7
C14—C13—C12 121.42 (19) C23—C24—H24A 109.5
C14—C13—Cl2 120.33 (17) C23—C24—H24B 109.5
C12—C13—Cl2 118.25 (17) H24A—C24—H24B 109.5
C13—C14—C15 119.3 (2) C23—C24—H24C 109.5
C13—C14—H14 119.4 (15) H24A—C24—H24C 109.5
C15—C14—H14 121.3 (15) H24B—C24—H24C 109.5
C14—C15—C10 121.63 (19) C24A—C23A—C22 111.3 (6)
C14—C15—H15 116.3 (15) C24A—C23A—H23C 109.4
C10—C15—H15 121.9 (15) C22—C23A—H23C 109.4
N1—C16—C17 115.05 (15) C24A—C23A—H23D 109.4
N1—C16—H16A 106.7 (13) C22—C23A—H23D 109.4
C17—C16—H16A 109.8 (13) H23C—C23A—H23D 108.0
N1—C16—H16B 108.8 (12) C23A—C24A—H24D 109.5
C17—C16—H16B 110.0 (12) C23A—C24A—H24E 109.5
H16A—C16—H16B 106.0 (18) H24D—C24A—H24E 109.5
C16—C17—C18 110.52 (16) C23A—C24A—H24F 109.5
C16—C17—H17A 107.9 (13) H24D—C24A—H24F 109.5
C18—C17—H17A 112.2 (13) H24E—C24A—H24F 109.5
C8—S1—C1—C2 147.58 (16) S1—C8—C9—C10 5.5 (3)
C8—S1—C1—C6 −31.51 (17) C8—C9—C10—C11 133.9 (2)
C6—C1—C2—C3 0.2 (3) C8—C9—C10—C15 −46.2 (3)
S1—C1—C2—C3 −178.87 (16) C15—C10—C11—C12 −0.3 (3)
C1—C2—C3—C4 1.3 (3) C9—C10—C11—C12 179.60 (19)
C2—C3—C4—C5 −1.1 (3) C15—C10—C11—Cl1 178.39 (14)
C3—C4—C5—C6 −0.6 (4) C9—C10—C11—Cl1 −1.7 (3)
C4—C5—C6—C1 2.1 (3) C10—C11—C12—C13 −1.3 (3)
C4—C5—C6—N1 −177.04 (19) Cl1—C11—C12—C13 179.99 (17)
C2—C1—C6—C5 −1.9 (3) C11—C12—C13—C14 1.9 (3)
S1—C1—C6—C5 177.16 (15) C11—C12—C13—Cl2 −177.07 (17)
C2—C1—C6—N1 177.25 (17) C12—C13—C14—C15 −1.0 (3)
S1—C1—C6—N1 −3.7 (2) Cl2—C13—C14—C15 178.02 (17)
C7—N1—C6—C5 −150.53 (19) C13—C14—C15—C10 −0.7 (3)
C16—N1—C6—C5 26.4 (3) C11—C10—C15—C14 1.3 (3)
C7—N1—C6—C1 30.3 (3) C9—C10—C15—C14 −178.57 (19)
C16—N1—C6—C1 −152.76 (17) C7—N1—C16—C17 82.7 (2)
C6—N1—C7—O1 172.26 (17) C6—N1—C16—C17 −94.4 (2)
C16—N1—C7—O1 −4.7 (3) N1—C16—C17—C18 −179.23 (15)
C6—N1—C7—C8 −8.3 (3) C16—C17—C18—C19 −178.51 (17)
C16—N1—C7—C8 174.73 (16) C17—C18—C19—C20 177.77 (17)
O1—C7—C8—C9 −32.8 (3) C18—C19—C20—C21 −175.70 (18)
N1—C7—C8—C9 147.71 (18) C19—C20—C21—C22 −178.7 (2)
O1—C7—C8—S1 143.15 (15) C20—C21—C22—C23 176.0 (3)
N1—C7—C8—S1 −36.3 (2) C20—C21—C22—C23A −169.4 (5)
C1—S1—C8—C9 −133.86 (18) C21—C22—C23—C24 78.1 (5)
C1—S1—C8—C7 50.47 (14) C21—C22—C23A—C24A 175.2 (6)
C7—C8—C9—C10 −178.89 (17)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+2; (iii) x+1, y−1, z+1; (iv) −x+2, −y, −z+1; (v) x−1, y, z; (vi) −x+1, −y, −z+1; (vii) x+1, y−1, z; (viii) −x−1, −y+3, −z; (ix) x+1, y, z.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the ring A (C1–C6).

D—H···A D—H H···A D···A D—H···A
C3—H3···O1ix 0.96 (3) 2.51 (3) 3.268 (2) 136 (2)
C5—H5···Cl1i 0.96 (2) 2.86 (2) 3.634 (2) 138.8 (17)
C15—H15···O1vi 0.96 (3) 2.36 (3) 3.270 (2) 159 (2)
C17—H17A···Cg1i 0.98 (2) 2.90 (2) 3.619 (2) 131.2 (17)

Symmetry codes: (i) −x+1, −y+1, −z+1; (vi) −x+1, −y, −z+1; (ix) x+1, y, z.

Funding Statement

This work was funded by National Science Foundation grant 1228232. Tulane University grant . Hacettepe Üniversitesi grant 013 D04 602 004 to T. Hokkelek.

References

  1. Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. Mol. Pharmacol, 50, 1178–1188.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA
  4. Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.
  5. Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data, 2, x170646.
  6. Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.
  7. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.
  8. Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. [DOI] [PMC free article] [PubMed]
  9. Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCr Data, 2, x170097.
  10. Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  11. Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385.
  14. Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156.
  15. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  16. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  17. Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. [DOI] [PMC free article] [PubMed]
  18. Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. [DOI] [PMC free article] [PubMed]
  19. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  20. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  21. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  22. Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.
  23. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  24. Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330. [DOI] [PubMed]
  25. Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999. [DOI] [PMC free article] [PubMed]
  26. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424. [DOI] [PMC free article] [PubMed]
  27. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data.1, x161012.
  28. Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.
  29. Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.
  30. Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727. [DOI] [PMC free article] [PubMed]
  31. Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656. [DOI] [PMC free article] [PubMed]
  32. Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.
  33. Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. [DOI] [PMC free article] [PubMed]
  34. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  38. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377–388.
  39. Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. [DOI] [PubMed]
  40. Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farm. Ed. Sci. 40, 369–376. [PubMed]
  41. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  42. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  43. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  44. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  45. Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.
  46. Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.
  47. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020001036/lh5943sup1.cif

e-76-00281-sup1.cif (284.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001036/lh5943Isup2.hkl

e-76-00281-Isup2.hkl (338.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020001036/lh5943Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020001036/lh5943Isup4.cml

CCDC reference: 1980073

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES